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Summary

Given a sequence of ¢-mixing random variables not necessarily
stationary, a Chernoff-Savage theorem for two-sample linear rank
statistics is proved using the Pyke-Shorack [5] approach based on weak
convergence properties of empirical processes in an extended metric.
This result is a generalization of Fears and Mehra [4] in that the
stationarity is not required and that the condition imposed on the
mixing numbers is substantially relaxed. A similar result is shown to
hold for strong mixing sequences under slightly stronger conditions on
the mixing numbers.

1. Introduction

Since the appearance of the paper by Chernoff and Savage [2] an
ever increasing effort is devoted to study the problem of asymptotic
normality of two-sample linear rank statistics. Pyke and Shorack [5],
using the concept of weak convergence of certain empirical processes,
give an alternative proof of the Chernoff-Savage theorem. Their proof
shows that the theorem holds even for a larger class of score func-
tions than initially established. Motivated by interest in the robust-
ness of the two-sample linear rank statistics, Fears and Mehra [4],
using the approach of Pyke and Shorack, establish the asymptotic
normality of linear rank statistics for strictly stationary ¢-mixing se-
quences of random variables satisfying certain regularity conditions.

The purpose of the present investigation is two-fold. For ¢-mix-
ing sequences we waive the stationarity assumption and considerably
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weaken the condition imposed by Fears and Mehra [4] on the mixing
numbers. Secondly, we establish, under slightly stronger assumptions
on the mixing numbers, analogous results for strong mixing sequences
of random variables.

Let {X,}n-: be a sequence of random variables and let &, ., de-
note the o-field generated by {X,, X,..1;, -+, X,}, 1=m<n<oc. Fur-
ther, let Ae%,, and Be &,,,.. Then {X,} is said to be ¢-mixing or
uniformly mixing if

T8 A5 S, B B P Bt

where ¢(n) is nonincreasing such that lim ¢(n)=0. The sequence {X,}

is said to be a-mixing or strongly mixing if

sup sup sup |P(AB)—P (A)P (B)|=a(n),
m=21 AeFi,m B¢ Fmin, o

where a(n) is nonincreasing such that lim a(r)=0. Note that uniform

n—oo

mixing implies strong mixing, but not conversely.

In this paper we consider two independent sequences of random
variables {X,}2-, and {Y,}7., with common marginals F' and G, respec-
tively. Assume that

(i) {X.,} and {Y,} have absolutely continuous finite dimensional
distributions with respect to Lebesgue measure, and that either

(ii) both sequences are uniformly mixing, or

(i)’ both sequences are strongly mixing.

For ease of comparison between our result for the case of unlform
mixing sequences and that of Fears and Mehra [4] we shall try to be
consistent with their presentation and closely follow their notations.
Note that the result of Fears and Mehra is obtained assuming strict

stationarity for both sequences and i np(n)]"?< oo while we waive
n=1

the stationarity assumption and only assume ¢(n)=0(n"?).

Let {X,} and {Y,} be two independent sequences of random vari-
ables satisfying Conditions (i) and (ii) above. The two-sample linear
rank statistics is defined by

N
(1.1) TN:m_Ik}:'i Cvilye s
where Ry, denotes the number of X’s among X, --., X,, which do not
exceed the kth order statistic of the combined sample X, .-+, X,., Y,

-, Y, and cy;, 1=<k<N, are a given set of constants with N=m+mn.
As in Pyke and Shorack [5], Tv has another representation that em-
ploys certain two-sample empirical processes, viz.,



CHERNOFF-SAVAGE THEOREM FOR DEPENDENT SEQUENCES 213

(1.2) T,= S: F.Hi'dyy

where F,(G,) denotes the empirical distribution function (d.f.) of X,
con, XYy, -0, Y, Hy=23F,+(1—2,)G,, with y=m/N and Hy'(t)=
inf {x: Hy(x)=t}, and vy is the signed measure which assigns measure
¢y at the point k/N, k=1, ---, N. Define H,=1F+(1—2)G with 1=
lim 2y where F(G) is the marginal d.f. of X(Y). Pyke and Shorack

