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Abstract

Consider a realization of the process y(t)= z 6, f(t)+&(t) on the

interval T'=[0, 1] for functions fi(¢), fi(t),---, f.(t) in H(R), the repro-
ducing kernel Hilbert space with reproducing kernel R(s,t) on T x T,
where R(s, t)=E [£(s)é(f)] is assumed to be continuous and known.
Problems of the selection of functions {f.(¢t)};_. to be @-optimal design
are given, and an unified approach to the solutions of D-, A-, E- and
D,-optimal design problems are discussed.

1. Introduction

If a stochastic process
(1) YO=20L0+E0),  teT=[0,1]

is given with the noise process &(¢t) having zero mean and known con-
tinuous covariance kernel R(s,t)=E [£(s)é(t)], (s,t) e TXT. Let H(R)
be the reproducing kernel Hilbert space (RKHS) with reproducing kernel
(RK) R(s,t) on TXT, and let {fi(t)};—;, be a linearly independent set
of functions in H(R). Then, by the Gauss-Markov theory of continuous
time series, we obtain for f=(fi(t), fit),--, fu(t)) (throughout this
paper primes will denote transposes) the minimum variance unbiased
estimate é:M"(f) Ky, fio~,++, ¥, fo>~), and its covariance matrix
Cov [0]=M"'(f), where 6=(0, -, 0,), M(f)=[my,l},-;, my={S, f;or if
{fu(®)}iei € H(R), and <y, fiy~, k=1,2,---, n are defined as if y(t) were
an element in H(R). In [1], the author has given the definition of D-
optimal, A-optimal and weighted optimal designs of the functions {f,-
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(t)};-; in some set Xc H(R), and give the analytic expression of optimal
solution of {f.(t)}i-; in H(R). But they were treated separately and
the methods were tedious also. In this paper, we use a result in [5]
as a tool for obtaining an unified approach to these problems, and hope-
fully we can reach a more general results than [1] and make D-, A-,
E-, D,-optimal design to be our special cases. In Section 2, the criter-
ion of @-optimal design of second-order process (1) will be given. In
Section 3, we prove the tool theorem and use this theorem to describe
the solution of D-, A- and E-optimal design problems. In Section 4,
we will do the same approach to D,-optimal design.

2. Design criterion

Suppose that (1) is given, then it is well kown (see [6], [7]) that
the space of functions generated by {R.(:), te€ T|R.(t')=R(, t)} is an
RKHS denoted by H(R), with RK R(s,t) on TxT. Since R(s,t) is
symmetric and positive definite (p.d.), then, by Mercer’s theorem (see
[8], pp. 242-246), we know that there exists a set of orthonormal func-
tions {¢,(H)}=; in LT] and corresponding sequence of positive real
numbers {7,};-; such that

R(s, )= 33 7))

is uniformly convergent in T X T if R(s, t) is continuous. Also that the
inner product in H(R) is

<g1 h’>R Ié guhvlvv )

where g,=(g, ¢,) > and h,=(h, ¢,) 2, for any g, h € H(R). That is,
H(R):{hl S hifn <o, hy=(h, $) ﬂ} .

Assume further that a set of linear independent functions {f.(t)};-:
in H(R) is given. Then, by [6] and [7], we have for §=(4,,---,6,) and
F=(fi(t),- -+, fu(t)) the minimum variance unbiased estimate

O =M"(f)- (Y fiy~,- s U fu>~)
with Cov []=M"'(f), where

(2) M(f)z[mij]?,j=lr 'mij=<firf/>m ’i,j=1,"',n

and ¥, fk>~ =i (fkvyv)/ﬂv’ k=1,2,...,n, with y.,=(y, ¢v)_[27 the stochas-
tic integral of y(t) with respect to weight function ¢,(t) € .LYT], v=1,
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2,
Since the Gauss-Markov estimate of 6 needs the invertibility of
M(f), our discussion of designs will be restricted in the class of inverti-
ble matrices M(f)’s and in addition, since M(f) is nonnegative definite
(n.n.d.) (see [3]), we will furtherly restrict our discussion in p.d. ma-
trices M(f)’s.

