Ann. Inst. Statist. Math.
32 (1980), Part A, 283-290

PERTURBATIONS OF COUNTABLE MARKOV CHAINS
AND PROCESSES

R. L. TweeDIE

(Received Nov. 6, 1979)

Abstract

If P is a transition matrix of a Markov chain, and P is derived

by perturbing the elements of P, then we find conditions such that P
is also positive recurrent when P is, and relate the invariant probability
measures for the two. Similar results are found for recurrence of
chains, and the methods then yield analogues for continuous time pro-
cesses also.

1. Introduction

Suppose that P=(p,;) is the transition matrix of a Markov chain
{X.} on the countable state space {0,1,2,---}; and that {X,} is irre-
ducible (cf. Chung [1] for terminology). When P is positive recurrent,
we denote its invariant probability measure by (z;).

In this note we indicate some consequences of perturbing the ma-

trix P: specifically, if f’:(foi,) is another transition matrix with

D= pij(l + Aij) ’

then we find conditions on the perturbations (4,;) which ensure that

{X,} is positive recurrent when {X.,} is, and we find bounds on the
differences between =, and 7;, where (%,) is the invariant measure for

{X.}. We also investigate similar questions concerning recurrence.
The question of preserving recurrence and positive recurrence under
perturbation of P is examined in Tweedie [9]; there it is shown that for
countable space chains, positivity is preserved provided 4,0 for all
but a finite number of pairs (i, j). Here we improve this by allowing
positive 4;; for all pairs (¢, j). The more important quantitative ques-
tion of comparing the two stationary measures is considered in Sch-
weitzer [4] and Takahashi [7]; in Section 2 we use a matrix result of
the latter (Lemma 1 below), together with truncation techniques of
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Seneta [5], [6], to extend Takahashi’s results to the countable case.
We also demonstrate that similar results hold in the preservation of
recurrence, and show how the unique (possibly infinite) invariant meas-
ures of the chains are related when the transition matrix is perturbed.

In Section 3 we show that analogues of the results hold for con-
tinuous time processes also, using truncation techniques of Tweedie [8],
and Takahashi’s result applied to the Q-matrix of the process. For
ease of reference we conclude the introduction by giving

LEMMA 1 (Takahashi [7], Lemma 9). Let X=(z,;), %, 7=0,1,---,n
be any matrix, and define y,, by setting y,,=—ux,,, 1#J, and x,=y,+

§n} Yi;. Then the determinant of X can be written
J#i
=0

? Yory* * *Ynk, »
where J is some set of (n-+1)-tuples (ky,---, k,).

The key point of this result is that it expresses the determinant
in terms of a sum of products with every term having a plus sign; this
enables us to deduce inequalities on determinants from inequalities on
the elements (y;).

2. Results for recurrent chains

We shall first prove the following result, which may be compared
with Theorem 1 or (3.36) of Takahashi [7].

THEOREM 1. Suppose that, for each state i, there exists ¢,=0 such
that ,

(1) (1+et)_1pij§i)ij§pij(l+ei) ’ J#1

and that the e, satisfy

oo

(2) 1+e=T] (1+4e)<co .

i=0

Then provided P is positive recurrent, so is P, and P has invariant
measure (;), satisfying

(3) A+e) i, =m;=(A+e)n, .

PROOF. Clearly the left-hand side of (1) implies that P is irreduc-
ible, since P is irreducible. Thus to prove P positive recurrent, it suf-
fices to prove that, if 7=inf (n: X,=0), then

T,=E (| X,=0)<oo .
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Define =, T, similarly for P. We need the following relations, valid
for P as well as for P, with suitable notational changes. First, let
T,=E (] Xy=1); then

(4) To=3 poll+T] -
We write A=(a,;) for the (substochastic) matrix formed from P by

deleting the first row and column of P, i.e., a,,=p,,, for i, j=1, 2,---.
Then, if the nth power of A has elements (a’), we have

Ms

(5) Tz:i Pr(z'_Z_n]Xo_——_i)z jiaggn)’
n=1 =

0

3
il

setting a{P=1 if ¢=7 and 0 otherwise. Now let ,A denote the nxn
“northwest truncation” of A4; i.e. (,A has elements a,,, 1, j=1,---, n.
If C,,(n) is the cofactor of the (7, 5) element of [[,—,A] and 4(n) is
the determinant of [I,—,A], where I, is the n Xn identity matrix, then
from Seneta [5], [6], 4(»)>0 and

(6) Cm)/dn) 1 3 o .

