Ann. Inst. Statist. Math.
32 (1980), Part A, 223-240

NONPARAMETRIC ESTIMATION OF AN AFFINITY MEASURE
BETWEEN TWO ABSOLUTELY CONTINUOUS DISTRIBUTIONS
WITH HYPOTHESES TESTING APPLICATIONS

IBRAHIM A. AHMAD*

(Received May 10, 1975; revised May 20, 1980)

Abstract

Let F and G denote two distribution functions defined on the same
probability space and are absolutely continuous with respect to the
Lebesgue measure with probability density functions f and g, respec-
tively. A measure of the closeness between F' and G is defined by:

A=AF, G)=2 S f(x)g(x)dx/ [S fz(x)dx—!—g gz(x)dx] Based on two inde-
pendent samples it is proposed to estimate 1 by i= [S f (x)dG.(x)+

S g(x)dF,,(x)] / [S f'z(x)dx—}—g ﬁﬁ(x)da;}, where F,(x) and G,(x) are the em-

pirical distribution functions of F(x) and G(x) respectively and f(a;)
and g(x) are taken to be the so-called kernel estimates of f(x) and g(x)
respectively, as defined by Parzen [16]. Large sample theory of 1is
presented and a two sample goodness-of-fit test is presented based on

1. Also discussed are estimates of certain modifications of 2 which al-
low us to propose some test statistics for the one sample case, i.e.,
when g(x)=fi(x), with fy(x) completely known and for testing symmetry,
i.e., testing H,: f(x)=f(—2x).

1. Introduction

Let F and G be two independent distribution functions (d.f.’s) de-
fined on the same space which are absolutely continuous with respect
to the Lebesgue measure with probability density functions (p.d.f.’s) f
and g, respectively. Matusita [7] introduced a measure of closeness
“affinity ” between F' and G, defined as follows:
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(1.1) p=0o(F, )= [f(@)@)]"ds .

Assume that f and g are both square integrable. Ahmad and Van
Belle [2] introduced another measure of the affinity between f and g,
viz.,

(1.2) A=UF, G)=23[{4(f)+4(9)] ,

where a=g F@)g(@)dz, A f)=S fi(x)de, and A(g)=g F(z)dz.

Matusita [7], [11], and [12] discussed various mathematical proper-
ties of p. When the distributions are discrete, Matusita [7], [8], and
Matusita and Akaike [14] used an estimate of p to study decision prob-
lems. Matusita [9], [10], and [13] studied classification rules for normal
populations based on p.

Based on two independent samples from F and G a nonparametric
estimate of 1 is proposed and its large sample theory is studied. Let
X, -+, X, and Y;,--.,Y, be two independent samples from F and G
respectively. Note that taking equal sample sizes is only for conven-
ience. The results of this paper remain valid if we have samples of
sizes m and » such that m/n—a>0. Let k be a known p.d.f. satis-
fying the following conditions

(1.3) sup k(u)<oo and |u|k(u)—0 as |u|—oo.
Furthermore, let {a,} be a sequence of nonnegative real numbers such
that a,—0 an n—oo. The kernel estimates of f(x) and g(x) are given
by :

L9 fe)=e | MEa—w/aldFw=(ma)" S kHe—Xal,

and

15 f@)=ar' | k@ —w/edCy(w)=(na) 3T k@—Yola

where F,(x) and G,(x) denote the empirical d.f. of F(x) and G(x), re-
spectively. Using (1.4) and (1.5) an estimate of 4 is given by:

(1.6) A=23/[4(f)+4(g)] ,

where

an  d=1]| f@d6.@+| seFw)]
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=%(nzan)_l 2 2 k(X =Y ) o] +RI(Y, — X)/a.]}

18 d(H=| @z, and do)=| #@ys .

For convenience, let us assume that k(u) is a symmetric p.d.f., in which
case

19)  i={ f@d6.@)={ §)F (5)=(na) ) S~ )a] -

Throughout this paper the estimate (1.9) will be used for estimating A.
Note also that in all of the above and in what follows whenever no
limits are given, integrals are taken over the entire real line.

