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1. Introduction

Consider v treatments arranged in & blocks with the jth block
being of size k; (j=1,2,-+-,b) in a block design with incidence matrix
N=||n,|| such that the ith treatment occurs r, times (¢=1,2,---,v)
and the ith treatment occurs in the jth block n,; times, where =,; can
take any of the values, 0,1,2,---, or n—1. Such a design is called
an n-ary block design. If n=2, the design is called binary. When
ry=1y=-.-=7,, the design is said to be equireplicated. Let T, be the
total yield for the ith treatment and B, that for the jth block. On
writing 7'=(Ty, Ty,---, T,) and B'=(B,, B,,---, B,) in matrix notation,
the adjusted intrablock normal equations for estimating the vector of
treatment effects ¢ can be written under the usual assumptions as Q=

Ci, where ¢ is the estimate of t,
Q=T—Ndiag {ki%, k;',---, k;'}B,
C=diag {7y, 72, -+, r,} — Ndiag {k, k%, - - -, k') N',

and diag stands for a diagonal matrix and A’ is the transpose of the
matrix A, and further let diag {r, 7;,---, .} =D, and diag {k,, k,,- - -,
k;} =D,. The matrix C is well known as the C-matrix of a block design.

Though the rank of C is at most v—1, we consider a case where
the rank of C is v—1, in which case the design is said to be connected
(cf. [3]). We shall deal only with connected designs throughout this
paper.

A block design is said to be balanced if every elementary contrast
of treatments is estimated with the same variance (cf. [16]). In this
sense, this design is also called a variance-balanced block (BB) design.
Furthermore, it is known (cf. [6], [8], [9], [10], [11], [13], [16]) that an
n-ary BB design with parameters v, b, », k, (4=1,2,---,»; 7=1,2,
.-+, b) can be given by an incidence matrix N satisfying

(C=) D,—ND¢'N'=p{I,—(1/v)G,} ,
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where p= ['2 ri—é {(l/k,) é nﬁj}] / (v—1), I, is the unit matrix of order
i=1 j=1 i=1
v, G,=E,«, and E,,, is an [Xs matrix with positive unit elements
everywhere. Note that for a binary BB design, p=<é ri—b) /(v——l).
i=1

For an m-ary BB design, p also depends on an incidence structure of
the design.

The literature of block designs contains many articles exclusively
related to BB designs. The interested reader can refer, for example,
to [6], [8], [9], [10], [11], [13], [16] for details. In this paper, some block
structure of equireplicated n-ary BB designs is investigated with illust-
rations. These results include the well known results as special cases.

Finally, since a design uniquely determines its incidence matrix
and vice versa, both a design and its incidence matrix are denoted by
the same symbol throughout this paper.

2. Characterization
An equireplicated n-ary BB design has the following C-matrix :
rI,—ND;'N'=p{l,—(1/v)G.} ,
i.e.,
2.1) ND{'N'=(r—p)L,+(o/v)G, ,

the determinant of the right-hand side of (2.1) is clearly r(r—p)",
where r=r=7,=-.-=¢,. In this case, we first state

THEOREM 2.1. For an equireplicated n-ary BB design with param-
eters v, b, r and k; (j=1,2,---,b) in which C=p{I,—(1/v)G,}, the fol-
lowing holds :

(1) If v>b, then p=r.

(2) If v=b, then kik,- - -k,r(r—p)*~! is a perfect square or zero.

In particular, when the design is binary, ki - -k {(b—7r)/(v—1)}""" is
a perfect square or zero. -

Proor. If v>b, then |ND;'N’|=0 which from (2.1) yields p=7.
This implies (1). If v=b, then N is a square matrix. Hence |[N|f=
kiJey+ « -kyr(r—p)*~' which must be a perfect square or zero. Especially,
when the design is binary, we have p=(vr—b)/(v—1) and then r—p=
(b—7)/(v—1). Thus, the required result (2) is obtained.

Note that the latter case of the result (2) in Theorem 2.1 is pre-
viously shown by Atiqullah [1]. In the former of the result (2) of
Theorem 2.1, if ky=k,=-..=k, (=k, say), then r=Fk and |[Nf=r"*(r—
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0. Hence we get

COROLLARY 2.1. For an equireplicated, equiblock-sized m-ary BB
design with parameters v, b, r and k in which C=p{Il,—(1/v)G,}, if v
(=b) is even, then r(r—p) is a perfect square or zero.

