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Abstract

The predictive likelihood of a model specified by data is defined
when the model satisfies certain conditions. It reduces to the conven-
tional definition when the model is specified independently of the data.
The definition is applied to some Gaussian models and a method of
handling the improper uniform prior distributions is obtained for the
Bayesian modeling of a multi-model situation where the submodels may
have different numbers of parameters. The practical utility of the
method is checked by a Monte Carlo experiment of some quasi-Bayesian
procedures realized by using the predictive likelihoods.

1. Introduction

Consider the simple problem of polynomial regression where the
observation y, at time ¢ is represented by

(1.1) h=31060)+2z, t=1,2,---, N,
=0

where ¢,(t) denotes the ith order polynomial satisfying the relations

~ 1 for i=7,
S 08,0 =

otherwise ,

and z,’s are mutually independent Gaussian random variables with zero
mean and variance ¢* which is assumed to be known. Usually there
is uncertainty about the choice of m, the order of the model. We may
then take a Bayesian approach by assuming a prior distribution p,(.6)
of .0=(6,,8,,---,0,) conditional on m and a prior probability =(m), for
m=0,1,---, M. The practical difficulty in this approach is the choice
of p,.(.0)'s; see, for example, the discussion of Atkinson and Cox ([6],
p. 348).
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From the construction of the model (1.1) one might wish to assume
improper uniform prior distributions for p,(.6)’s. The difficulty with
the use of these improper uniform prior distributions in this case is
the arbitrariness of their relative heights. This point is discussed ear-
lier by Halpern [10].

To clarify the problem, consider more generally a set of models
defined by the data distributions {f.(x|.0); k=1, 2,---, M}, where 0
denotes the (vector) parameter of the kth model. Assume a prior dis-
tribution p,(.0)=(k), where (k) is the prior probability of the kth model
and p,(:0) is the prior distribution of ,# under the assumption of the
kth model. The Bayes procedure produces the following transformation
when data x is observed :

(1.2) 2:(:0)r(k)— (0 |x)m(k | x) |

where
P17 =pl@) 2| OP0) . pu@)=| LalOpOE

and
n(k|2)=K, 'p()n(k) , K.=X p(x)n(k) .

The conditional posterior distribution p.(,0|x) is proportional to the
product of the likelihood f,(x|.) and the prior probability density p.(.0).
The posterior probability z(%|xz) of the kth model is proportional to the
product of p,(x) and the prior probability z(k). By the obvious analogy
we call p(x) the likelihood of the model specified by f.(-|:8) and p.(.8).

The conditional posterior distribution p,(.#|x) can be defined by
formally applying the Bayes procedure even with an improper prior

distribution p.(;f), if only the integral S fiu(x]0)p.(0)d0 is finite. In

this case p(,f) may be replaced by C,p.(,f) without causing any change
of p.(:8]x), where C, is an arbitrary positive constant. However, to
use the value of the preceding integral, with p,(.0) replaced by C.p.(:6),
as the likelihood of the model, we must explicitly specify the values of
C. (k=1,2,-.., M). This point is discussed clearly in Atkinson ([5], pp.
40-41) who concludes that the use of improper priors for comparing
models cannot be justified. The problem here is how to define a rea-
sonable quantity to replace p,(x) in (1.2). .

In this paper we introduce the concept of predictive likelihood of
the model specified by fi(-|.f) and an inferential distribution p,(.8]zx)
which is a distribution over the space of parameters ,§ and is determined
by data x. By replacing p.(«) in (1.2) with this predictive likelihood,
we get a quasi-Bayes procedure which can be applicable with improper
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prior distributions p.(.f), or even without these prior distributions, if
the inferential distribution p.(;6|k) is appropriately defined. The prac-
tical utility of the quasi-Bayes procedure in its application to the esti-
mation of the mean vector of a multivariate normal distribution is
checked experimentally.

2. Predictive likelihood of a model

The point of view to consider the expected log likelihood of an
assumed distribution, with respect to the true distribution of data, as
a fundamental measure of the goodness of fit of the statistical model is
developed in Akaike [1], [2]. From this point of view, the usefulness
of a likelihood in statistical inference is due to the fact that the log
likelihood is a natural estimate of the expected log likelihood of the
assumed distribution. The likelihood p.(x), defined in Introduction, of
the model specified by f.(-|:6) and p(f) is the conventional likelihood

of the marginal distribution p,c(-)_—-g fi(-1:0)p(0)d.8, or of k, with re-

spect to the present data « and provides a measure of the goodness of
p(+) as an approximation to the true distribution of the data z. The
cause of the difficulty of an improper prior distribution discussed in
Introduction is now clear. When p,(,6) is improper, fi.(-|.6) and p.(:6)
do not really define any statistical model to determine a distribution
p(+). There can be no likelihood when there is no distribution.

