DESIGNS OF \$\phi\$-OPTIMAL CONTROL FOR SECOND-ORDER PROCESSES

DER-SHIN CHANG AND YUANG-CHIN CHIANG

(Received Nov. 6, 1979)

Abstract

Consider a realization of the process $y(t) = \sum_{k=1}^{n} \theta_k f_k(t) + \xi(t)$ on the interval T = [0, 1] for functions $f_1(t), f_2(t), \dots, f_n(t)$ in H(R), the reproducing kernel Hilbert space with reproducing kernel R(s, t) on $T \times T$, where $R(s, t) = \mathbb{E}\left[\xi(s)\xi(t)\right]$ is assumed to be continuous and known. Problems of the selection of functions $\{f_k(t)\}_{k=1}^n$ to be Φ -optimal design are given, and an unified approach to the solutions of D-, A-, E- and D_s -optimal design problems are discussed.

1. Introduction

If a stochastic process

(1)
$$y(t) = \sum_{k=1}^{n} \theta_k f_k(t) + \xi(t), \quad t \in T = [0, 1]$$

is given with the noise process $\xi(t)$ having zero mean and known continuous covariance kernel $R(s,t)=\mathrm{E}\left[\xi(s)\xi(t)\right],\ (s,t)\in T\times T.$ Let H(R) be the reproducing kernel Hilbert space (RKHS) with reproducing kernel (RK) R(s,t) on $T\times T$, and let $\{f_k(t)\}_{k=1}^n$ be a linearly independent set of functions in H(R). Then, by the Gauss-Markov theory of continuous time series, we obtain for $f=(f_1(t),f_2(t),\cdots,f_n(t))'$ (throughout this paper primes will denote transposes) the minimum variance unbiased estimate $\hat{\theta}=M^{-1}(f)$ ($\langle y,f_1\rangle\sim,\cdots,\langle y,f_n\rangle\sim$)', and its covariance matrix $\mathrm{Cov}\,[\hat{\theta}\,]=M^{-1}(f)$, where $\hat{\theta}=(\hat{\theta}_1,\cdots,\hat{\theta}_n)'$, $M(f)=[m_{ij}]_{i,j=1}^n$, $m_{ij}=\langle f_i,f_j\rangle_R$ if $\{f_k(t)\}_{k=1}^n\in H(R)$, and $\langle y,f_k\rangle\sim$, $k=1,2,\cdots$, n are defined as if y(t) were an element in H(R). In [1], the author has given the definition of D-optimal, A-optimal and weighted optimal designs of the functions $\{f_k, f_k\}$

AMS 1970 subject classifications: Primary 62K05; secondary 93E20.

Key words and phrases: Second-order process, continuous sense of Gauss-Markov theory, reproducing kernel Hilbert space, Φ-optimal designs.

 $(t)_{k=1}^n$ in some set $X \subset H(R)$, and give the analytic expression of optimal solution of $\{f_k(t)\}_{k=1}^n$ in H(R). But they were treated separately and the methods were tedious also. In this paper, we use a result in [5] as a tool for obtaining an unified approach to these problems, and hopefully we can reach a more general results than [1] and make D-, A-, E-, D_s -optimal design to be our special cases. In Section 2, the criterion of Φ -optimal design of second-order process (1) will be given. In Section 3, we prove the tool theorem and use this theorem to describe the solution of D-, A- and E-optimal design problems. In Section 4, we will do the same approach to D_s -optimal design.