The functional 4(f) is of interest of its own right because it ap-
pears as the main term in the asymptotic efficacy of several rank sta-

tistics. The estimate 4(f) was shown to be consistent in the mean by
Bhattacharayya and Roussas [3], if na,— oo, as n—oo. Conditions un-

der which 2( f) is strongly consistent are given in Section 2. An equiv-
alent estimate to 4(f) may be defined by :

110 d)=] f@dF @) =(re) 5 X~ X )]

It can be shown that 4(f) is also consistent in the mean and strongly
consistent estimate of 4(f) under the same conditions as those of the
estimate ﬁ(f). In this paper, however, we shall use ﬁ( f).'

In Section 2, asymptotic properties of 2 are discussed. Conditions
under which 1 is consistent, strongly consistent, and asymptotically
normal are given. A two-sample goodness-of-fit test statistic based on
1 is proposed for testing H,: f=g. In Section 3, estimation of two
special forms of 2 is considered. First we discuss estimating i1 when

g=/f, is known and based on this estimate a one-sample test statistic
is proposed for H,: f=f, (known). Second, an estimate is given for

(1.11) *=3*4(f),

where 4(f) is a given in (1.2) and a*=S f(®)f(—x)dx. Based on this

estimate a test statistic is proposed for testing H,: f is symmetric
about zero, i.e., f(x)=/f(—=) for all real z.

Throughout this paper it is assumed that the set of dlscontlnulty
points of f and g are, respectively, null sets.
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2. Asymptotic properties of 1

The following two lemmas summarize some properties of 3 and
zf( f)(zf(g)) that will be used in the main theorem.

LEMMA 2.1.
(i) If na,—oo as n—oo and if S Fi@)(@)dr<co or S g2 f(@)dz <
oo, then
2.1) E|3—3]—>0 as n—oow.
(ii) If k is a continuous function of bounded variation, and if for
any >0, gexp(—rna,’,)<oo, then
2.2) 3—3 with probability one as n—oo .

(iii) If f and g have bounded second derivatives, if S f 3(:c)'g(:zc)ola:<oo

and Sgs(m)f(ac)dm<oo, if Suzk(u)du<oo, and if na,— o and nai—0

as n— oo, then nm(é—a) is asymptotically normal with mean 0 and
variance a° given by

@.3) o= £(@)lo@—oda+ | g(@)f(x)—oTds .

PROOF.

(i) Recall that $=S F(@)dG,(x). Then

@1 i-ols|If@—f@1d6. @) + || F@)d6.@) - | F@)icw)
=lnt+L., say.

(25)  EL=n" 3 E|f(¥)—f(¥)=E|/¥)-F(¥)
= Elf@)-r@)ld6) ,

since by Theorems 1A and 2A of Parzen [16], E|f(z)— f(x)|—0 as n—

oo, for each continuity point z of f, and E|f(x)— f(z)|<E f(z)+ f(z)
=h,(x), say, which is integrable and converges to the integrable func-
tion 2f(x) at each continuity point x of f, hence by the extended
Lebesgue dominated convergence theorem (ELDCT), see Royden [20],

p. 89, we have, since SE f (x)dx=1=g f(x)dx for all n so that Sh,,(x)dx
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=2, that

(2.6) ESI F@)—f@)|gmds—0  as n—oco.
Next, note that

(2.7) EL.= E‘ é (Yi)—al—>0 as m—oo,

since E f(Y;)=4, and Var f(Y,)= S fUx)g(x)dx—a*, thus Var <n“ % S (Y¢)>

—0 as n— co.

(ii) First note that

@8 [Edi-d=||E /@6 - | f@d6@)| | IE f@)-f=)d6w)

which converges to 0 as n— oo, since for all continuity points x of f,
|E f(w)—f(x)l—-»O as n— oo by Theorem 1A of Parzen [16] and |E f(x)—
f(x)|=E f (x)+ f(x)="h.(x), say which is integrable and converges to the

integrable function 2f(x) for all continuity points x of f, and Sh,,(x)da:

=2, hence the ELDCT applies. Thus, it suffices to show that 13—E§|
—0 with probability one as n—oco. To this end, note that

A

@9  13-Edl=|| f@}G.@) | E f@)dG()|

ég /@)~ E f@)ld6.@)+ | [§@)—E §(2)|dF )
<sup|/f(2)~E f(2)|+sup|g(x)~E §(x)] .

where the first inequality follows since SE f(a;)dG,.(x)za;‘S Sk[(m—y)/
0P @G, (#)=0a;" | | lk(y—2)/a, )G @}dF ()= §()iF(x) and by add-
ing and subtracting S Ef (x)dG.(x) and since S Ef (x)dG(a:)zS E g(x)dF(x),

while the second inequality follows since SdG,,(ac):l. Since k is a con-

tinuous function of bounded variation, then by integration by parts
with g, the total variation of %k, we have (see Nadaraya [15]) that

(2.10) sup|f(z)—E f(@)|S(4fa,) sup | F.2) — F()] .