Note that when n=2, Corollary 2.1 yields the well known result
that for a symmetrical balanced incomplete block (BIB) design with
parameters v, b, r, k and 4, if v is even, then r—2 is a perfect square.

Relaxing an assumption of symmetry in (2) of Theorem 2.1, we
have the following.

THEOREM 2.2. For an equireplicated m-ary BB design with param-
eters v, b, rand k, (7=1,2,---,b) in which C=p{I,—(1/v)G,} and p<r,
iof v<b, then r(r—p)* Uy_yi1- - -ky|Co_s| 18 @ perfect square or zero, where
Cooo=1I,_,— {1/(r—p)H{ D" N/ N\ D¢* — (p/vr) |V k. I} (5,5'=1,2,-++,b—
v), D, =diag {ki, k;,-++, k,_,}, and N, is a submatrix consisting of the
first (b—wv) columns of N.

PROOF. Let the partition of b blocks of N be N=[N,: N,], where
N, is a vX(b—v) matrix and N, is a square matrix of order ». Fur-
ther let the partition of sizes of blocks corresponding to the above

partition of blocks be
D, 0
D,=| ™" ,
* [0 Dkz]

where D, =diag {ki, k,,--+, k,_,} and D, =diag {k,_,s1, -+, k,}. Then
form

@2 ac] o b

I_, 0
from which it follows that

—1A7 —1/2
s oo 1 |
The determinant of AA’ can be given by
(2.3) |AA’|=|ND¢'N'||I,-,— Di/*N/(ND;'N') "' N\Di”*|
=7r(r—p)""|Co|
where

Co-v=1,_,— D5 N{(ND;*N')"*N, D;"
=I,_,— D" N/[(1/vr)G, + {1/(r— p)H I, — (1/0)G,} IN. D
from (2.1)
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=I,_,— {1/(r— p){ DN/ N\ D~ (pfvr) | VE ;. ||}
for 7,5'=1,2,--.,b—v. Furthermore, from (2.2)
(2.4) |AA!|=| AP =|Nof'| D |=| Ny (B4 o —ora « - Ks) ™"
Therefore, relations (2.3) and (2.4) give the required result.

Remark 2.1. A part of the conditions given in Theorem 2.2, k,_,,:
-++k,|Cy_,|, depends on the partition of blocks of N.

Remark 2.2 If b=w, the proof of Theorem 2.2 contains the result
(2) of Theorem 2.1.

Remark 2.3. When a binary design is considered, Theorem 2.2 is
useful in checking whether for a fixed N, a new design [N;:N,] is
balanced by juxtaposing an appropriate N,, because p is easily cal-
culated.

It is known (cf. [2]) that for an equireplicated binary BB design,
if b=w, then the block sizes are constant (and hence the BB design is
a symmetrical BIB design). The corresponding result is not generally
valid for an equireplicated m-ary BB design with b=v». For example,
we have a symmetrical n-ary BB design with parameters v=b="7, r=
6, k;=3 or 24, and C=(14/3){L,—(1/7)G;}, with seven blocks, (1,2,2)
(1,3,3) (1,4,4) (1,5,5) (1,6,6) (1, 7,7) (2,2,2,2,3,3,8,3,4,4,4,4,5,5,5,5,
6,6,6,6,7,7,7,7) (cf. [7]). A method of constructing a BB design of
this type will be mentioned in the last section. As some block struc-
ture for an m-ary case, we have

THEOREM 2.3. For an equireplicated m-ary BB design with param-
eters v, b, r and k; (7=1,2,---,b) in which C=p{l,—(1/v)G,}, ©f o<r
and v=>b, then both (r—p)k;+(o/vr)k; and okk;lvr for all j, 5’ are in-
tegers. Furthermore, regarding a block as a colummn vector of the inci-
dence matrix,

(a) there does not exist a pair of blocks which are identical or pro-
portional ;

(b) there does mot exist a block of type aFE,.; where a (<r) 18 any scalar ;

(c) if the imnmer product of any two blocks is constant, then k,=k,=---
'—"kb ;

(d) the block sizes of binary blocks are identical ;

(e) the block intersection numbers of any two binary blocks are constant ;

() if ky=ky,=---=k,, then NN'=N'N holds.