By using (4)-(6) we can reduce the problem of comparing T, with
T, to a finite matrix problem. In Lemma 1, if we take X=I,— A,

o

then for i#j we have y,,=p,, and for i=j, y,= > p,. Hence

F=n+1
(7) An)=33 Py, + P,
where the sum is over a set J of ordered n-tuples (k,,---,k,); note
that k,+#l for any ! and that since y,, may occur, the k, may be larger

than n. Similarly, by taking X as I,—.,A with the jth row and <th
column deleted, we find that

(8) Cji(n)zlz Pre;* * * Py-1ry_ Pyaejy,* * * Do,
13

where the summation set J,, of ordered (n—1)-tuples is again such that
k,#!l. Now from (7), (8) and our assumption (1),

(9) T [L+e0"Cm=Cum S TT 1+61C, )
k#] )
(10) ,]T [L+e]-'dm)< dm)< JT [14+e]4(n) .

Using (9) and (10) in (6), we have, letting n— co,

(11) Mi+el” 3 ap< S ap<]l L+al 3 ap,
= m= m= =1 m=0
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and so from (5)
l::fj-l [1+ek]—2[1+ Ti] é 1+ Tiéljj; [1+€k]2[1+ Ti] .

Putting this into (4), and using (1) again on p, and %, we see
that

12) 4] jf[ [L+e]T,<To<[14¢] jj (14T, .

Since Ty<co by the positive recurrence of P, from (12) we have

T,<oo and so P is also positive recurrent.

This method of proof also yields the inequalities (3) as a straight-
forward byproduct; we have only to observe that =,=T;! to see that
(3) for j=0 follows immediately from (12), and since the state 0 could
be replaced by an arbitrary state throughout the above working, (3)
holds in full generality.

The same sort of result holds for recurrent chains. If P is re-
current, let {a,} denote its unique (possibly infinite) invariant measure,
normalised so that a,=1.

THEOREM 2. Suppose that P and P satisfy 1) and (2). Then pro-
vided P is recurrent, so is P; and P has imvariant measure {a;} satis-
Sfying
(13) (L+e) e, <, <(L+e)a, .

PrOOF. To prove P recurrent, it suffices to prove the divergence
of 21 p{”. But again we can use finite approximations (see Seneta [5],
[6]) to find

3 pi=1im dy(n)]4'(m)
0 n—oo
where 4'(n) denotes the determinant and 4/,(n) the cofactor of the (i, j)-

element of [I,—,P]; hence from (1) and (2), ipgo”" and i;b&;"’ con-

verge or diverge together, by applying Lemma 1 with X=I,—,P as
in (7), (8).

To compare invariant measures, we note that we can again con-
struet e, (see Seneta [5], [6]) by

(14) a;=lim 4}(n)/4'(n) .

To deduce (13) we compare the approximations of «, and @,, given by
(14), using (2), as in the proof of Theorem 1.
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Remarks. (a) Many of the other results of Takahashi [7] could be
extended to the countable case using the truncation techniques above, as
they rely purely on positive term expansions analogous to (7) and (8).
We should also note that our results are not optimally expressed. The
inequalities in (3) can clearly be tightened by using (11) more precisely
in (4), giving the bounds

(15) (L+e)(1+){ To+(1—pu) (e —eo) (e+ e+ 2)} < Ty
=(A+e) A+ { To— (1 —pu)(e—eo) (e +&+2)/(1+¢)'}

These bounds are, in particular, better than those in (3) when ¢
is close to ¢ and p,, is small.

(b) If P is positive recurrent, then we can use (14) to compare
n,/my and 7,/m,; however, this direct approximation of the invariant
measure clearly gives worse bounds (of order (1-+¢)*) to the probabi-
listically normalised measure 7; than does the indirect calculation in the
proof of Theorem 1.

Comparing the results of Theorems 1 and 2 with those of Tweedie
[9], it is plausible to conjecture that positive recurrence or recurrence
should be preserved provided only the right-hand inequality of (1) holds.
The next two examples show that this is not in fact true.

Ezxample 1. Let P be defined by
Po=Du=1/2;
pn,n+l=pn,n-l=[1—pn0]/2 ’ n_Z_]- .