Here we consider that the data x is taken from a fixed “true”
distribution f(-). Imagine that a future observation y is also taken
from f(-), independently of x. The future likelihood of the model
specified by fi(:|:f) and an inferential distribution p.(,f]|x), is then de-
fined by

2.1) Pyl 0= £.u| O] 2)d0 .

When p(y|x) is considered as the distribution p(-|x) of future obser-
vation y it is called the predictive distribution. Thus the future likeli-
hood is the likelihood of the predictive distribution with respect to a
particular y. The goodness of the model as an approximation to f(-)
is measured by the expected log future likelihood E,log p.(y|x), where
E, denotes the expectation with respect to the true distribution f(-)
of v.

When y is available, log p,(y|x) forms a natural estimate of E,log
p(y|x). Actually we do not have y and consider the use of log p.(x|x)
in place of logp(y|x) as an “estimate” of the expected log future
likelihood. When the true distribution f(-) is not approximated well
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by fi(-]:8) for any choice of ¥ and ,f, the situation is uninteresting.
Thus we assume that f(.) is a member of some of the families {f(:|
D)} (k=1,2,.--). When f(-) is not a member of {f.(-].0)}, k fixed,
E,log pi(y|x) and log p.(x|x) will generally be significantly lower com-
pared with the case where f(-) is a member. Thus we pay our atten-
tion to the statistical characteristic of log p.(x|x) when f(-) is a mem-
ber of {fi(-1:8)}. We further restrict our attention to those inferential
distribution p,(;8|x) for which, when f(-) is a member of {f.(-].0)},
i.e., under the assumption of the kth model, we have

(2.2) E.[E, log p(y|x)—log p(x|x)]=cs,

where ¢, is a constant. We try to correct this bias, or the expected
deviation of log p(x|x) from E, log p.(y|x), by adding ¢, to log p/z|x)
and define the log predictive likelihood of the model defined by fi(:|.6)
and p(:f|x) by

(2.3) Ifi(-1:0), D0 | 2)]=1og D2 | 2)+c; -
The predictive likelihood of the model is then defined by
(2.49) Liy(x)=exp {I[fi(-]:0), pL0]2)]} .

Certainly the above bias correction is meaningful only when f(-) is a
member of the kth family. The use of the present definition thus de-
pends on the assumption that the expected amount of decrease of log
po(x|x) is larger than the correction by ¢,, when f(-) is not a member
of the family.

A referee pointed out that log p.(y*|x) could be used as an esti-
mate of log p.(y|x), where y* is any prediction of y¥ based on the data -
x# at hand. This is certainly an interesting suggestion which deserves
further analysis.

3. Predictive likelihood of a Gaussian model

Here we will show that predictive likelihoods can be defined for
a rather general class of Gaussian models. Consider the case where
fi(+]:0) is an L-dimensional Gaussian distribution N(.6, 2,) and the in-
ferential distribution p(,6|x) is N(8(x), 3;), with the mean 4(x) defined
as a function of the data x. Here X, and 3, are assumed to be known.
The predictive distribution p(-|x) is then N(4(x), 2+ 23;) and for f(-)
=fi(-|:0,) we have

(3.1) E.E,(—2)log py|x)
=tr (2,+ 2,)7'[3 4+ E(0(x) — 00) (0(x) — :0,)' ]+ Cs



PREDICTIVE LIKELIHOOD OF A GAUSSIAN MODEL 315

and
(3.2)  EJ(—2)log py(x|x)=tr (3,43, E(x—0(x)) (x—0(x)) +C, ,

where C, denotes a common constant independent of .6, and E, the
expectation with respect to the distribution f(x)=fu(x|.0,) of z. Since
E.x=,0,, the difference of (3.1) and (3.2) is constant, irrespectively of
the choice of ,6,, if the covariance matrices of x—6(x) and 6(x)—,0, are
independent of ,6,. This is the case when 6(x)—FE.f(x) is a function
of #—,0, only. This condition is satisfied for #(x)=Kx defined with a
constant L X L matrix K. For this case we have