Now, following [1], [2], and [5], we can give our design criterion
in following

DEFINITION. Let @ be an real-valued function on some subset of
p.d. matrices. A matrix C* in this subset is called @-optimal if C*
minimizes @(C) for all C in this subset.

DEFINITION. Suppose that (1) and some set X in H(R) is given.
An experiment with {fX*(¢)}-; in X is said to be @-optimal (or @-opti-
mal design) if M(f*) minimizes @®(M(f)) for all possible choices {f.(t)}i-,
from X.

Examples. Suppose @, be given as in the following.

(1) O(M(f))=|M"'(f)|; an experiment with {fX*(¢)}i.; which is @ -opti-
mal is also called D-optimal.

(ii) O(M(f))=tr M '(f); an experiment with {f*(#)};-; which is @
optimal is also called A-optimal.

(i) @.(M(f)=1(M7'(f)), where 2(M~'(f)) is the largest eigenvalue of
M~'(f); an experiment with {fX(¢)};-, which is @.-optimal is also
called E-optimal.

(iv) Let MX*(f) be defined by

where I, is sXs identity matrix, 0 is zero matrix with appropriate
size. Consider

HMX(N=D(MX(f)) ;

then an experiment with {f:*(f)}:-, which is ¢-optimal is also called
D,-optimal.

3. Optimality tool

In view of the examples of Section 2, we may extract the charac-
teristics of @ which guarantee the existence of @-optimal. Let &, con-
sist of the nxXn p.d. matrices, and

O: B,—(—o00, +0)



278 DER-SHIN CHANG AND YUANG-CHIN CHIANG

satisfies
(a) @ is convex,
(3) (b) @@®C) is nondecreasing in the scalar 5>0,

(¢) O is orthogonal invariant, i.e. for orthogonal matrix
P, ®(P'CP)=9(C).

Let 9 be some index set, then, similarly as in [5], we have the
following optimality tool, which is slightly different from [5] owing to
the condition (¢) being changed.

THEOREM 1. If the class C={C;; d € D} B, contains a Cu which
is a multiple of I,, and maximizing tr C, for d € 9, then C, is @-opti-
mal for every @ satisfying (3).

PrROOF. Suppose that there exists a C, in C such that &(C,)<
O(Cy) and P'C,P=[20;]} j-1, where P'P=1I, and 4,,---, 4, are the eigen-
values of C;. If oP is obtained from P by permuting the columns of
P according to the permutation ¢ of the first n integers of natural
numbers, then clearly (¢P)C,(cP)=[2,9,];,;-1, Where o; is the integer
obtained from i moved by ¢. Let C, =3 (¢P)C,(sP)/n!. Since there
are (n—1)!¢’s among n! mapping 7 unchanged for every i, 1<i1<n, we
easily have

- 1 n
(4) Co== X Al, .
n

i=1

Although Cj is not necessarily in C (but indeed in B,), we have, by
(3) (c) and (a),

(Cy) >9(Cy)= 2 O((eP)'Cy(aP))/n!
20(2 (oP)Cy(aP)/nl)
=0(Cy) -
Since C, is multiple of I,, then, by (4), C, is of the form bC, for

some b>0. More since tr C,=tr C,,:i‘, A;=b-tr C,., tr C; maximizing
i=1

tr C, for d € @ implies b<1. But then, by (8) (b), &(C,)=9(C,)=?(C,.),
which contradicts @(C,)<®(C,). This completes the proof.

Now rather than treat D- and A-optimal designs separately as in
[1], we may use the theorem stated above to solve then as well as E-
and D,-optimal designs in an unified way. Because of the length of
introducing the definition of D,-optimal design, we will separate it for
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discussion in Section 4.
LemMMA 1. &, @, and @, all satisfies (3).

This result is well known, and incidentally we can assert the con-
vexity of log|A~!| instead of |A~!| for proving &,.

