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Summary

Heaviness of tail of distributions is compared each other analytically
and systematically. Distributions under the study are the lognormal,
loglogistic, Weibull, gamma, exponential-polynomial distributions. The
beta loglogistic, which covers some of these distributions as its limits,
is also discussed.

Heaviness of tail is an important notion in life-test, robust estima-
tion and rank test. Here the notion is studied to examine models for
estimating safe doses. Some results about heaviness of tail are given,
and a new notion of heaviness of tail at the origin is defined and dis-
cussed.

1. Introduction

During this decade many procedures for estimating safe doses of
possible hazardous chemical compounds have been proposed. Most pro-
cedures are based on dose response relationships and extrapolation from
higher doses to lower doses. This extrapolation presents serious prob-
lems, one of which is the need for an assumption of a dose response
curve. For example, suppose that we want to estimate a dose for
which a corresponding incidence probability is very small, say 107%.
The assumption of a dose response curve is then essential. In this
case, the probit model and the logit model give quite different estima-
tors, although it is well known that both models give close estimators
in the usual bioassay. The difference in estimation comes mainly from
differences of tail of distributions in these models. This situation was
previously noted, and numerical examples were given [4], [7].

Selection of a reasonable distribution in a model depends on that
of a reasonable tail of a distribution. If the model can be fixed by
biological reasoning, it is the best. But, at present, there are too many
biologically reasonable models.
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In this paper we compare analytically tail of distributions which
are used as models for risk assessment, expecting the result to be use-
ful for selecting a model. The notion of heaviness of tail of distribu-
tions plays an important role in life test [3], robust estimation [20],
and scoring of rank test [9], as well as estimation of safe doses.

Distributions under study are the lognormal, loglogistic, Weibull,
gamma, exponential and exponential-polynomial distributions. In addi-
tion, the beta loglogistic distribution family introduced by Prentice is
also discussed. The loglogistic is a special case of this family, and the
lognormal, Weibull, and gamma are limits of distributions of this family.

General comparisons of tail of distributions for systematically vary-
ing definitions of tail will be presented in a subsequent paper [19].

This paper is constructed as follows: In Section 2 some properties
of heaviness of tail are discussed as preparation. Section 3 presents
main results of comparisons of distributions. An outline of the proof
of these results is presented in Section 7. The beta loglogistic distri-
bution family is studied in Section 4. The results in Section 4 aid in
understanding those in Section 3. Tail ordering at the origin is defined
and studied in Section 5. In the case of risk assessment our attention
is usually limited to low doses; that is, to tail at the origin of a distri-
bution. Supplemental remarks and discussions are given in Section 6.

2. Heaviness of tail

Let X and Y be random variables with their distribution funections
F(x) and G(x) respectively. Throughout this paper, a distribution func-
tion is assumed to have a positive density function on (0, o), unless
specified otherwise. In general, for a distribution function H(x), h(x)
and H'(u) denote respectively the density function and the inverse
function.

DEFINITION 1. Y is called to have heavier tail than X, iff G '(u)/
F~Yu) is non-decreasing in % (0<u<1), and the condition is denoted
by Y>X (9).

For convenience, we do not distinguish between a random variable,
its distribution, and its distribution function, unless confusion occurs.
Thus, we write like G(z)>F(x) (2). The definition was introduced in
[6], and discussed in subsequent papers; for example [9], [20], [21].

ProPOSITION 1. The following two conditions are equivalent to
G(z) > F(x) ().
(i) G Y(F(x))/x is increasing in z>0.
(i) g(G'(w)NG ' (W)= f(F~'(w))F () for any u, 0<u<l.
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The condition (ii) is convenient for computation, so we define

S(u; f)=f(F(w)F'(u)=f(z)x ,
where the parameter f can be replaced by F' or X.

A family of distributions & is often closed with respect to the
scale and the power transformations; that is, if F(x) is in &, then
both F(ax) and F(x’) are in & for any positive numbers ¢ and 8. For
the present study the power parameter g is important, though the scale
parameter « is irrelevant, as stated by the following proposition.