(3.3) c.=E.[E,log p,(y|x)—log pi(x| )]

- <—_;—> tr (21+22)_1[K21+2‘Kl] ’

and the log predictive likelihood is given by

(3.4) L) = (—%)[L log 27 +log | 5,4+ 3|

+tr (3, +2,) " (I—K)xx'(I- K)+¢,. ,

where |3| denotes the determinant of 3. The examples to be discussed
in the following are of this type, including the cases which can be de-
fined as the limits when some of the diagonal elements of 3, tend to
Zero.

As a concrete example, consider the situation of estimation of the
mean of a multivariate normal distribution. Take the true distribution
f(-) as an L-dimensional normal distribution N(6,, I) with mean 6,=
(Ot Ouyy- -+, 0o.) and variance matrix I, an Lx L identity matrix. We
consider the use of a set of models specified by

1 L/2 1 L
felo=(o=) " exp [~ L S @—0y],  k=0,1,0, 201,
2r 2 i=1
where 6,=0, when the 7th bit of the binary representation of %k is 0,
unconstrained, otherwise. For the sake of simplicity of presentation
we consider the case where k=2"—1, i.e., the case where only the
first mf,’s are retained and others are put equal to 0, and represent
the model by
m/2 m (L—-m)/2
@5 Aelo=(o)" ep |-+ D@0 (o)
2n 2
- exp (.._1_ é x?)
2 i ’

where 0=(.0,, 0, **, :0.). Any other model can be brought into this



316 HIROTUGU AKAIKE

form by a proper reordering of the suffices 7. Assuming an improper
uniform prior distribution as p.(.f) and applying the Bayes procedure
formally, we get )

&) o[- 00

(3.6) mkolx):(zﬂ

as our posterior distribution of ,#. From (2.1), (3.5) and (3.6) we have

@D nwln=(2)" (1) ep [~ 1 Bw-ar-1 5 4],

Thus we get
E,E, log p.(y|9)=—"2-log 2— % — L (L—m)+ D
and
E,,logpk(aclx)———-logz——(L m)+D ,

where E, denotes the expectation under the assumption that f(-) is a
member of the family {f.(-[:0)} and D=—(1/2)L log 2=. The ¢, required
for the bias correction is then given by

“=—g
where m is the number of unconstrained 4,’s in the kth model. This
result could have been obtained directly by (3.3). The log predictive
likelihood of the model is given by l.(x)=log p.(x|x)+¢c, and, with (3.7),
the predictive likelihood is given by

(3.8) Li(#)=C exp [——;—(SL—Sm+mlog 2+m)] ,

where S,, denotes the sum of squares of z; for which 4,=0 is not as-
sumed and C is a positive constant.

We could have started with p.(.0|x)=48(;0 —,x), where ,x is the
maximum likelihood estimate of .,/ and is a vector composed of the
components of = corresponding to those of ,4. With this choice of
2(:0|2) we have p(y|z)=fi(y|x) and analogously to (3.8) we get

(3.9) Ly()=C exp [—_< 5 xi+2m>] :

t=m+1

The quantity within the parentheses on the right side is essentially the
AIC (an information criterion) statistic (Akaike [1]) which is defined by
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AIC (k)=(—2) log max f,(z|0)+2m ,
k0

and we get L (x)=Cexp[—AIC (k)/2]. The minimum AIC estimate of
6, is defined by ,x with k for which AIC (k) is minimum, i.e., for which
L,(x) is maximum. For later use we will denote this estimate by 6.
Here IC stands for “information criterion”.

4. Discussion

When we assume p,(;,0]x)=08(,0 —.0,), the distribution concentrated
at one particular parameter value ,6,, we have p.(-|x)=f.(-|8,). Since
that E,log p(x|x)=E, log fu(x|.0,)=E, log f(y|.0,)=E, log p(y|z) holds,
we get L(x)=exp [log p.(x|x)]=rf(2x]|.0,), the conventional likelihood of
the model specified by fi.(-].6,). More generally, if we assume p,(,6|x)
=p.(:0) a proper prior distribution independent of data, we get L,(x)=exp

{log S fk(x],,ﬂ)pk(kﬁ)d,ﬁ}, which is the likelihood p,(x) of the model speci-

fied by fi(-|:8) and p.(.8), as defined in Introduction. These results
suggest that the present definition of the likelihood L.(x) is a natural
extension of the classical likelihood to the present particular models.