Hence using a result of Dvoretzky, Kiefer, and Wolfowitz [6], we have
for any ¢>0
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(2.11) P [sup|f(2)—E f(#)|2¢]<P [sup | F.(z) — F(#)] 2 (cau/p)]
<Cexp (—¢enai/y) ,

where C>0 is some constant.
Thus in view of the Borel-Cantelli lemma and the assumption that

i‘, exp (—rnal)<oo for all y>0 we conclude that sup| f (x)—E f (x)|—0

n=1

with probability one as n—oco. Similarly we can show that sup|g(z)—
E g(x)|—0 with probability one as n—oo. Thus we conclude that 13—
E 3|]—0 with probability one as n— oo.

(ili)y Let p(x/a)=a;'E {k[(X—Y)/a,]|X=2} and p(y/a,)=a;'E {k[(X—
Y)/a,]|Y=y}. Then E p(X,/a,)=E p(Yi/a,)=EJ. Let

@.12) Vi=n"'3)p(XJja)—Es and W,=n"'3 p(Yi/a)—Es.
i=1 i=1
Then we have that

(2.13a) Var p(Xifa)— | f(@)lg@)—0Tdz  as n—oo,
(213b) EBln(Xje)~Edf—| f@lg@)—olds  as nco,
(2.13¢) Var pz(Y;/an)——»S g@)[f@)—ddz,  as n— oo, and

(2.13d) Elpz(Yllan)-Eéla—’S 9@)| f(x)—odfde, as n—ooco.

We will sketech the proof of (2.18a) and (2.13b), (2.13¢) and (2.13d) are
shown similarly. Note that Epl(Xl/an)zEé—m as n—oo. Next,

@14 EpiXja)=| | | kek@ s @y@-ag@—azdudads
= | ewta| | a—azf@ia]
: [S Pz —a,2) f(x)dx]wdzldzz
- {S k(z)[g @ —a.2)f (m)dx} l/Zalzfz .

But by Theorem 1A of Parzen [16] the integrand ng(x—a,,3) f(x)dx

converges as n— oo to S gi(x)f(x)dx, since by assumption Sg"(x) f(x)dx

< oo. Hence
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limnsup E pf(Xlla,.)ég g(x) f(x)d .

Since p,(x/a,)—g(x) as n— oo at every continuity point z of g, by
Fatou Lemma (Royden [20], p. 83) we have

(2.15) lim inf E pi(X,/a,) ;S d@)f @)z .

Hence from (2.14) and (2.15) it follows that Ep‘,’(Xllan)-—»S g4(x) f(x)dx

as n— oo, thus

Var pi(Xija)— | ¢@)f @)z — 2= f@)o(x)~oVds .

Now, since |p(x/a,)—E 3|3-—>|g(x)——a|“ as n— oo for each continuity point
x of g, by Fatou’s lemma, we have

(2.16) lim inf B |p(X;/a,)—E 5|3;S F(@)]9(x)—3Pdas .
On the other hand
2.17) E|p(Xi/a,)—E 3}
= S f(x) | S k(2)g(x—a.z)dz—E § ’ dz
= r@ | | | kek@kien)lg@—am—E dlig@—a—Ed)
< |g(x—a,z)—E 5|dxdz,dz2dz,

111 sebeke)s@o@—am - Elg@—am—Eo)
- |g(x—a,2;)—E 8|dwdz,dz,dz,

<{ [ { kekekten | F@lota—ae)—B dpda]

: {S f(®)|g(x—a,z)—E §/*|g(x—a,z)—E 3|“dx} " dadzdz,
< {g (2) {S F@)g@—a,2)—E 3|3dx} mdz}s .