N-ooo

[6] prove the asymptotic normality of
(L3) Tj = N'A(Ty— )= L(®don(t),

where yN=S:FH “'dyy and Ly(t)=[F,.Hy;'(t)—FH"'({)] with H=H, , by

establishing the weak convergence of Ly(t) to a well defined Gaussian

process.
Adopting the approach of Pyke and Shorack, Fears and Mehra [4]
prove a corresponding result where {X,} and {Y,} are strictly station-

ary uniform mixing sequences satisfying the condition i‘. n*p(n)]*< oo.
n=1

The method of proof developed by Pyke and Shorack [5] consists of
three main parts. First, the weak convergence is proved for the one-
sample process

(1.4) mVF,F(t)—t]/a(t) ,

where q(t)=K[t(1—t)]"*?, 0<t<1 and some 4, 0<3<1/2, then the weak
convergence of L,(t) is established and, finally, the asymptotic distri-
bution of Tj¥ is obtained. This is the path we follow to present our
results, being brief whenever possible.

2. Two-sample linear rank statistics for uniform mixing processes

The Chernoff-Savage theorem for the two-sample linear rank statis-
ties T¥ will be established in this section for uniform mixing sequences.
The proof proceeds in the following three stages:

(a) Ome sample empirical process.

Let U,@)=m"F,F-'(t)—t], 0=t<1, and V,(t)=U.L(t)/q(t). The
following main result of this subsection establishes the weak conver-
gence of V,(t) to a Gaussian process where {X,} is a uniform mixing
sequence with ¢(m)=0(m™%), not necessarily stationary. Because of
the substantial weakening of assumptions on the sequence, a new
proof is thus required. Though the proof is slightly long, its impor-
tant contribution should compensate it.
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THEOREM 2.1. Let {X,} be a uniform mixing sequence with $(m)
=0(m™). Then V,(t) converges weakly to a Gaussian process V(t)=
U(t)/q(t) where EU(t)=0 and, for 0<s<t<1,

2.1) E U(s)U(t)y=lim E U,(s)U,(t)=L(s, t) , say
provided that the right-hand side of (2.1) exists.

Proor. First we shall show that U,(t) converges weakly to U(t)
and then use this result to establish that V,(f) converges weakly to
V(t). The proof of the first assertion is an extension of a result of
Yoshihara [8] where strict stationarity is assumed; so we shall only
mention the necessary changes in his proof. That the finite dimen-
sional distributions are asymptotically normal follows from Corollary 1

(f) of Withers [7] since ¢(m)=O0(m~?) implies that éi%(i)élfj, j=1,

«--,m. To establish the tightness we need to show that, for all 0<s
<t<1 and some y>0,

(2.2) E[U.(#)— Un()'SC (¢ —8)'*

where C, is a constant depending on y. Let

(2.3) 7;=Is< F(X))St)—(t—s), i=1, .- m.
Then U,(t)— Un(s)=m"" i 7, and

(2.4 E[Un®)— Une)'=m~E (57"

In what follows all generic constants will be denoted by K. Following
Yoshihara [8] we define I=l,=[m’] for 0<i<1 and p=p,=[m/2]],

l

where [x] denotes the integral part of x. Let V=3, Vi=
i=1

l m

jgl 77(21,”_)“_1, ’b=0, 1, ey, p_l and Vp: E 7]1- Then

J=@pDi+j
@9 B(%n) <E(Z Vg V)

{B(E ) +r(Ev)]

ll/\

Note that

M‘;‘

(2.6) E(i >_E<E V> +4EV<2 m) +6EV;( 0V)2

\©

AR V;(igo Vt>+E v

where
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p—1 4 »-1
@7 E(SV) 45 S BV ViVl

p-1 p—1 p—i—1
<4l {2 EIVi4+3 3 (EVVi [ +HEV.V2 I +EVVE,D

1 p—i-1 p—i—

+i20 Z Z (IE V Vt+j Vi+J+kl+IE V Vi+f Vi+j+kl
HE V.V Visae)
+5 5 EViVeVisVessmal] -