PROPOSITION 2.
(i) Let o be a positive value and G(z)=F'(ax). Then G(x)> F(x) (<)
and G(z)< F(x) (). Conversely, if G(x)>F(x) () and G(x)<F(x)
(9), then there exists a positive number « such that G(x)=F(ax) for
any «.
(ii) If G(x)»>F(x) () and B<f, then G(z*)> F(x*) (J).

The next proposition indicates close relation between the notion of
heaviness of tail and that of dispersion.

PropoSITION 3 [21]. Let F*(x)=F(¢*) and G*(x)=G(e®). Then
F*(x) and G*(x) have a support (—oo, ). G(x)> F(x) (I) iff for any
0<u<wv<1 it holds that

(1) G*(0)— G* ) Z F*~(0) — F* () .

When (1) is satisfied G*(x) is called to be more “spread out” than F*(x)
[8].

This notion represents a partial ordering of dispersion among dis-
tributions. Note that the power parameter in heaviness of tail corre-
sponds to the scale parameter in largeness of dispersion. In conven-
tional dose response analyses like the probit and the logit, dose data
are initially log-transformed. Transformed dose data are called meta-
meters. In this case a response curve represented by F'(x) is apparently
changed into that by F'*(x).

The following theorem is useful in actual comparison of distributions.

THEOREM 1. Suppose a distribution function F(x) satisfies a con-
dition
(2) S(u; f)=f(F " (u)F(u) 18 concave m u, 0<u<l
and suppose F(x)<Gy(x) (T) and F(x)<Gy(x) (T). Let G(x) be a mixture

of G(x) and Gy(x), that is, G(x)=21G(x)+(1—2)Gy(x) for 2 (1=22=0). Then
F(2)<G(x) ().
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PROOF. Put =G '(w). Proposition 1-(ii) means that we have only
to show for any «

(3) S(G(=); f)=F(FHG@NF 1 (G=)zg9(x) .
Using (2), it follows that

S(G(x); £)Z8(Gy(x); £)+A—DS(Gox); f)
ZA8(Gy(%); 9:)+ (1 —)S(Gy(=); 92)
=2gy(x)x+(1—)gx(x)r=g(x)x .

This completes the proof.

Remark. Put F*(x)=F(¢’) and f*(x)=e"f(¢*), —oo<x<oo. The
condition (2) is equivalent to that

(4) —log f*(x) is convex in z,

since the right derivative of —log f(¢®) is increasing iff the right de-
rivative of S(u; f) is decreasing. The density sf*(x) is strongly uni-
modal, when (4) is satisfied.

COROLLARY 1. Suppose that f*(x), —oo<x<oco, is strongly uni-
modal, and that both G(x) and Gy x) are more spread out than F*(x).
Let G(x)=AG(x)+(1—2)Gxx) for 0ZAZ1. Then G(x) is more spread
out than F*(x).

COROLLARY 2. Let X and Z be two independent random variables,
and let X have a distribution satisfying (2), and Y=XZ or Y=X/Z.
Then Y »>X ().

Example 1.

(i) Let X and Z be independent random variables with the common
distribution function 1—e=*" (y>0), that is, they are distributed accord-
ing to the Weibull distribution with its parameter y. Then Y=X/Z
has the distribution function 1—1/(1+y"), i.e. the loglogistic distribu-
tion with its parameter y, and Y>X (J). This proves LL(y)>Wb(r)
(<), one case of Theorem 2.

(ii) [20] Let X and Y be distributed according to the standard nor-
mal distribution and the ¢-distribution with » degrees of freedom. Then
|Y|>|X]| (Z). In fact, let N,, N,,---, N, be (n+1) mutually independ-
ent random variables with the common distribution N(0,1). By put-
ting X=N, and Z?=3) N}/n the statement follows from Corollary 2.

See Section 4 for further applications.
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PROPOSITION 4.
(i) S(u;1/X)=S1—u; X).
(ii) Y>X @) iff 1/Y>=1/X (D).

Proor. If X has the distribution function F(x), then 1/X has the
distribution function 1— F(1/z) (=u) and the probability density x*f(x).
From these,

Stu; 1/ X)=a' fx)=F'A—u)f(F'(1—-u)=S1—u; X) .
The part (ii) is obvious from (i) and Proposition 2-(i).

This proposition shows that our definition g compares not only the
heaviness of right tail of the distributions on (0, o0), but also largeness
of their probabilities near the origin.