2. Design criterion

Suppose that (1) is given, then it is well kown (see [6], [7]) that the space of functions generated by $\{R_t(\cdot), t \in T | R_t(t') = R(t', t)\}$ is an RKHS denoted by H(R), with RK R(s, t) on $T \times T$. Since R(s, t) is symmetric and positive definite (p.d.), then, by Mercer's theorem (see [8], pp. 242-246), we know that there exists a set of orthonormal functions $\{\phi_v(t)\}_{v=1}^{\infty}$ in $\mathcal{L}^2[T]$ and corresponding sequence of positive real numbers $\{\eta_v\}_{v=1}^{\infty}$ such that

$$R(s, t) = \sum_{v=1}^{\infty} \eta_v \phi_v(s) \phi_v(t)$$

is uniformly convergent in $T \times T$ if R(s, t) is continuous. Also that the inner product in H(R) is

$$\langle g,h
angle_{\scriptscriptstyle R}\!=\!\sum\limits_{\scriptscriptstyle v=1}^{\infty}g_{\scriptscriptstyle v}h_{\scriptscriptstyle v}/\eta_{\scriptscriptstyle v}$$
 ,

where $g_v = (g, \phi_v)_{\mathcal{L}^2}$ and $h_v = (h, \phi_v)_{\mathcal{L}^2}$, for any $g, h \in H(R)$. That is,

$$H\!(R) = \left\{ h \left| \begin{array}{l} \sum\limits_{v=1}^{\infty} h_v^2/\eta_v < \infty, & h_v = (h, \phi_v)_{\mathcal{L}^2} \end{array}
ight\}$$
 .

Assume further that a set of linear independent functions $\{f_k(t)\}_{k=1}^n$ in H(R) is given. Then, by [6] and [7], we have for $\theta = (\theta_1, \dots, \theta_n)'$ and $f = (f_1(t), \dots, f_n(t))'$ the minimum variance unbiased estimate

$$\hat{\theta} = M^{-1}(f) \cdot (\langle y, f_1 \rangle \sim, \cdots, \langle y, f_n \rangle \sim)'$$

with $\operatorname{Cov}\left[\hat{\theta}\right] = M^{-1}(f)$, where

(2)
$$M(f) = [m_{ij}]_{i,j=1}^n$$
, $m_{ij} = \langle f_i, f_j \rangle_R$, $i, j = 1, \dots, n$

and $\langle y, f_k \rangle \sim = \sum_{v=1}^{\infty} (f_{kv}y_v)/\eta_v$, $k=1, 2, \dots, n$, with $y_v = (y, \phi_v)_{\mathcal{L}^2}$, the stochastic integral of y(t) with respect to weight function $\phi_v(t) \in \mathcal{L}^2[T]$, v=1,

 $2, \cdots$

Since the Gauss-Markov estimate of θ needs the invertibility of M(f), our discussion of designs will be restricted in the class of invertible matrices M(f)'s and in addition, since M(f) is nonnegative definite (n.n.d.) (see [3]), we will furtherly restrict our discussion in p.d. matrices M(f)'s.

Now, following [1], [2], and [5], we can give our design criterion in following

DEFINITION. Let Φ be an real-valued function on some subset of p.d. matrices. A matrix C^* in this subset is called Φ -optimal if C^* minimizes $\Phi(C)$ for all C in this subset.

DEFINITION. Suppose that (1) and some set X in H(R) is given. An experiment with $\{f_k^*(t)\}_{k=1}^n$ in X is said to be Φ -optimal (or Φ -optimal design) if $M(f^*)$ minimizes $\Phi(M(f))$ for all possible choices $\{f_k(t)\}_{k=1}^n$ from X.

Examples. Suppose Φ_i be given as in the following.

- (i) $\Phi_0(M(f)) = |M^{-1}(f)|$; an experiment with $\{f_k^*(t)\}_{k=1}^n$ which is Φ_0 -optimal is also called D-optimal.
- (ii) $\Phi_1(M(f)) = \operatorname{tr} M^{-1}(f)$; an experiment with $\{f_k^*(t)\}_{k=1}^n$ which is Φ_1 -optimal is also called A-optimal.
- (iii) $\Phi_{\infty}(M(f)) = \lambda_1(M^{-1}(f))$, where $\lambda_1(M^{-1}(f))$ is the largest eigenvalue of $M^{-1}(f)$; an experiment with $\{f_k^*(t)\}_{k=1}^n$ which is Φ_{∞} -optimal is also called E-optimal.
- (iv) Let $M_s^*(f)$ be defined by

$$M_s^*(f) = [I_s|0]M^{-1}(f)\left(\frac{I_s}{0}\right)$$
 ,

where I_s is $s \times s$ identity matrix, 0 is zero matrix with appropriate size. Consider

$$\phi(M_s^*(f)) = \Phi_0(M_s^*(f))$$
;

then an experiment with $\{f_k^*(t)\}_{k=1}^n$ which is ϕ -optimal is also called D_{ϵ} -optimal.