The above expression will be further bounded, term by term as fol-
lows. Checking the proof of Lemma 1 of Billingsley [1], p. 170, one
can show that the same result holds without the assumption of sta-
tionarity. Thus it follows from this lemma and the assumption ¢(m)
=0(m™%) that, for m sufficiently large,

(2.82) IEVRV, ,ISKIE VIE VL OV

(2.8b) |EV, Vi, |SKIVA(E VB V)4

(2.8¢) [EVIVi,ISKI(EVIEVY ) +EVIEVY,
(2.8d) EVIVi; Vi SKIT(E VIEVE, EVE )7
(2.8e) IEV. Vi Vi SKUV(EVIE VY, EVE o)
(2.81) IEV. V., Vil SKUEVIEVE E VA )Y
and

(2.8g) |E ViVi+j Vi+j+kVi+j+k+u|§Kl_2(E VIEVYL,EVL B Vz+j+k+u)

The above upper bounds are functions of EV? and EV{. We shall
obtain upper bounds only for EV? and E V{; the same arguments ap-
ply to give bounds similar to (2.10) and (2.11) below for E V} and E V},
1=1,2, ..., p—1. Now

]
(2-9) E Vo4§4! E {E(l)"" Z(m'l"Z(a)}lE 7]i7]i+j7li+j+k77i+j+k+u[

where >4, o, and g, are, respectively, the summations over all
indices ¢, 7, k, u=1, j4+k+u<m—1 such that j=max (k, w), k=max (7,
u) and w=max (7, k). Similar to the proof of Lemma 1 of Yoshihara
[8], where the assumptions of common marginal F' and uniform mixing
for {X,} rather than stationarity are crucial, we obtain

(2.10) EVisK(—9ll 3 60) | +3 (G+1760)
<K(t—s)(llogl), '
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since, for m sufficiently large, jé $"4(7)=0(log 1) and jzl} (7+1)%(5)=0Q).
=1 =1

Similarly, it can be shown that

(2.11) EV:<Klt—s).

Note that, for m sufficiently large, there exists an ¢, 0<e<1, such
that (log m)’)=<m*. Now collecting terms from (2.8) to (2.11), we obtain

(2.12) E (”i Vi>4§K[m2(t—s)2+m”’(t—s)] ,
i=0
for some y>0. Next, note that
(2.132) eV, (5vi)= 2 (Ev)
' NS —j=2pl+1771 = ¢
<K 3 ¢((2p—1)l)E\’§Vf
j=2pi+1 i=o
p-1 4
<KE" (S V,-) ,
i=0
-1 2 p—-1 4
(2.13b) E V;(z Vi> <K(@-'+1)E" <;3 Vi> B Vs
=0 =1

p—1 4 1/2
gK[E(z V¢> E V;] :
i1=0
and
p-1 p—1 4 1/4
(2.13¢) E V;(z V,.> < K¢ 2p+ 1)[}3 (z, Vi> B V;] .
i=0 i=0
Hence, for sufficiently large m, there exists a y>0 such that
(2.14a) E<”§ V,.>‘§K[m2(t—s)2+mlﬂ(t-s)] .
=0

Similarly, it ean be shown that, there exists a y>0 such that, for m
sufficiently large,

(2.14D) E <”>i; V;)‘,s_K[mZ(t—s)2+ m*i(t—s)] .

Therefore (2.2) follows. The rest of the proof of the tightness coin-
cides with that of Yoshihara [8], and hence, is omitted. To complete
the proof of the theorem it remains to show that, given >0, there
exist a #¢€(0,1/2) and an integer M =M(e, ¢, 3, K) such that for all m
=M

(2.15) P [sup|Va()|zelse -
Sts6

Let ¢,(X,)=IF(X,)<t)—t, j=1,---,m, 0=t<1. The balance of the
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proof is analogous to Lemma 2.1 6f Fears and Mehra [4]. Let 0<s,<
8,< - <85,=0<1/2 be R distinct points with s,=7§/R, r=1,2, ---, R.
For any pair (4, k) such that 1<j<k=<R define

(2.16)  F=I[9.(X/a(sc- )] —lg:,(XDa(s;-0],  i=1, -+, m.