From Proposition 4, it is also clear that log X has a density func-
tion symmetric about a point iff S(u; X) is symmetric about u=1/2.
The lognormal and the loglogistic distributions discussed in the follow-
ings are the examples of this fact.

3. Comparison of tail of distributions

The following six families of distributions are discussed here. All
parameters are assumed to be positive unless specified otherwise.
(a) Loglogistic distribution LL(8, @). The distribution function is given
by

(5) F.(8, a, x)=ax’/(1+ax’) ,

and used in the logit model. This nomenclature is consistent with the
lognormal distribution ; that is, a random variable X has the loglogistic
distribution, if log X has the logistic distribution.

(b) Weibull distribution Wb(y, @). The distribution function is given by

(6) Fo(r,a, 2)=1—e,

The model using this is popular in the reliability theory and was dis-
cussed for estimation of safe doses in [15].
(¢) Gamma distribution Ga(k, ). The distribution function is given by

(7) Folk, a, ©)= S t-1e= T (Je)dlt .

When k is a positive number, this represents the (one target) k-hit
model, but k¥ can be generalized to a positive real number.

(d) Exponential-polynomial distribution EP(n, a,,+--,a,). The distri-
bution function is given by
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(8) FP('ny Qpy* oy Oy, m)zl“‘eXP (——é(aia})‘> ,
i=1
where 7 is a positive integer and a,,---, @, are nonnegative. The model

using this is called the polynomial model which was introduced by
Armitage-Doll model [1]. The expression (8) is slightly different from
usual expression 1—exp (—3 a;x') used in [18], and is more convenient
in the present discussion. The number m is an integer such that a,>
0, and a;=0 for i<m.

(e) Exponential distribution E(a). The distribution function is given
by

(9) Fy(a, x)=1—c.

The model using this is called the linear model in contrast with the
polynomial model, and called the one-hit model in contrast with the
multi-hit model.

(f) Lognormal distribution LN(z, ). The distribution function is given
by

10) Fy(r, a, x)=90(log ax’) ,

where @(x) denotes the standard normal distribution function. The
model using this is the probit model.

Each of these families listed above has a scale parameter «, which
is irrelevant for comparing tail as shown in Proposition 2-(i). Thus
the parameter o is fixed at 1 for simplicity, unless confusion occurs.
Notations for the distributions and the distribution functions will be
simplified like LL(8) and F', (B, x).

The family E is the intersection of the three families, Ga(k), Wb(y)
and EP(n, o, ---,a,). When y is a positive integer, the distribution
Wb(y) is included in the family EP(n, a,- -, a,).

The probit and logit models are popular. A procedure for estimat-
ing safe doses by Mantel and Bryan [13] is based on the probit model.
The multi-hit model was introduced by Iversen and Arley [12] and was
discussed in [18]. The multistage model has attracted the attention of
researchers and was studied in [5], [11]. The model using the Weibull
distribution was discussed in [15].

Tails of distributions of these families are compared in Theorem 2
below. The outline of the proof will be presented in Section 7.

DEFINITION 2. The two conditions, Condition A and Condition B
are defined as follows:
Condition A: (B, k') satisfies Condition A, iff either A<Min {k', 1} or
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1< Min z¥e~*/'(KI(K', x)(1—I(K', x)) holds, where I(k', x)=F¥, x).
Condition B: A pair of vectors (n, a;,---, @,) and (n/, af,---, a}) satis-
fies Condition B, iff n=<#' and of/e;<d}/a,<---=Zalfa,, where a/0 for
any a>0 is considered to be larger than any positive number and 0/0
is disregarded.

THEOREM 2.

(i) Sufficient conditions that a distribution has heavier tail than an-
other distribution are summarized in Table 1. A distribution of the
first column _L(-) has heavier tail than another distribution of the head
line .L(-), if the condition in the corresponding entry is satisfied.

(ii) FExcept for Condition B, all conditions are mecessary.

Table 1. Conditions that a distribution of the first column has heavier
tail than another of the top line () [cf. Theorem 2]. C=
4/\/§E and m’ denotes the integer such that «/,>0, and af=
0 for j<m’. Condition B is sufficient, and all the others are
necessary and sufficient.