Proor. If v=b and p<r, then considering the inverse matrix of
both the side of (2.1), we have
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(2.5) D= {1/(r—p)} N'N— {o/or(r—p)} N'G,N ,
or
(2.5) N'N=(r—p)D-+(ofor) [k e, | -

Comparing the diagonal elements and off-diagonal elements of (2.5),
respectively, yields that both (r—p)k,+(o/vr)k} and pk;k;[vr are inte-

gers for all 7,7 (j#3)=1,2,.---,b. Now, letting Iajj,:i‘, NNy, WE
i=1
have from (2.5)

(2.6) (oYl -+ (r— oY, —p1,,=0
(2.7 ti=o[vr)k;k; G+#3".

(a) If there exists a pair of blocks which are ! (=1) times proportional,
then from (2.7) we have p,;=(p/vr)k} which yields from (2.6) p=r which
is a contradiction to p<r. Hence there does not exist a pair of blocks
which are identical or proportional. (b) Similarly, if there exists a
block of type aF,.;, then from (2.6) and (2.7) we have r=a which is
a contradiction. (c) If g,,=p, a constant, for all j, 5/, then from (2.7)
we have k;k,=vrulp for all j, 5 (j#5')=1,2,---,b, which yield k,=k,
=...=k,. (d) If the jth block is binary, then p,;=k,. Hence from
(2.6) k;=vr(1+p—7)/p is a constant for all j=1,2,.-.,b. (e) Similarly
to (d), from (2.7) we have the required result. (f) From (2.5) we have
N'N=(r—p)kl,+(ok/v)G,. On the other hand, from the definition of
the C-matrix we have NN'=k(r—p)l,+(ko/v)G,. Hence NN'=N'N
holds.

Note that if the design in Theorem 2.3 is binary, then (2.6) yields
ki=k,=-.-=k,. This is Bhaskararao’s result which was described be-
fore Theorem 2.3. However, in an equireplicated binary BB design,
if a condition b=wv is relaxed, then we obtain

THEOREM 2.4. For an equireplicated binary BB design with param-
eters v, b, r and k; (7=1,2,---,b) in which C=p{I,—(1/v)G,} and p<r,
if b>v, then

vr(v+r—b—1)

1=1,2,--+,b.
vr—>b J

k;=max {2,
PrRoOOF. Since the design N is equireplicated, from the C-matrix
we have

(2.8) ND;'N'=(r—p)L,+(o/v)G,
=r{(1/v)G,} +(r—p){L,—(1/v)G.}
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which is a spectral decomposition of ND;'N’. Furthermore, since
ND;'N'=ND;"*D;"*N', it follows from (2.8) that the spectral decom-
position of D;?N'ND;'* is given by
D;**N'ND; " =r {1 Dp*N'(1.6,|ND;
r
S (r— p){ 1 p; ‘”N'(I —-G)ND;‘/2}+OD,

where rank (D)=b—v and D is a projection corresponding to the zero
latent root of D;*N'ND;"?, and is expressed as

(2.9) D=L,--_1_D,:lﬂM(lG,,)ND,;Uz D“”N’(I ——G >ND;"2

r—p
=1, ——D “N'G,ND;*+—L __ Dy*N'G,ND; "
(r—p)v
_ 1 D;l/!NIND;l/Z
r—p
=1+ — L D;*k k|| D"~ —L— Dp"N'ND; ",
vr(r—p) r—p

which implies
(2.10) DY*DD{*=D, +-—(—)—||k & ||—-—N’N

Since diagonal elements of D are nonnegative, comparing the jth diag-
onal element of (2.10) yields

(2.11) byt —L—— ki — 1 pz0,  J=1,2,---,b.
vr(r—p) r—p

Now, N is binary. Then we have p,,=k, and p=(vr—>bd)/(v—1). More-
over, from (2.11) we get

vr—>b vr(v+r—b—1) } .
______.k {k 20 '—1:2y”‘!bl
vr(b—r) vr—>b J

which imply k;=vr(v+r—b—1)/(vr—b) for j=1,2,---,b.