3. Optimality tool

In view of the examples of Section 2, we may extract the characteristics of Φ which guarantee the existence of Φ -optimal. Let \mathcal{B}_n consist of the $n \times n$ p.d. matrices, and

$$\Phi: \mathcal{B}_n \to (-\infty, +\infty)$$

satisfies

- (a) Φ is convex,
- (3) (b) $\Phi(bC)$ is nondecreasing in the scalar b>0.
 - (c) Φ is orthogonal invariant, i.e. for orthogonal matrix P, $\Phi(P'CP) = \Phi(C)$.

Let \mathcal{D} be some index set, then, similarly as in [5], we have the following optimality tool, which is slightly different from [5] owing to the condition (c) being changed.

THEOREM 1. If the class $C = \{C_d; d \in \mathcal{D}\} \subset \mathcal{B}_n$ contains a C_{d^*} which is a multiple of I_n , and maximizing $\operatorname{tr} C_d$ for $d \in \mathcal{D}$, then C_{d^*} is Φ -optimal for every Φ satisfying (3).

PROOF. Suppose that there exists a $C_{d'}$ in C such that $\Phi(C_{d'}) < \Phi(C_{d^*})$ and $P'C_{d'}P = [\lambda_i \delta_{ij}]_{i,j=1}^n$, where $P'P = I_n$ and $\lambda_1, \dots, \lambda_n$ are the eigenvalues of $C_{d'}$. If σP is obtained from P by permuting the columns of P according to the permutation σ of the first n integers of natural numbers, then clearly $(\sigma P)'C_{d'}(\sigma P) = [\lambda_{\sigma_i} \delta_{ij}]_{i,j=1}^n$, where σ_i is the integer obtained from i moved by σ . Let $\overline{C_{d'}} = \sum_{\sigma} (\sigma P)'C_{d'}(\sigma P)/n!$. Since there are $(n-1)!\sigma$'s among n! mapping i unchanged for every i, $1 \le i \le n$, we easily have

$$\overline{C}_{d'} = \frac{1}{n} \sum_{i=1}^{n} \lambda_i I_n .$$

Although $\overline{C}_{d'}$ is not necessarily in C (but indeed in \mathcal{B}_n), we have, by (3) (c) and (a),

$$\begin{split} \varPhi(C_{d^*}) > \varPhi(C_{d'}) &= \sum_{\sigma} \varPhi((\sigma P)' C_{d'}(\sigma P))/n! \\ &\geq \varPhi(\sum_{\sigma} (\sigma P)' C_{d}(\sigma P)/n!) \\ &= \varPhi(\overline{C_{d'}}) \ . \end{split}$$

Since C_{d^*} is multiple of I_n , then, by (4), $\overline{C_{d'}}$ is of the form bC_{d^*} for some b>0. More since $\operatorname{tr} \overline{C_{d'}} = \operatorname{tr} C_{d'} = \sum_{i=1}^n \lambda_i = b \cdot \operatorname{tr} C_{d^*}$, $\operatorname{tr} C_{d^*}$ maximizing $\operatorname{tr} C_d$ for $d \in \mathcal{D}$ implies $b \leq 1$. But then, by (3) (b), $\Phi(C_{d'}) \geq \Phi(\overline{C_{d'}}) \geq \Phi(C_{d^*})$, which contradicts $\Phi(C_{d'}) < \Phi(C_{d^*})$. This completes the proof.