One major motivation for the introduction of the present definition
of the likelihood of a model was to provide a reasonable procedure of
the use of improper uniform prior distributions of the parameters with
different dimensionalities. One may hope that the difficulty of the rel-
ative heights of the improper prior distributions may be solved by
considering a limit of some properly chosen proper prior distributions.
To show that it is not easy to realize the idea, we first assume the
proper prior distributions of the parameters given by

1
277t

(4.1) p0)=(525 )" exp [~ 5.2

where 7° is a constant common to all p.(.6)’s. It is easy to check that
the likelihood of the model specified by (3.5) and (4.1) is given by

(4.2) p(x):(iy’zexp [—l<s S, 418§ +mlog(1—|—rz)>]
. k 27[' 2 L m 1+72 m ’
where S, denotes the sum of squares of x;, (¢=1,2,---, L) and S,, the

sum of squares of x; for which #,=0 is not assumed. As we increase
7? indefinitely the ratio of the likelihood of a model with m=0 to that
of the model with m=0 goes down to zero. This means that, by this
passage to the uniform prior distributions, only the simplest model,
with all the 6,’s equal to 0, is retained. In the case of the polynomial
regression, discussed in Introduction, this means that only the Oth or-
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der model is possible. Although this result is somewhat unexpected,
it is natural because it is only the model with all the 6,’s assumed
to be zeros that can produce finite z,’s when z* is infinitely large.
Thus this approach does not lead to any sensible solution of the dif-
ficulty.

If, instead of p,(.0), we start with the conditional posterior distri-

bution
~(ge 75 e [~ (55) & (017 ]
(4.3) pk(kﬁlx)—-<2n e ) exn | - (HF) 3 (w1 m,-) ,
the model satisfies the condition which leads to (3.3) and, from (3.4),
the predictive likelihood of the kth model is obtained as

Ms

i

4 L) =Cexp | ~ g {S:—Sut- oy
e (22 25

As ¢? is increased indefinitely this tends to L,(x) of (3.8), the predic-
tive likelihood of a model obtained by assuming the uniform improper
prior distribution of ,4. This shows that it is the present definition
(4.4) and not (4.2) that is in consonance with the conventional defini-
tion of the improper uniform prior distribution as the limit of .(.0)
(4.1) when 7* tends to infinity.

When the predictive likelihood L,(x) is available, the above results
suggest the replacement of the exact Bayes procedure, schematically
represented by

Procedure I (exact Bayes procedure)

(0| %)
(x0) —— — D0 | 2)Du()
()

with a quasi-Bayes procedure represented by

Procedure II (quasi-Bayes procedure)

De(i0) — Di(i0 |€) — Li(®) — pi(i0 | ) L) .

It was our observation that only Procedure II could produce meaning-
ful result when the prior distribution p,(.6) tended to the improper
uniform prior distribution. The basic ingredients of Procedure II are
fiu(x|0) and p(;,0|x) and we could have started with an inferential dis-
tribution p.(:6]x) which is not necessarily a posterior distribution based
on a proper prior distribution. Thus we will denote by Procedure II
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that part of the transformation which transforms p,(.0|%) into p.(,0]x)-
L,(x). In the formal Bayes procedure, the posterior distribution p.(.0]|x)
is invariant with the multiplication of the prior density p.(,6) by a posi-
tive constant. Thus the problem of the relative heights of improper
prior distributions, discussed in Introduction, disappears with Procedure
II. This is due to the fact that the procedure weights p.(.6]|x) by eval-
uating p.(.01x) by fi(x].0), while Procedure I does it through the eval-
uation of p,(,0) by fi(x|.0). The only question is now whether Proce-
dure II can produce practically useful results, and this must be checked
with real applications.

5. Applications

To demonstrate the practical utility of Procedure II of the preced-
ing section, here it is applied to construct some quasi-Bayes procedures
for the problem of estimation of the mean of a multivariate normal
distribution using the models of Section 3.