Heavier 28T [LL(g)|  whiy) Ga(k'y |EP(', aly--+, al)| E |LN@)
LL(B) B<p By’ Condition A g<m’ g<1 'p=cr
Wo(y) Empty Y4 y<Min (1, k’} ysm’ y=1 Empty
Ga(k) Empty | Min (1, B} <7/ k<k’ k<m’ k<1 {Empty
EP(n, aj,--+, an) |Empty n=<y’ n=1, k=1 Condition B n=1 Empty
E Empty 1<y 1<k All All |Empty
LMr) Empty Empty Empty Empty Empty| 77/

B
4._
3
2_.
P
y.a
1" /’
rl
ya
.- . : . ; I
1 2 3 4 5

Fig. 1. Condition A: A point (k/, 8) in the shaded area
satisfies Condition A of Theorem 1 and Table 1, a neces-
sary and sufficient condition for LL(8)> Ga(k’) (I).
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Remarks.
(i) Condition A is satisfied for A<I'(K)/2(k'—1)¥"'e~* P =+r(k'—1)/2
but not for B=k'>1. Figure 1 obtained by numerical computations
shows Condition A for k'<5. ’
(ii) Suppose n=2. Then, EP(n, o, ay) > EP(n, ¢, &}) () iff el/a,=alf
a,. But Condition B is not sufficient for »=3. Remark that a pair
of vectors (n, a;, -+, a,) and (n, ea;,---, aa,) satisfies Condition B for
any a>0.
(iii) van Zwet [22] stated a stronger proposition than that Ga(k)>
Ga(k'y (9) iff k=K.

4. Beta loglogistic distribution

The beta loglogistic distribution, BL(4, 4,, 8, @) has the distribution
function

uxﬁ 1+ azh
11) Fa(iy 2y By @, x):So T By, 2L —tyhide
and the density function
12) Se(A1s A2, B, @, £)=B(;, ) 'parixf1~t /(14 axf)at?,

This is a beta transformation of the loglogistic distribution function
F..(8, a,x). It can also be regarded as a power transformation of the
beta variable of the second type, i.e. F variable. The family of BL(2,,
23, B, @) was introduced in [16] and used for fitting dose response curves
in [17]. As in the previous section, a is often omitted and assumed to
be 1, for simplicity.

The family of BL(4,, 4, 8, @) and its limit distributions (that is, the
closure) include all the families of distributions listed in the previous
section except for EP(n, a;,---,a,). This is shown in the following
proposition. The proof is straightforward and is omitted here.

PROPOSITION 5.
(i) [16] BL(1, 1, B)~LIL(p),
(ii) [16] BL(A, 2, ¥2[it)~LN(z) (A— o),
(iii) BL(, 2, 7, 1/7)~Wb(y) (13— oo) and
(iv) BL(k, 2, 1, 1/3)~Ga(k) (21— o),
where the symbol ~ denotes “is equivalent to” and ~---(2—o0) de-
notes “(the left-hand side) converges in law (to the right-hand side) as
2 tends to infinity ”.

The following proposition shows that among the family of BL(4,,
A3, B) tail orderings are monotone in 2, and 2, as well as in 8.
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PrOPOSITION 6.
(i) For any A/=41, #4=4 and f'=p it holds that BL(2, 4, ) > BL(2],
A, B') ().
(ii) A necessary condition that BL(A,, A, 8)>BL(2{, 2, 8') (9) is that
Af =48 and B =2B.

Proor. (i) We have only to prove BL(4, 4, 1) BL({, 2,, 1) (9)
because of Proposition 2-(ii). Remark first that f5.(1, 4, 1, ) satisfies
the condition of Theorem 1. In fact,

—o-Llog £, 21 L )=~ (A= D)+ (+ B)af(1+ )
which is nondecreasing, showing that S(u; f5.) is concave. Next, let
V(4), V(%) and V(g) be independent gamma variables with the standard
scale parameters and the shape parameters 1, 2, and x respectively, and
let Y(a,, ;) be a BL(4, 4, 1) variable. Let the symbol ~ denote to
have the same distribution.