Now rather than treat D- and A-optimal designs separately as in [1], we may use the theorem stated above to solve then as well as E- and D_s -optimal designs in an unified way. Because of the length of introducing the definition of D_s -optimal design, we will separate it for

discussion in Section 4.

LEMMA 1. Φ_0 , Φ_1 and Φ_{∞} all satisfies (3).

This result is well known, and incidentally we can assert the convexity of $\log |A^{-1}|$ instead of $|A^{-1}|$ for proving Φ_0 .

Application. Suppose we are given model (1), and $X = \{g \mid g \in H(R), \|g\|_R^2 \leq L\}$, where L is a positive number. Then $\operatorname{tr} M(f) = \sum\limits_{i=1}^n m_{ii} = \sum\limits_{i=1}^n \langle f_i, f_i \rangle_R = \sum\limits_{i=1}^n \|f_i\|_R^2 \leq nL$ for $\{f_k(t)\}_{k=1}^n \subset X$. Now let $f_k^*(t) = \sqrt{L\eta_k} \phi_k(t)$, k = 1, \cdots , n as in [1], then $M(f^*) = LI_n$, and $\operatorname{tr} M(f^*) = nL$ reaches the maximum value of $\operatorname{tr} M(f)$ in X. Therefore, by Theorem 1 and Lemma 1, we know that $\{f_k^*(t)\}_{k=1}^n$ is Φ_0 -, Φ_1 - and Φ_∞ -optimal simultaneously in X with

$$egin{aligned} \min_{\{f_k\} \subset X} |M^{-1}(f)| = & |M^{-1}(f^*)| = L^{-n} \;, \ \min_{\{f_k\} \subset X} & ext{tr} \; M^{-1}(f) = & ext{tr} \; M^{-1}(f^*) = n/L \end{aligned}$$

and

$$\min_{\{f_k\}\subset X} \lambda_{\mathrm{l}}(M^{-\mathrm{l}}(f)) = \lambda_{\mathrm{l}}(M^{-\mathrm{l}}(f^*)) = 1/L$$
.

Remark. The above solutions of Φ_0 - and Φ_1 -optimal designs of model (1) are same as in [1]. But the weighted optimal design treated there is not a criterion satisfying (3) because it is not invariant under orthogonal transformation.

4. D_s -optimal

Although every parameter of $\theta_1, \dots, \theta_n$ exert influence upon the investigated stochastic process y(t) of (1), an experimenter frequently is interested in only some of the parameters, say, $\theta_1, \dots, \theta_s$, s < n. In such a case, it turns out that D-optimum (Φ_0 -optimum) is somewhat inappropriate and does not reflect the needs of the experimenter. This leads us to the consideration of the "generalized variance" of the estimates of the first s parameters $\theta_1, \dots, \theta_s$. Since the "generalized variance" of the estimates of the first s parameters is also influenced by the estimates of the rest parameters $\theta_{s+1}, \dots, \theta_n$, thus it serves as a different criterion of optimality as discussed in [4] and [2]. We call such a criterion of " D_s -optimal".

Consider the class of p.d. matrices M(f), $f = (f_1(t), \dots, f_n(t))'$ such that $\{f_k(t)\}_{k=1}^n \subset X$. Let

$$M(f) = \begin{bmatrix} M_1(f) & M_2'(f) \\ M_2(f) & M_3(f) \end{bmatrix}$$

where $M_1(f)$ is an $s \times s$ matrix, $M_3(f)$ is an $(n-s) \times (n-s)$ matrix. Then, following the well known Frobenius formula (see [3], p. 16), we can define the following.

DEFINITION. For any $\{f_k(t)\}_{k=1}^n$ contained in X, let its information matrix be M(f) as in (2) and be partitioned as in (5). Let

(6)
$$M_s^*(f) = [I_s|0]M^{-1}(f)\left(\frac{I_s}{0}\right) = M_1(f) - M_s'(f)M_3^{-1}(f)M_2(f)$$
.