Remark 2.4. If b=v, then DY’DDY*=0 holds and thus (2.10) and
(2.11) yield (2.5) and (2.6), respectively.

We now describe two examples of Theorem 2.4.

Example 2.1. Let M, be a symmetrical BIB design with param-
eters v*=b*, r*=k* and i*. Then N=[E,.;: M;] is a BB design with
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parameters v=v* b=v*+1, r=k*+1, k,=v* or k* (j=1,2,---,b). In
this case, vr(v+r—b—1)/(vr—b)=v*(k**—1)/(v*k*—1)=k*—(v*—k*)/(v*-
k*—1) and (v*—k*)/(v*k*—1)<1. Thus, for this design N, Theorem 2.4
yields k,=k* (=1, 2,-- -, b) which is attainable. For example, consider
a BB design with parameters v=7, b=8, r=4, k;=3 or 7, whose inci-
dence matrix is given by

r1111000 07
11001100
10101010
11000011| and =H<I—.1_G>.

7 7

10011001
10010110
L10100101)]

In this case, Theorem 2.4 implies k,=max {2, 14/5} =14/5, i.e., k,=3.

Example 2.2. Let M, be a BIB design with parameters v*, b* (=
v¥4t—1), r*=pt, k* and 2* for some positive integers p and ¢t. Then
[E,x,: M;] is a BB design with parameters v=v*, b=v*+t+pu—1, r=
pt+p, k;=v* or k*. In this case, vr(v+r—b—1)/(vr—b)=v*u(p—1)t(t+
1)/ {v*u(t+1)—v*—t—p+1} which may be greater than two, provided
¢=2 and t=2. For example, consider a BB design with parameters
v=9, b=14, r=10, k;=6 or 9, whose incidence matrix is given by

(1110011110011 17
11010011111011

11101001111101

11110100111110

11111010010111( .4 ZE@_ng),
1

1

1

L1

1111101001011 2
1011110101101
1001111011110
1111111110000

In this case, Theorem 2.4 implies k,=max {2, 90/19} =90/19, i.e., k;=5.

Remark 2.5. Consider a principal submatrix of order two (=D®,
say) of D in (2.9). For example,

D®=1,+ [4 k; '\/kjkj’:}_ 1 1 F‘fj’/‘/kjkj' ,
vr(r—o) | Vkk, k. T IV kK 1

where p,; is the number of treatments common to the jth block and
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the j'th block. Since p=(vr—b)/(v—1), we have

(2.12) |D<2>|=_<v—1>2 By o 20r=b-1)

b—r/ Tk, vrp—ry Y
(vr—=b)(b—r—v+1) kot (b—v—'r+1 )2
+ vr(b—r)? (st )+ b—r

which must be nonnegative, because D is positive semidefinite. The
last fact shows that (2.12) yields a bound on the block intersection
number g;;.. In particular, when the design is a BIB design in which
ki=k,=..-=k, (=k, say),

1 (—=12 , | 2k—1)(v—1)
@13) D=t SO+ MU0,

+(b—v—r+1)(b—v—r+2k—1)] .
Since (2.13) is nonnegative, we have

214 (v—1) 2 2(k—1)(v—1)
( ) o Hij I Hij

—b—v—r+1)(b—v—r+2k—1)<0
which yields

PSSty
where
po=HE=D kTG r T D=7 2%=1)

v—1 v—1

:k(k—1)+k(b—'v—’r+k)
v—1 — v—1

_kk=1) , Kk (. (=D—2—k)
v—1 iv— { + k }

___k(k—l)_,_{k(k—l)_,_r_z_k}
v»—1 ~{ v— ’

and so p,=2k(k—1)/(v—1)+r—2—k=22k/r+r—2—k and p_.=—(r—Ii—
k). Thus, it holds that for a BIB design

—(r—l—k)émfég%k—ﬂ“f—l—k ,
which corresponds to an important result due to Connor [4]. Further-
more, since it can be shown that b—v—»42k—1=0 holds in a BIB
design, if p;;;=0, then from (2.14) b—v—r+1=0 holds. This implies
that for a BIB design if there exists a pair of disjoint blocks, then
Bose’s inequality b=v-+7r—1 holds.
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Thus, the results described in Theorems 2.1 to 2.4, and Corollary
2.1 can be used as a test for the possible existence of a connected equi-
replicated BB design having appropriate specified values of parameters.