A sufficient condition for P to be positive recurrent is that, for
all sufficiently large », and some ¢>0

(16) — NP+ 1—pu < —¢;

see Tweedie [10], Proposition 7.2,

Now form P by adding all the mass of p, equally to p,,.; and
pn,n—l; that isy Set

Dant1=Dnn1=1/2 .
Clearly P is a null-recurrent random walk, and
Dy =pyll—pul™ .
Hence provided p,, satisfies (16) and
17) 2 [1=pu]'<oo,

we have the counterexample we seek. Such a sequence is given by,
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for example, p,,=[nlogn]™, n=2.

Example 2. To show that recurrence need not be preserved by
maintaining only the right-hand inequality in (1), let us take the same
chain as in Example 1, but with p,,.,,=c,+1/n, p,..,=c, where ¢, is

determined by additivity; and change P to give P exactly as before.
The resulting chain is transient provided, for some §>1, and all large
enough 7,

(18) 2/[1—pu]—620;

see Tweedie [10], p. 770. Hence when p,—0 as m— oo, this suffices

for P to be transient. The original chain P is recurrent provided, for
large enough 7, :

(19) —npn+1/n=0;

see Tweedie [10], Section 10. Again, a choice of p,, satisfying (17)-
19) is p,=[nlog n].

3. Results for recurrent processes

We now extend these results to Markov processes in continuous
time. Let (X,) be a process on the integers, with standard transition
probabilities p,,(t), and let @=(g;,) be its Q-matrix, given by

qiy :l,if? [aij - pij(t)] ’

see Chung [1] for nomenclature. We assume ¢;;<0 for all 7, so that
no state is instantaneous, and our processes are all assumed conserv-
ative, i.e. 31¢;;=0. We let P*=(p}) denote the transition matrix of

J
the jump chain of the process (X,), defined by
(20) p;b:[l_aij]qtj/(_qﬁ) .

Again we shall consider a second process (5(,), and define all quantities
above analogously for (X,). Our main result is

THEOREM 3. Suppose the Q-matrices of (X,) and (X,) are related by
1) (I4e)'q,<q,<(+e)ay,  i#j
and that
A+e)=TT (1 +e)<oo .

Then if (X,) is regular and recurrent, or positive recurrent, so is (X,);
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and in the recurrent case their unique invariant measures, (a;) and (a,),
normalised to have ay=a,=1, are related by

22) (1+e) e, <& = (1+e)a, .

In the positive recurrent case the unique imvariant probability measures
(z;) and (z,) are related by

(23) A+e)y ', =x,=(A+4e)n; .

Proor. If (X,) is regular and recurrent, then the jump chain P*
is also obviously recurrent; the converse of this is also true (see Cinlar
[2], 3.25, or Tweedie [8], Theorem 1). From (20) and (21), the two
jump chain matrices satisfy (1+4¢,) "} <p5<(1+¢,)%}; so from Theorem
2, P* is also recurrent, and hence (X,) is regular and recurrent also.

The unique invariant measure (e;) for (X,), normalised to have ¢)=
1, satisfies, from Theorem 4(i) of Tweedie [8],

(24) a;=lim D;(n)/Du(n) ,

where now D,(n) is the cofactor of the (J, 7) element of (,,Q, the nxn
truncation of Q. But from Lemma 1 with X=,Q, the D,(n) can be
expanded exactly as in (7), (8) as sums of products with positive co-
efficients :

(25) Dn(n)=JZﬂ (—quo)' : '(—qj—llcj_l)(_QJ+lkj+l)' < (—Gux,)

where j,#I. Because of the ratio nature of (24), the (—1)* terms in
(25) for D,(n) and Dy(n) cancel, and from (21) we deduce (22). Note
that >} e; and > @, are finite or not together, whence the preservation
of positive recurrence; and the bounds (23) follow trivially from those
in (22).

These error bounds in (23) seem cruder than necessary. We con-
jecture that when the bounds are of the type of (21) on the @-matrices,
the relationship between (z,) and (z;) should also be of the order of
(3). This is lent weight by our final result.

THEOREM 4. Suppose (X,) is g-bounded, t.e. sup (—gq;;) < oo, and posi-
tive recurrent. Then when (21) holds, the invariant probability distri-
butions (z;) and (z,) of (X)) and (X,) are related by
(26) A+e)’m, =7, <(1+¢€)x; .

PROOF. Choose 0<A<sup(—gz', —@3'), and let P=I+1Q, P=I+2Q,

when I is the identity matrix. Now we can use the fact that P and
(X,) are positive recurrent together, and then have the same invariant
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probability measure; see Jensen and Kendall [3]. Since P and P satisfy
(1) for i#7, from (21), we have the inequality (26) immediately from
this fact.
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