5.1. Construction of a Bayesian model with uniform p,(,0)

We start with the assumption of improper uniform prior distribu-
tions p.(.0)=const. To incorporate the possibility of nearly zero means
we consider the use of the prior probabilities of the models specified
by =n(k|p)=p™(1—p)t ™ with a hyperparameter p (0<p<1). Here m
denotes the dimension of .0 and 1—p represents the prior probability
of ,0,=0. We further assume a uniform distribution of p over (0, 1)
and the prior probability =(k) of the kth model is given by the inte-
gration of n(k|p) over 0<p<1l. The “posterior” probability of the kth
model is given by =(k|x)=K;!L.(x)rn(k), where K,=>) L.(x)x(k) and L.(x)
is the likelihood defined by (3.4). The “ posterior” distribution is de-
fined by p.(.0|x)x(k|x), where p,(.0|x) is given by (3.2). The mean of
this “ posterior ” distribution defines an estimate of 4, given by 6,,=
Byri, Opps,t =y Oppr) With 0,5, defined by

Opri=[ 2 n(k|2)]2; , 1=1,2,--+, L,
kEIi
where I, denotes the set of k’s for which 6,=0 is not assumed. Here
UF stands for “uniform p.(:0) and fixed =(k)”.
To see the performance of 6,, the sum of squared errors ||0,,—

0o]’=>2 (0, r—0,)* has been evaluated by Monte Carlo experiments for
6y's defined by

00i=Azi y if lé'iéM,
Ou=¢ez;, if M+1<i<L,
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where z=(z,, %, -+, 2,) is a random sample from N(0, I), A is a vari-
able scaling constant and e=1/3. The value ¢=1/3 was chosen to re-
present “non-significant” parameters more realistically than e=0. The
results are summarized in Table 1, where, for the purpose of compari-
son, errors of the least-squares estimator 6,y (=), the minimum AIC
estimator 4,,, the positive part James-Stein estimator 6,5 (=[1—(L—
2)||z||"*]*x) and the estimators 6,, and #,r, which are to be defined in
the following subsections, are also illustrated. It can be seen that the
present estimator #,, shows good adaptation to the change of the dis-
tribution of 6, compared with 6,5, yet without the increase of error
induced by 6;, for the case where M=L. This result demonstrates the
power of the present quasi-Bayes procedure. The normal random num-
bers were generated simply by adding twelve random numbers uni-
formly distributed over [0, 1], which were generated by a multiplicative
congruential method, and then subtracting 6 to keep the mean equal
to 0. Similar experiments were conducted using a physical noise source

Table 1. Average sum of squared errors*

A s 65(SD®) 010 Our Oua 0.7(SD")

a. L=4 M=4
0.5 3.95 1.90(0.063) 2.87 1.85 1.98 1.23(0.044)
1.0 3.95 2.70(0.067) 3.99 2.87 2.97 2.35(0.057)
3.0 3.95 3.74(0.081)  4.74 4.04 4.06  4.12(0.089)
10.0 3.95  3.93(0.085) 4.22  3.97 3.97  4.13(0.090)
100.0  3.95 3.95(0.086)  3.98 3.95 3.95  4.05(0.089)
b. L=4 M=2
0.5 3.95 1.79(0.063) 2.73 1.71 1.85 1.09(0.043)
1.0 3.95  2.29(0.066) 3.27 2.28 2.39 1.70(0.051)
3.0 3.95 3.37(0.077) 3.64 3.19 3.20 2.91(0.076)
10.0 3.95  3.82(0.083) 3.37 3.24 3.25 2.82(0.076)
100.0 3.95  3.95(0.086) 3.21 3.27 3.28  2.35(0.072)
c. L=6 M=6
0.5 5.95 2.24(0.063) 4.35 2.70 2.93 1.78(0.049)
1.0 5.95  3.78(0.073) 6.00 4.40 4.47  3.56(0.067)
3.0 5.95 5.54(0.096) 7.14 5.99 6.06 6.00(0.104)
10.0 5.95 5.91(0.104)  6.39 597 597 6.15(0.107)
100.0 5.95 5.95(0.105)  6.00 5.95 5.95  6.08(0.108)
d. L=6 M=2
0.5 5.95 1.92(0.063) 4.00 2.37 2.65 1.47(0.048)
1.0 5.95  2.62(0.067) 4.55 3.03 3.21 2.13(0.055)
3.0 5.95 4.52(0.080)  4.92 4.21 4.12  3.55(0.082)
10.0 5.95  5.61(0.099) 4.64 4.39 4.20  3.37(0.083)
100.0  5.95 5.94(0.105)  4.49 4.46  4.24  2.61(0.074)

a Averaged over 1000 samples.
b Square root of (sample variance/1000).
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to generate the random numbers. The results did not show any sub-
stantial deviations from the result given in Table 1.