But by Theorem 1A of Parzen [16], the integrand S f(x)|g(x—a.z)
—Eéladx converges to Sf (x)|g(x)—0dfdxr as m— oo since Sf(a:)lg(x—a,,,z)
_Edpdu<oo for all n=1, and since S f(x)|g(x—a,,z)-E5|adx§c{Sf(x)
-lg('x—a,,z)—al“dx—l—g f(x)IEé—al"dx} with C a constant and the second

term converges to 0. Hence,
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2.18) lim sup E |p(Xi/a,)—E érég F(@)lg(x)—opda .
Thus from (2.16) and (2.18) it follows that E|p/(Xi/a,)—E éf—

S f(x)|g(x)—dfdx as n—oo. Hence it follows that Elpl(X,/a,,)—EéF/

[{Var p(X,/a,)]*4/}—0 as m— oo, thus Liapounv’s condition of the
central limit theorem is satisfied, hence »n'*V, is asymptotically normal

with mean 0 and variance Sf(x)[g(x)—a]zdm. Similarly we can show
that E|p,(Yi/a,)—E of'/{[Var p(Y /a,)]"*¥n}—0 and thus n'*W, is asymp-
totically normal with mean 0 and variance Sg(x) [f(x)—&)dx. Hence

nYV,+W,) is asymptotically normal with mean 0 and variance o¢* as
given in (2.3), provided it is positive. Next, we need to show that

(2.19) n"*(3—V,—W,—E3)—0 in probability as n—oco and
(2.20) n¥Ed—38)—0 as n—oo.

Let us prove (2.19) first. Let d[I(u=x)]=I(u=zx+dzr)—I(u=x) and
and P [7,=1]1=dG(y,)=q;, say 1=1,---,m, j=1,2. Hence

(2.21) E@4—V,—W,—Edy
=a:*| | | | M@ w)/a @ —v)/a) E (dIF @)~ F @)
+ d[F, (@) — F(z)1} - E {d[G.() — GG (y) — G(wy)] -
But note that
(2.22) n!|E d[F () — F(2)ld[F() — F()]
=[BT {2 dI(X=2)-F@,)] |

j=1 1,1

M§

=3 2 E Ga—p) Eu—p)l

Il
nM: i

E|¢u—p)(Ea—p)|
< 4np1p2 =4ndF(x,)dF(x,) .
Similarly we can show that
1*|E d[Ga(¥)) — G(¥)]1AIG(y:) — G(¥2)]| £ 4nd G (y)dG(y:) -
Hence
(2.23) E(—V,—W,—Ed<nYE ),

which converges to 0 as n— oo provided na,— oo proving (2.19).
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(2.24) n2|Ed—38|=n""

| E fa6@) - | r@ic)|
<n'* sup|E (&)~ f(@)|SCi(nat)"” sup| /(@)

or n“zlEﬁ—alng(na,‘.) sup |g’(x)|—0 as n—oo, where C, and C; are

positive constants, proving (2.20) and part (iii).

LEMMA. 2.2.
(i) If ma,— o as n— oo, then
(2.25) E|4(f)—4(f)|—0 as n—oo.

(ii) If mal— oo as n— oo, then

(2.26) Var ﬁ(f)—»O as n—oo .

(ili) If k is a continuous function of bounded variation and if for
any r=0, gexp(—-rna,i)<oo, then

(2.27) A(f)—A(f)  with probability one as n— oo .

PrOOF. The proof of (i) and (ii) are given by Bhattacharayya and
Roussas [3], Theorems 2.2 and 2.3 respectively. To prove (iii) note that

|E 4(f)—4(f)|—0 as n— oo, since 3} exp {—ynai}<oco implies that na,

— o0, thus it suffices to show that |4(f)—E 4(f)|—0 with probability
one as n— oo,

(2.28) () —E d()i=| | F@)o— E Fops
=|| f@xo—{ ® f@)yas

+ | E fﬂ(x)dx—g (E f(w))zdx| .

Now, it follows from the proof of Theorem 2.2 of Bhattacharayya and
Roussas [3] that

|S E fz(a;)dx—s (E f(x))zdxl—»O as n— oo .
Also note that
(2.29) | S fz(w)dx—g (E f(x))del
<sup|f(@)—E f(@)|{| @do+ | E Flo)da]
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=2sup |/(z)—E f()] .

since S f (ac)dw=s E f (x)dex=1. Thus the upper bound of (2.28) converges
to 0 with probability one as n— oo as shown in (2.10).

With the aid of the above two lemmas we now state and prove
the main result of this section.

THEOREM 2.1.