3. Some constructions

Note that an equiblock-sized binary BB design is equireplicated
and hence the design is a BIB design (cf. [9], Theorem 13.1). As a
characterization similar to this result for a nonbinary case, we get

THEOREM 3.1. A mnonbinary equiblock-sized BB design is a pair-
wise balanced design of index ko/v.

PROOF. For an equiblock-sized BB design N=||n,|| with k,=k,=
---=k, (=k, say), the C-matrix of the design is

3.1) D,——l-NN’:p<L,——1—G,,> :
k v
Comparing the off-diagonal elements of (3.1) yields:
12 )
T A=y
which implies that N is a pairwise balanced design of index kp/v.

When a design is equireplicated, the proof of Theorem 3.1 yields

COROLLARY 3.1. A mombimary equiblock-sized, equireplicated BB de-
sign is a balanced n-ary block design of Tocher.

Here, a balanced n-ary block design of Tocher [19] is an arrange-
ment of V treatments in B blocks, each of size K, such that (i) each

B
treatment occurs in the design R times and (ii) 3)#,m.,=4 (4, con-
Jj=1

stant), 1#4, where m,;; is the number of times the ith treatment oc-
curs in the jth block and can take any of the values, 0,1,2,---, or
n—1. Corollary 3.1 shows that a balanced n-ary block design of Tocher
is a special case of an n-ary BB design. Hence, a number of known
methods of constructing balanced n-ary block designs of Tocher (cf.
[5], [14], [15], [18], [19]) can be used as construction methods of n-ary
BB designs. This fact is very important, because there also exist
methods of construction of balanced n-ary block designs using differ-
ence sets (cf. [17], [18]). Until now, construction of n-ary BB designs
is mainly based on a composition method, and a trial and error method.
Nobody ever explicitly presented the method of differences of const-
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ructing an n-ary BB design. In this sense, Corollary 3.1 may be very
instructive.

Remark 3.1. For a balanced n-ary block design N with parameters
V, B, R, K and 4, we have directly

C=RL—(1/K)NN'=(4V|K){L,—(1/V)Gv}
which shows that the design N is an equireplicated n-ary BB design.

Finally, as described before, since some methods of constructing
binary BB designs are variously known, we consider construction of
nonbinary BB designs. John [8] and Kulshreshtha, Dey and Saha [13]
gave some methods for construction of n-ary BB designs. We here
present other simple methods of constructing n-ary BB designs by
modifying some methods given in [9] and [10].

Method 3.1. If a=d*+d, then the following matrix of order a+1
is a symmetrical n-ary BB design with parameters v=b=a+1, r=a,
k,=d+1 or ad? and p=d(a+1)/(d+1):

ri 1...1 07

d d?
d 0 d
0 . .

L d d*)

This method can easily be shown by considering the C-matrix of the
design. Note that the example before Theorem 2.3 is a special case
of Method 3.1 when a=6 and d=2. We can also give some series of
n-ary BB designs by incidence matrices similar to Method 3.1. For
example, there are types as

“ o 0 fa a - - -a 0 O
a e e e
( b b---b 00
b c
b 0 . c d e
. « | c O .
0 b. 0
- ¢ L c d el

Method 3.2. In the incidence matrix of a BIB design, by inter-
changing all 0’s and all 1’s into appropriate numbers %, (=0) and =,
(=0), respectively, we can obtain n-ary BB designs for some n.
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Method 3.3. In the incidence matrix of a binary BB design, by
interchanging all 1’s only into an appropriate number a (=2), we can
get an n-ary BB design.

As mentioned above, we have

Method 3.4. Balanced m-ary block designs in the sense of Tocher
are n-ary BB designs.

Remark 3.2. A BB design in the sense of Kiefer [12] is a special
case of balanced m-ary block designs of Tocher.
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