Application. Suppose we are given model (1), and X={g|g ¢ H(R),
llglk=L}, where L is a positive number. Then tr M(f)=§ miizi} (S
For=3 IflsnL for {fhacX. Now let ff®)=vIns(t), k=1,

-++,m as in [1], then M(f*)=LI,, and tr M(f*)=nL reaches the maxi-
mum value of tr M(f) in X. Therefore, by Theorem 1 and Lemma 1,
we know that {fX(@)}i-; is @, @;- and @.-optimal simultaneously in X
with

min [M7(f)|=|M(f#)I=L,

min tr MY(f)=tr M~(f*)=n/L

{fglcx

and

in (M) =M (f*)=1/L .

Remark. The above solutions of @,- and @,-optimal designs of model
(1) are same as in [1]. But the weighted optimal design treated there
is not a ecriterion satisfying (3) because it is not invariant under or-
thogonal transformation.

4. D,-optimal

Although every parameter of 6,,---,6, exert influence upon the
investigated stochastic process y(t) of (1), an experimenter frequently
is interested in only some of the parameters, say, 6,,---,0,, s<n. In
such a case, it turns out that D-optimum (®,-optimum) is somewhat
inappropriate and does not reflect the needs of the experimenter. This
leads us to the consideration of the “ generalized variance” of the esti-
mates of the first s parameters 6,,---,6,. Since the “ generalized var-
iance” of the estimates of the first s parameters is also influenced by
the estimates of the rest parameters 6,,,,---,48,, thus it serves as a
different criterion of optimality as discussed in [4] and [2]. We call
such a criterion of “D,-optimal ”.

Consider the class of p.d. matrices M(f), f=(fi(t),---, fu(t)) such
that {f.(®)}i.;.cX. Let
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M) M)
(8) Ms )‘[Mz(f) Ma(f)J

where M(f) is an sXs matrix, My(f) is an (n—s) X (n—s) matrix. Then,
following the well known Frobenius formula (see [3], p. 16), we can
define the following.

DEFINITION. For any {f.(f)};-, contained in X, let its information
matrix be M(f) as in (2) and be partitioned as in (5). Let

(6)  MAA)=ILOWHA(- T )= M)~ MUHM (M) .
Then a design {f*(t)};-; in X is called D,-optimal if {fX(t)};., minimizes
YMH() =P M () =|M*"'(f)| for all possible choices {fi(t)}i-, in X.
Similarly as in Lemma 1, we have
LEMMA 2. ¢ satisfies (3).
Now by Lemma 2 and apply Theorem 1 to ¢, we have following.

THEOREM 2. Suppose (1) ts given, X={g(t), te T|ge H(R), |g|i=
L} and M~(f) the dispersion matrix of the Gauss-Markov estimate of 0
as wn Section 1. Then, we have
min _|MX*"'(f)|=L",
(fe}p-1C X
which 13 attainable at f¥(t)=+vLy,¢.(t), k=1,---, s and any linearly in-
dependent set of functions {fX.,(0)}:z} orthogonal to {f*(t)}i-:.

Proor. By direct computations of {f*, f*>r, 1,5=1,2,--+,n, we
have

LI, 0
Ms *)z[ 0 Ma(f*J ’
which implies
(7) MX(f*)=LI, .

Furtherly, by (6) and same arguments stated in [4] (see Lemma 6.3,
p. 801), we know that for any {f.(H)}i.,CX,

(8) MXH=M(S) .
Thus, by (7) and (8), we have
(9) 8L=trM(f*)=trM*(f*)§(rfn;'=l§ tr M,(f)=sL,
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the last equality follows from tr M( f)=5“_. my<sL and the maximum
i=1

attained as f*(t)=vLy.$u(t), k=1,---,s, which says that tr M(f*)
maximizing tr M*(f) in X. Therefore, by (7), (9), Lemma 2 and The-
orem 1, we justify the validity of the result, which is another ap-
proach to [2].
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