(i) If na,—oo, as n—oo and if sz(w)g(w)dx<oo or Sf(x)gz(x)dw<
oo then,

A

(2.30) A—2 in probability as n— oo .
(ii) If k is a continuous function of bounded variation and if for any

r>0, iexp(—ma:)<oo then
n=1

(2.31) i with probability one as n— oo .

(iii) If nai— oo and na,—0 as n— oo, if f and g have bounded second
derivative, if S F@)g(x)de< oo, and Sf(w)g‘(:v)dm<oo, and if Suzk(u)du

< oo, then n‘/z(i—l) 18 asymptotically normal with mean 0 and variance
a* given by

(2.5 7= 4G+ +A@F
where ¢o= f@)o@)—oFds and ¢u= 9(@)[f @) —olda.

ProoOF. (i) follows immediately from (i) of Lemma 2.1 and (i)
of Lemma 2.2. (ii) again follows from (ii) of Lemma 2.1 and (iii) of
Lemma 2.2. It remains to prove (iii). Note that

(2.33)  2—21=2(0—3)/(4(f)+ 4(g))—20[(4(f) — A(£))+(d(g) — A(g))]
[(A(f)+ 4(9)) (4(f)+ 4(9))
=U,—U,, say.
First, it will be established that »!2U,, is asymptotically normal
with mean 0 and variance ¢° given by (2.82). But this follows directly

from Doob’s Theorem in conjunction with parts (iii) of Lemma 2.1 and
(i) of Lemma 2.2. Next, let us show that n'2U,,—0 in probability as

n—oo. To this end it suffices to show that n“z(ﬁ(f)——d( f)—0 in prob-
ability and that n'%(d(g)— 4(g))—0 in probability, as n—oo. Note that
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it follows from the proof of Theorem 2.3 of Bhattacharayya and Roussas
[3] and Lemma 2.2 above that

(2.34) (na,)* Var 2(f)—><g kZ(u)alu)2 as n—oo .
Thus » Var 4(f)—0 since nal— oo, n—oo. Next, note that,
@.35) E 4 f)=S E f@)de
=(na)* | £ 33 Eke—X)/a ki@ X,)a,ldz
=(na2)™ | E Kl(a—X)/a,ldx
+az((n—1)n) | {E HE—X)/a])ds
= (na,)"" S K (u)du+(n—1)/n) S H k(u)f(x—a,,u)du} d

where the last equality is obtained by changing variables (x—y)/a,=u
and observing that gf(ac—a,,u)dle. Thus,

(2.36) |E 4(f)—4(/)]
_ '(na,,)“ S l(w)du+[(n—1)/n] S [S e(u) f(x—a,,u)du]zdx
—S fz(x)dx’
<na) | Kdu+ion—Dpml| | [ | o f@—amdu] o
—S fZ(x)dx} ! S fia)dz
<(na) | Rdu+(n—1yn] | ||| ke fe—amdn]
— f@)|dw+ d(F)n

where the integral in the middle term in the above last upper bound
is less than or equal to

S i S k(w) f(x—a,u)du— f (x)l {S F(u) f(x— a,uw)du+ f(x)}dx
=sup l S Lf (x—anu)—f(x)]k(u)du‘

. {S S k(u)f(x—a,,u)dxdu+g f (a:)dx}
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<ai sup /(@) | wk(widu
Hence we have
w B d(f) — 4(£)|= (na)* | Ww)du+ (nal) *[(n—1)/m] sup| ')
| wkdu+n2a(5)

which converges to 0 as n— oo since na:— oo, nai—0, and a,—0, as

n—oo. Similarly it ecan be shown that n2|E 4(G)—4(G)|—0 as n— co.
This completes the proof of (iii) and the theorem.

Consider the hypothesis testing problem H,: F=G. If F and G
admit square integrable p.d.f.’s f and g, then a nonparametric test ¢,

based on 1 may be proposed by rejecting H, for small values of A
Thus if the conditions of (iii) of Theorem 2.3 are satisfied, then (na,)"?