~ V(i) + V() . V2) ~ .
Y(4, 42) ViZ) V(ll)-{-V(‘u) Y(A'*‘ﬂ’ ) Z(2y, 11+#)

and

- V(4) V() +V(y)
Y(4i, &) Vo) + V) Vi) Y(a, 4] Z(22, 22+ p)

where Z(4,, 4+p) (or Z(2, A+ p)) is a beta random variable of the first
type with the parameters of the arguments and independent of Y(1,+
u, A) (or Y(4;, 2,+p)), since V(1,)+V(y) is independent of V(2,)/(V(2,)+
V(¢)). Using Corollary 2 of Theorm 1,

Y(21, 2) =Y (4 +p, 2) () and Y(4y, 2) = YA, 4-p) (D)

for any 2, 4, #>0.

(ii) Let Y be a BL(4, 4, B) variable. It is known that 1/Y has BL(4,,
2, B). The functions S(u; -) for these variables are, by Taylor’s expan-
sion of f,; and its integration,

Su; V)= Bhu+O(u )
and
SA—u; Y)=8(u; 1/Y)=pAu+O(u' /%)

due to Proposition 4-(ii). Applying Proposition 1-(ii), we show the con-
dition (ii) necessary.

COROLLARY 1. A necessary and sufficient condition that BL(1, 2,
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B)>BL(A, %, ) () is Az4 and =4

Example 2.
(i) Suppose B=<7'. Then it holds that BL(1, 1, ) BL(1, 2, ") (2) for
any 4=1. This implies LL(8)>Wb(y’) (4), since tail ordering is closed
with respect to the limit of distributions in law. This was directly
shown in Example 1 of Section 2.
(ii) Suppose y<1 and k'=1. Then Wb(y)>Ga(k') (). Conversely,
suppose ¥Y=1 and k<1. Then Ga(k)>Wb(') (9).
(ili) Suppose k’'=k. Then Ga(k') > Ga(k) (9). This fact can be shown
directly in a similar way to the proof of Proposition 6.

5. Heaviness of tail at the origin

It is well known that the linear model and the probit model derive
quite different estimators of safe doses. However, Theorem 2 says that
the inequality relation E> LN(s) (<) does not hold. This is because our
definition & means larger probability in both right tail and near the
origin, as discussed after Proposition 4. Since very low doses are esti-
mated by extrapolation from relatively higher doses in the risk assess-
ment, larger probability only near the origin is essential. So we need
another comparison weaker than <.

DEFINITION 3. A distribution function G(x) is said to have heavier
tail at the origin than another F'(x), iff there is a positive value u,
such that G™%(u)/F~'(u) is increasing in u (0<wu<u,), which is denoted
by G(z)> F(2) ().

Similar results to those for heaviness of tail hold for heaviness of
tail at the origin. Next we give two propositions without proofs, since
they are obtained by elementary but tedious calculations.

Proposition 6 is replaced by :

PROPOSITION 7.
(i) Sufficient conditions that BL(1,, 4,, 8) > BL({, 2, B) (4,) are that
A >A4B and that A/=21,, 2j=4, and §'=35.
(ii) A necessary condition that BL(4;, 4, 8) > BL({, 4, B') (<,) is 2}f'=
8.

PrROPOSITION 8. Under the notations in Section 3, limiting behav-
iors of tail at the origin are evaluated quantitatively as follows:
(1) lim S(u; LL@)/u=lim £,(8, )a/F1(8, )=,
(i) lim S(uw; Wb(r))/u=r,
u—0
(iii) ligl S(u; Ga(k))lu=Ek,
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(iV) lim S(u; EP('"/, Oy ey an))/uzm’
u—0

where m is as defined in Section 3 (d), and
(v) lin")l S(u; LN(7))/u= co.

To state the theorem corresponding to Theorem 2, the following
definition is needed.

DEFINITION 4. A pair of vectors (n, a;,--+,a,) and (#/, af,- -, a})
satisfies Condition C, iff one of the following three holds:
(i) m<m', where m is as defined in Section 3 (d),

(ii) m=m' and there exists an integer ! such that o/ /a,=---=a]_ /e, ,
<ajla,,
(ili) m=m', n=n' and o, /e, =d}ja,="--=a)/a,.

THEOREM 3. Necessary and sufficient conditions that a distribution
listed in Section 3 has heavier tail at the origin than another distribu-
tion are summarized in Table 2. In other words, L(-)>_L(-) (Zy), f
the parameters satisfy the condition in the corresponding entry.