5.2. Data adaptive choice of =(k)

Testing the performance of the quasi-Bayes procedure defined in
the preceding subsection with =(k) put equal to some particular =(k|p)
we noticed that the sensitivity of the procedure to the variation of p
was rather low. This suggested that only if we could avoid a gross
misspecification of the prior distribution would the corresponding quasi-
Bayes procedure produce practically useful results. The validity of this
idea was checked by a data adaptive choice of =(k) realized by putting
n(k)=n(k|p,), where p, is such that the expected log likelihood of p.(,0|
x)r(k|p) with respect to the “posterior” distribution Cp,(.0|x)L(x)=(k)
with #(k)=1/L attains the maximum at p=p,. Since the expected log
likelihood is synomimous to the probabilistic definition of entropy
(Akaike [1]), we call this type of method of fitting a distribution the
method of maximum entropy. In the present case it reduces to max-
imizing 3] L.(x) log =(k|p) with respect to p.

The quasi-Bayes procedure defined by replacing =(k) of the proce-
dure defined in the preceding subsection by =(k|p,) showed only minor
deviation from the original. The mean of the “ posterior” distribution
obtained by this procedure is denoted by 6,, and its performance as
an estimator of 4, is also illustrated in Table 1. Here UA stands for
“uniform p.(,0) and adaptive =(k)”.

5.3. Data adaptive choice of p.(:0)

Although 6, has shown reasonable adaptability to the change of
the distribution of 6, one may wish to incorporate further prior infor-
mation of the possibility of happening of rather insignificant values of
the parameters by introducing some proper prior distribution of ,#. Due
to the indefiniteness of the range of related quantities this task is not
so simple as that of specifying the prior probabilities =(k).

One possibility is to take p(.f) of (4.1) and assume some improper
prior distribution of z%. This leads to an improper prior distribution
of .0 which will replace the uniform prior distribution p.(.f) in the
procedure of 5.1. Although not infeasible, this procedure requires fur-
ther analytical manipulations of the related distributions.

The comparison of the performances of 6, and 6,, introduced in
the preceding subsections suggests that a procedure similar to that of
the determination of =(k|p,) might be worth trying for the data adap-
tive choice of z* of (4.1). To realize this we apply the method of max-
imum entropy to optimize the fit of p,(.0|7)n(k) to the “ posterior” dis-
tribution p,(.0|x)x(k|x) of subsection 5.1, with =(k) also given in that
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subsection. This reduces to the maximization of 3] =(k|x) S 00| ) log
k
2.(:0|7)d.0 with respect to z%. Since we have

S (0| %) log p.(:0 | r)d.0

=— <_;—> [m log 27+ m log r2+%(m+Sm)] ,

the value of 7* that maximizes the entropy is given by 2=1+S,/m,

where S,=3S,z(k|z) and m=3 mn(k|x). Here the summation is over
k and m denotes the dimension of .4.

By using p,(.0|73) formally as the prior distribution, the “likelihood ”
of the kth model and the conditional “posterior” distribution are re-
spectively given by (4.2) and (4.3) with *=7}. Our estimate of 4, is
defined as the mean of the “posterior” distribution and is given by
0ur=(0ur1, Ourzs-++, 045.) With 6,,, defined by

i . _
0AF1:=<1;T§>[k§tn(klxsro)lxt ’ 7/—1’ 2,°",L,
where n(k|x; 7)) =p.(2; 7o)r(k) and I, denotes the set of k’s for which
#,=0 is not assumed. Here AF stands for “adaptive p.(.f) and fixed
(k).