-(2—2)/0 is asymptotically standard normal and hence we can perform
approximate testing using the normal variate. It is interesting to com-
pare this test against other nonparametric tests such as the Chernoff-
Savage statistics, see Chernoff and Savage [5]. The exact null and

nonnull distribution of 1, though perhaps difficult to find, is an inter-
esting open question. Note that

s'=4{| F@ o)~ drda+ | ) [ 0)—dda] [(d(F)+ dia)

is a consistent estimate for o, thus an approximate (1—a)1009% con-
fidence interval of 1 is given by ﬁ-_i_-z,,,2 a/(na,)"?, with z, denoting the
standard normal variate. Robustness of the ¢,-test against dependence
in or between samples need to be explored. Ahmad and Lin [1] studied
the large sample theory of the kernel estimate of p.d.f.’s when the
observations are strong mixing in the sense of Rosenblatt [19], or uni-
formly mixing, see Billingsley [4] p. 168, or mixing in the sense of
Philipp [17]. The results of the paper by Ahmad and Lin [1] should

prove helpful in establishing large sample properties of 1 when each
sample is taken from a stationary mixing processes. It is also inter-

esting to study the properties of 1 when {(X,, Y,)} is a random sample
from a bivariate d.f. H having marginals F' and G, respectively.

3. Certain one-sample cases

In this section we shall discuss the case when g is either com-
pletely known, i.e. g(x)=fy(x), for all x where f; is a known p.d.f., or



NONPARAMETRIC ESTIMATION OF AN AFFINITY MEASURE 235

is such that g(z)=/f(—x) for all z. The former case is applied to the
one-sample hypothesis testing problem H,: F=F, a known absolutely
continuous d.f. while the latter is applied to testing Hg*:F is sym-
metric about 0. Let X,,-.., X, denote a random sample from F.

(A) One-sample hypothesis testing. In this case an estimate of 2
may be given by:

(3.1) h=2nt 31 FUXDIAH+Cr)

where 2(f) is as given by (1.8), and CO=S fi(x)dx a known constant.

Using arguments similar to those of Theorem 2.1 we can prove the
following theorem.

THEOREM 3.1.
(i) If ma,—oo, as n—oo, and if Sf,f(a:)f(x)dx<oo, then
3.2) ﬁo—->/1.,=2 S f@)flx)dx/(4(f)+Cy) n probability as n— oo .

(ii) If k is a right continuous function of bounded variation and if

for any >0, 3 exp (—rna;)< co, then
n=1
(3.3) io—a Ay with probability one as n— oo .

(i) If S fi@)fx)dr<oco and if mai—oo, them nY¥A—2) is asymp-

totically normal with mean 0 and variances o givem by
(3.4 si=4 | F@) i) - AT daf(A)+C,
where a°=S f(x)fo(x)dzx.

(B) Testing for symmetry. In this case 2 may be estimated by
(3.5) H=8*IA(f)
where ﬁ( f) is as given in (1.8) and

3* = (n'a,)! ; E k(X +X,)/a.] .

The following lemma is needed in the proof of Theorem 3.2.
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LEMMA 3.1.
(i) If na,—oo, as n—oo and if S @) f(—x)dz< oo, then
(3.6) E|0*—8*|—0 as n—oo,
where a*:S f@)f(—z)dx.

(ii) If k is a continuous function of bounded variation and if for any
r>0, ieXp(—rna:)<oo, then
n=1

(8.7 3* 3% with probability one as n— oo .

(ili) If na,— oo and nai—0 as n— oo, if f has a bounded second de-
rivative, if | f@f(—~a)a<oo, and if | wk(wdu<oo, then miH(pe—a%)

18 asymptotically mormal with mean 0 and variance a*Z:S f(@)[f(—=x)
—o*da/ £(f).
PROOF. (i) First we show that E *—3* as n—oo. But
(3.8) E 0*=(na,)™ E k(2X,/a,)+[(n—1)/nla;' E k[(X,+ X;)/a.]
=(na,)™ | k2uja,) fwdu
+I(n—Dymla* | { kG +v)ja)fw)f@)dudo
=(na,) | k() F(a0/2)d
+ln—1)/m] | | k) f(wa, — ) fo)dudo
and, as
(na,)~! S k(v)f(a,0/2)dv—0  as n— oo,
it suffices to show that

S Sk(w)f(wa,,—v)f(v)dwdv—»d*:S f(—=v)f(w)dv , as m—oo .