Then a design $\{f_k^*(t)\}_{k=1}^n$ in X is called D_s -optimal if $\{f_k^*(t)\}_{k=1}^n$ minimizes $\phi(M_s^*(f)) = \Phi_0(M_s^*(f)) = |M_s^{*-1}(f)|$ for all possible choices $\{f_k(t)\}_{k=1}^n$ in X.

Similarly as in Lemma 1, we have

LEMMA 2. ϕ satisfies (3).

Now by Lemma 2 and apply Theorem 1 to ϕ , we have following.

THEOREM 2. Suppose (1) is given, $X = \{g(t), t \in T | g \in H(R), \|g\|_R^2 \le L\}$ and $M^{-1}(f)$ the dispersion matrix of the Gauss-Markov estimate of θ as in Section 1. Then, we have

$$\min_{\{f_k\}_{k=1}^n\subset X}|M_s^{*-1}(f)|=L^{-s}$$
 ,

which is attainable at $f_k^*(t) = \sqrt{L\eta_k} \phi_k(t)$, $k=1,\dots,s$ and any linearly independent set of functions $\{f_{s+v}^*(t)\}_{v=1}^{n-s}$ orthogonal to $\{f_k^*(t)\}_{k=1}^s$.

PROOF. By direct computations of $\langle f_i^*, f_j^* \rangle_R$, $i, j=1, 2, \dots, n$, we have

$$M(f^*) = \begin{bmatrix} LI_s & 0 \\ 0 & M_s(f^*) \end{bmatrix}$$

which implies

$$(7) M_{\varepsilon}^*(f^*) = LI_{\varepsilon}.$$

Furtherly, by (6) and same arguments stated in [4] (see Lemma 6.3, p. 801), we know that for any $\{f_k(t)\}_{k=1}^n \subset X$,

$$M_s^*(f) \leq M_1(f) .$$

Thus, by (7) and (8), we have

(9)
$$sL = \operatorname{tr} M_{i}(f^{*}) = \operatorname{tr} M_{s}^{*}(f^{*}) \leq \max_{\{f_{k}\} \in X} \operatorname{tr} M_{i}(f) = sL$$
,

the last equality follows from $\operatorname{tr} M_1(f) = \sum_{i=1}^s m_{ii} \le sL$ and the maximum attained as $f_k^*(t) = \sqrt{L\eta_k} \phi_k(t)$, $k = 1, \dots, s$, which says that $\operatorname{tr} M_i^*(f^*)$ maximizing $\operatorname{tr} M_i^*(f)$ in X. Therefore, by (7), (9), Lemma 2 and Theorem 1, we justify the validity of the result, which is another approach to [2].

Acknowledgement

We wish to thank Professor C. S. Cheng for suggesting this approach.

NATIONAL TSING HUA UNIVERSITY

REFERENCES

- [1] Chang, D. S. (1979). Designs of optimal control for a regression problem, Ann. Statist.,
 7, 1078-1085.
- [2] Chang, D. S. (1981). Design of D₈- and E-optimal control for a regression problem, to appear in Bulletin of the Institute of Mathematics Academia Sinica.
- [3] Federov, V. V. (1972). Theory of Optimal Experiments, Academic Press, New York.
- [4] Karlin, S. and Studden, W. J. (1966). Optimal experimental design, Ann. Math. Statist., 37, 783-815.
- [5] Kiefer, J. (1975). Construction and optimality of generalized Youden designs, A Survey of Statistical Design and Linear Models (ed. Srivastava, J. N.), North-Holland.
- [6] Parzen, E. (1959). Statistical inference on time series by Hilbert space methods, I, Technical Report No. 23, Department of Statistics, Stanford University.
- [7] Parzen, E. (1961). An approach to time series analysis, Ann. Math. Statist., 32, 951-989.
- [8] Riesz, F. and Nagy, B. Sz. (1956). Functional Analysis, Ungar, New York.