Table 2. Conditions that a distribution of the first column has heavier
tail at the origin than another of the top line (9) [cf. The-
orem 3]. All conditions are necessary and sufficient.

\@\;@»\Pﬂgh‘i LL(g") Wh(r’) Ga(k’) EP(w, a},-++,a,)| E |LN(’)
LL(§) B=p sy’ ﬁii,ké'l psm’ B<1 | Al
Wb(y) r<pg’ <7’ Tii,kél r<m’ r<1 | Al
Ga(k) k< g k’;jgl k<k' ke<m’ k<1 | Al

7 ’
EP(n, ayeeyan) | m<g/| ST m’ﬁjgk, Condition C | n=1| Al
E 1< g 1<y 1<k’ All All | Al
LM7) Empty Empty Empty Empty Empty| <7/

6. Discussions and remarks

(A) The Probit Model and the Linear Model

These two models are fundamental for estimation of safe doses.
As for heaviness of tail, the lognormal and the exponential distribu-
tions are quite different. The exponential distribution has much heavier
tail at the origin than the lognormal distribution does, as shown in
Table 2. This fact was pointed out numerically by several authors, for
example [4].

The exponential, however, does not have heavier tail than the log-
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normal, and the lognormal distribution does not have monotone increas-
ing hazard rate. See Barlow et al. [2] and Gehan [10]. In fact, the
hazard rate of the lognormal is increasing near the origin but decreas-
ing at the right tail, and the distribution is regarded inappropriate as
a life length distribution having a heavier right tail.

The notion of heaviness of tail at the origin and Proposition 4 make
clear how these distributions are different.
(B) Mantel-Bryan Procedure

A method to estimate safe doses was devised and extended by
Mantel, Bryan, and others in [13], [14]. They assumed &(log x-+a) as
a dose response curve, and claimed that this assumption was conserv-
ative. Since r in the probit model is usually greater than 1, their
assertion is reasonable so far as the probit model is valid. A smaller
value of r implies heavier tail of the distribution, which means con-
servatism in extrapolation from higher doses to lower doses.

However, as shown in Theorem 3, the lognormal distribution has
lighter tail than the other distributions discussed here. Thus the Mantel-
Bryan method is not necessarily conservative.

(C) Model Fitting and Tail of Distribution

When a candidate model is fitted to experimental data, goodness
of fit depends mainly on the center of the distribution rather than its
tails. On the other hand, an estimated safe dose obtained by extrap-
olation depends heavily on tail at the origin of the distribution. This
situation is supported by the well known difference between the probit
and the logit models. Both models are usually well fitted to bioassay
data, and derive close estimators of the ED,,, but the tail probability
is extremely different as seen in [4].

The parameter k in the gamma distribution, for example, corre-
sponds to heaviness of tail at the origin as shown in Theorem 3. The
parameter represents at the same time the variance of log X of a Ga(k)
variable X.

(D) Heterogeneous Population

The gap between a heterogeneous population like human beings
and a homogeneous population like experimental animals is frequently
discussed. It is considered that a heterogeneous population consists of
several homogeneous populations. Roughly speaking, a dose response
curve corresponding to a homogeneous population has lighter tail than
that corresponding to a heterogeneous population. Theorem 1 supports
this under a weak condition.

7. Outline of the proof of Theorem 2

Theorem 2 consists of many statements. Some of them can be
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proved using Propositions 2-(ii) and 6 and Theorem 1. Proof of four
pairs of statements, for which conditions are a bit complicated, are
given below.

The remainder can be proven after straightforward but tedious
calculations, like the following proofs in this section. Proposition 1-(ii)
is useful in these proofs. The affirmative statements are shown analyt-
ically. The study of behaviors of f(F'(u))F~'(u)/¢g(G(u))G ' (u) at
neighborhoods of =0 and u=1 proves the negative statements. The
negative statements near 0 are obtained in Theorem 3.

(a) Proof of statements between LIL(B8) and Ga(k). Let xz(u)=F (3, w)
and y(u)=F;'(k, u), where F.(8,x) and F,(k, x) are given in (5) and
(7). Then it holds that

(13) g:‘"’ te-tg=t) T(k)dt =1 .