Setting 0n(v)=S k(w)f(wa,—v)dw we obtain from Parzen [16], Theorem
1A that, 6,(v)— f(—v), as n—oo. Thus, to apply the extended Lebesgue
dominated convergence theorem to conclude that Sﬁ,.('v) f (v)dv—»S f(—v)

-f(v)dv, as n— oo one need only to prove that there exists a function
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g(v) such that |6,(v)f(v)|<g(v) and Sg(v)dv<oo. However, as [0,(v)|=
Sk(w) Sf(wa,—v)dw=<sup f(x), we have only to set g(v)=sup f(x)f(v).
Next we show that E d*—3** as n—oo. Note that

(39  Bi=ma)? 205 S EMXAX,)a X+ X))

In the above right-hand side the contribution from terms with 1, j, p,
and ¢ all different is in the order of

(3.10) (n'az)"'m(n—1)(n—2)(n—3){E k[(X,+ X;)/a.]}* ,

which converges to }S flx)f (—x)dx}zza*z. Next, the total contribution

from all the remaining terms is at most B(n‘a,) '[n*—n(n—1)(n—2)(n
—3)], where B>0 is a constant independent of =, which converges to
0 as m—oo. In order to see this note that since k(u) is bounded, then

gkﬁ(u)du<oo, and S SfYx)dx < oo, by assumption,
E k[(X,+ Xo)/a,)k[(X + X;)a,] = B, E k[(X,+ X))/a.] ,

and
(3.11) a;' E k[(X,+ X)) /a,]= S S k(w)f(a,w—v)f(v)dwdv

(] r@as)"({ wadn) <8,

where B, is a positive constant. Thus (i) is proved.
(ii) It follows from (i) that |E5*—8*|—+0 as m— oo, thus it suffices
to show that [5*-—E3*|—>0 with probabilty one as n—oco. But
(3.12) |3*—E §*| = H f(—x)dF,,(x)—S E f(—x)dF(x)l

<sup| f(@&)—E f@)] + || | arhie—wfa)f@)iF, @y

- | | et - wa)r@aF @iy |
=J1n+J2n ’ Sa'y .

Now, J,,—0 with probability one as n—oo as in (2.11), while upon
integration by parts, J,,<(ua;')sup|F,(z)—F(x)|, where x is the total
variation of k(). Thus for any >0

(3.13) P [J,,2e]<P [sup |F,(x)— F(x)|=can/u] <2 exp (—e'nal/ss) .
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Thus by a result of Dvoretzky, Kiefer, and Wolfowitz [6], since for
any r>0, iexp(—mai)<oo, we have for any >0, iP[Jzngs]<oo,

thus by the Borel-Cantelli lemma we have .J;,,—0 with probability one

as n—oo. Hence IS*—E 5*|——>0 with probability one as n— oo and (ii)
is proved.

(ili) Let Il(x/a,)=0a;'E{k[(X,+X,)/a,]|X,=2x}. Then El,(X,/a,.)=E3*
which converges to d* as n—o. Using an argument similar to that
of (i) it can be shown that

(3.14) Var ll(Xl/a,,,)—>S f@)[f(—x)—o*)dx , as n—oo,
and
(3.15)  ELX/ja)-BEoP—| f@)|f(-)—o*tds  as noco,

since the right-hand sides of (3.14) and (3.15) are finite by assumption.
It follows that the Layaponouff’s conditions of the central limit theorem
are satisfied, and hence n‘“[n‘1 i L(X:/a,)—E 6*} is asymptotically nor-
mal with mean 0 and variancet;l*z. As in the proof of Lemma 2.1 it
can be shown that n‘/“’[a*—n“él,(Xi/a,,)} converges to zero in prob-

ability as n—oo, and that if f has a bounded second derivative we

have n'E *—3%)—0 as n— oo provided that nma‘—0 as n—oo. This
completes the proof of (iii) and the lemma.

With the aid of Lemma 3.1 in conjunction with Lemma 2.2 we
arrive at the following theorem.

THEOREM 3.2.

(i) If ma,— o0, as n—oo and if Sf"l(x)f(—w)dx<oo, then

(3.16) *2x in probability as n— oo .

(ii) If k is right continuous function of bounded variation, and if for
any >0, i exp (—rnay)<oo, then

3.17) pLL with probability one as m— oo .

(iii) If mai— oo, and nai—0 as n— oo, tf f has a bounded second de-
rivative, if Sf“(w)f(—x)dx<oo, and if Suzk(u)du<oo, then nYH(X*— %)
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18 asymptotically mormal with mean 0 and variance o*® given by

(3.18) o= S F@)[f (—x)—0*Tdz/£(f) .
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