The performance of this estimator 6,, can be evaluated by the
result of the Monte Carlo experiment given in Table 1. A better adap-
tation to the change of the distribution of ¢, than that of 6,5 or 6y»
is obtained. The penalty for this improved adaptability is the slight

Table 2. Examples of estimates

First example Second example
o z 27 Our Ou4 O4r 23 x O;s Our Ova O4r
0 -.32 —-.26 —-.19 —-.13 -.13 0 —.061 —.04 —.02 —.02 -.01
0 .53 .44 .32 .22 .22 0 —.134 —.09 —-.04 —.04 -—.03
0 —.70 —.58 —.4 -.32 -.30 0 —.286 —.199 —.09 —.08 —.06
0 —.93 —.76 —.61 —.47 —.43 0 —.333 —-.22 —-.11 —-.09 -.07
0 1.12 .92 .78 .62 .55 0 .446 .29 .15 .13 .10
0 1.44 1.18 1.09 .09 .79 0 —.586 -—.39 —.20 —.18 -—.13
0

0 1.89 1.55 1.62 1.51 1.22 —.664 —.44 -—-.23 -—-.21 -.15
2.5 2.74 2.25 2.67 2.65 2.21 0 —1.420 —.93 —-.71 -—-.72 —.47
2.5 3.78 3.11 3.78 3.78 3.26 2.828 2.496 1.64 2.13 2.23 1.55
2.5 3.82 3.14 3.82 3.82 3.30 4.000 3.728 2.45 3.71 3.72 3.09

S.S.E.» 6.68 8.52 7.29 4.08 5.20 1.22 1.07 2.76

a Sum of squared errors.
Source: 6, and x are taken from Dempster [9], Tables 3 and 4.
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increase of error for the spherical case where M=L.

To get a feeling of how these estimators perform in real applica-
tions they have been applied to the examples given by Dempster ([9],
pp. 72-73). The results are shown in Table 2.

6. Concluding remarks

The results of numerical experiments given in the preceding sec-
tion show that our definition of the predictive likelihood of a model is
useful. The application seems particularly simple when we start with
the models specified by the maximum likelihood estimates of the param-
eters and define their likelihoods by exp(—AIC/2)’'s. Although we
have discussed only the problem of estimation of the mean of a multi-
variate normal distribution, this problem may be viewed as an approxi-
mation to the typical situation of the maximum likelihood estimation
of many parameters, and the results reported in this paper suggest
wide applicability of the procedure in such situations. The application
of the procedure described in this paper to the polynomial regression
of (1.1) is particularly straightforward. The application to the autore-
gressive model fitting is already discussed in Akaike [3] and some com-
puter programs are given in Akaike et al. [4].

Discussing the difficulty of choosing the prior distributions p.(.9),
Chow [7] noticed the lack of recognition of the distinction between a
pre-sample model and a post-sample model among conventional Bayesians.
It seems that this distinction corresponds to our distinction of Procedure
I (exact Bayes procedure) and Procedure II (quasi-Bayes procedure) in
Section 4. The fact that Procedure II could produce practically mean-
ingful results suggests that the possibility of more flexible use of in-
formation supplied by the likelihood functions p.(xz|.6) than by the rigid
Bayesian approach should not be neglected.

It may be argued that anything accomplished by the definition of
the likelihood L,(x) may be attained by a proper choice of =(k). That
this is not the case is obvious from the fact that L.(z) can be defined
even when r(k) is not specified, as in the cases of 6,;, 0,7, and 0y,.
The =(k)’s used to define 6,, and 6,, are designed to extract useful
information supplied by the L.x)’s. The numerical results of Section
5 show that, at least partially, our definition of L,(x) provides an answer
to the problem discussed by Atkinson [5], the comparison of models
specified by some improper prior distributions of the parameters.

One might suspect that the above problem can be treated as the
problem of approximation of the exact Bayes procedure, as is done in
Davis [8]. By this approach, the heights of the vague prior distribu-
tions of the parameters are chosen to produce good approximations to
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the posterior densities and probabilities. Obviously this is the problem
of numerical approximation of Procedure I which cannot be implemented
without assuming some proper prior distributions of the parameters.
Thus, to apply the results of Davis, we must first settle the practically
difficult problem of specifying, at least partially, the proper prior dis-
tributions of the parameters. That this difficulty is particularly signifi-
cant when the models have different numbers of parameters is already
demonstrated by the discussion in Section 4.

Although the application was limited to Gaussian model, the quasi-
Bayes procedure realized with the use of the predictive likelihood of
a data dependent model suggests a natural use of some improper prior
distributions in the multi-model situation. It seems that the procedure
can lead to a useful practical method of statistical inference. The prob-
lem of further characterizing the structure of a model for which the
predictive likelihood can be defined remains an interesting open question.
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