By differentiating both sides, it follows that
(y(w)'e™ [T (k)y'(u)=1,

that is,

(14) yw)y' (w)=y(u)'er/I'(k) .
Similarly,

(15) a(u)/x'(w)=pu(l—u) .

By Proposition 1-(ii), LL(8)>Ga(k) () is equivalent to
Bu(l—u)<y(u)e v |I'(k) for 1>u>0,
which is replaced by

. xe~|I"(k)
(16) =M T A1k, )

where I(k, x)=Fg(k, x). Figure 1 is obtained numerically from (16).
Conversely, it follows from (15) that

lim {a(u)/(2'(w)(1—u))} =8 .
On the other hand, it holds that
lim (y()/(@'@ 1 —w)} =lim {1/]” #-tet-0dt] = oo .
This means that it does not hold for any k and 8 that LL(8)< Ga(k) ().

(b) Proof of statements between LIL(B) and LN(r). Let z(u) be de-
fined as in (a) and y(u) be Fy'(r, u). Then
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y(u)/y'(u)=7 exp {—(1/2)(z log y(u))} /v 2x .
Thus LL(B)> LN(z) (J) is equivalent to
pu(l—u)=zexp {—(1/2)(rlog y(u))'}/¥2xr  for 1>u>0,

that is,
1 Br=Min exp {—(1/2)(r log y(u))*} /v 2z u(1—w)

= Mjn exp {—(1/2)2%} /v 2z O(x) (1 —D(x))

=1//2x 9(0)(1—&(0))

=4/v2r .

Conversely, since

lim exp {—(1/2)a*} /v 2r O(x)(1—O(x))= oo ,

it does not hold for any 8 and = that LL(B)< LN(z) (D).
(¢) Proof of statements between Wb(y) and Ga(k). Let y(u) be defined
as in (a) and z(u) be defined by

w(u)=Fy'\(y, w)=(—log (1—u))" .
Then it holds that
w(u)/z'(u)=r(1—u)(—log (1—wu)) .

Suppose that Wb(y)>Ga(k) (7). Proposition 1-(ii) implies that for 1>
u>0

7(1—u)(—log 1—u)) <y(w)e/I'(k)
or, that for any 2>0
7(1—I(k, x))(—log (1—I(k, %)))—x*e~*/I"(k)<0 .
Some calculations lead to

liino r(1—u)(—log 1—u))ju=y
ligl y(u)e v I kyu=k ,

and

lim (1—I(k, ©))(—log (1—I(k, z)))/z*e~*|(k)=1 .

Thus a necessary condition that Wb(y)>Ga(k) (<) is y=Min (k, 1).
Next we show the above condition is sufficient. Suppose that &>
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1, since the part of k<1 is easily derived from Proposition 4. Let ¢(x)
be the left-hand side of (18). Then

¢'(x)=7(—log (1— Ik, x))+1)a*~'e™*/I"(k)— (k—x)a*"'e™|I'(k) .
#'(x)=0 is equivalent to
—log 1—1I(k, x))=—1+(k—x)/r .

Since —log (1—I(k, x)), k=1, is starshaped, that is, —log (1—I(%, x))/x
is increasing in 2, ¢'(x) changes its sign once from minus to plus. The
function ¢(x) is shown to be negative for any z, since ¢(x) is continu-
ous and 111{)1 #(x) and lim ¢(x) are not positive under the condition.

(d) Proof of statements within EP(n, a,---,a,). Let x(u)=Fyi(n,
Qyyc ey Oy, u) and y(u):FI;l(n'7 Bl" ty Bn’r u)' Since

w(u)/z'(u)=exp {— 3 (@:x:)'} 2 W@z =(1—u) 3 i(aw),
EPn, aj,---, a,)>»EPW, B, -+, B.) () is equivalent to
(19) > ()= uBy(w))'  for 1>u>0.

Now, suppose that {3,/e;} is an increasing sequence. For any value of
u, there exists an integer ! such that

Bl =+ SBjeSo(w)y(u)< - - - ZBifay .

For 1=141 it holds that

(20) (By(u)/ax(u))' =1 .
On the other hand, for <! it holds that
(21) (Biy(w)]ax(u)) <1 .

Definitions of x(u) and #(u), (20) and (21) imply (19).
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