Set {;=(¥/ {2[jqu-2(s"‘)]l/2}’ 1=1, ---, m. Then it follows from (2.7)
<rs
and (2.8) of Fears and Mehra [4], where the stationarity is not essen-
tial, that E{!<6/R and E[g.,,‘(Xi)/tI(sk-x)]zé2(0/R)jZ a7 X8r-) 1=1, -0,
<rzk

m. Next, in the proof of the tightness of U,(t) we have demonstrated
that the stationarity is unessential, thus Lemma 2 of Yoshihara [8] be-
comes: If {Z} is a sequence of uniform mixing random variables
such that E Z,=0, E Z}<r, E|Z,|<Cr for some constant C>0, and |Z;|

<1, then there exists a number 7, 0<y<1, such that E(i Zi>4§
i=1

K(m*'t+m*?) for some constant K >0. We now apply this result to
the sequence {»}. Note that, for i=1, ..., m, E{,=0, E{!<6/R, and
that, from (2.9) and (2.10) of Fears and Mehra [4], |{;|<1. It remains
to show that there exists a positive constant C such that E|{|=C4/R
for ¢=1, --., m. For any pair (7, k), we have

gsk(Xi) _ gsj(Xi)

a(si-r)  a(sy-0)

The second factor in the RHS of (2.17) is majorized by

(2.18)  q7(8-1) E g, (X)) —9:,(XD) |+ E g, (X g7 (55-0) — a7 (8¢-1)]
=2¢7'(sk-1) (8¢ —8;) +23,[q7'(8;-1) — @7 (8¢-1)]

_ Sy _ 8 » .
—z[q(sk-l) Q(S:—1)]+4s’[q (85-)—q 7 (se-1)] -

@171 Elas{el 3 ¢ 601" E

The above inequality follows from the fact that E|[W—-EW|Z2E|W|
for any random variable W with E|W|<co. To obtain a suitable
bound for the RHS of (2.18), we recall that ¢(t)=K[t(1—1t)]"*~° for all
t€0,1], 6€(0,1/2), and K>0. Thus 0<q(t)<K for any te(0,1) and
the RHS of (2.18) is then majorized by

2K il s 4Ks; | _ _
2.19 k _ J 7 1 )= 1 1.
( ) q(S-1) [Q(Sk-1) q(s;-1) ] + q(s;-1) [977(85-1) =7 (8¢-0)]

Now, from (2.4) and (2.6) of Fears and Mehra [4], and the inequality

¥ s,/ (s,5)|<2 for all 2<r<R, our (2.19) is bounded above by

12K(8/R)[ qu‘z(s,_l)]. Therefore, with C=6K[12kq'2(s,_1)]‘/2, we have
j<rs <rs

(2.20) E|LI=CO/R) .
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Hence, for m sufficiently large, there exists a number y, 0<y<1, such
that

(2.21) E Un(se) _ Un(s)) |* <K[ > q—2(37_1)1[< )"l‘ m- ]
q(8i-)  q(8;-1) j<rsk R
where K, here and in what follows, denotes generic constants not

necessarily the same. If 0<e<1 is a fixed real number such that
(¢/m)<(0/R), then the RHS of (2.21) is majorized by

(2.22) K [j <Z§ k(l'z(sr_l)]z(1+e”’) 6/R)" .
Similarly, we also have
2.23) E| ff;(sk) SK[ 3 g7l (L+e)O/R)™ .

Thus it follows from Theorem 12.2 of Billingsley [1] with & =U,L(s)/
48, &:=[Un(s;10/a(s)1—[Un(s;)/a(s;-1)] for j=2, .-, R—1, that

m(sJ+l)

(2.24) P [max o

ISjsRE

]<(K/s)‘[ 3] )+ O/R)

where 0<y<1. Given >0 and >0, if m is sufficiently large it fol-
lows that an R can be chosen so that (e/4m)¥*” < (0/R)< (e/2m)¥*7
and (KR’)'<e/4. Thus for this choice of R we have for some K,
0< K< oo, depending on ¢ and g,

U gé-] <P {2 max

(2.25) P[ sup | =K max

9/RsSt<0

St ag]oe{ 03]

g(K/s‘)(l-i—s")[So q‘z(t)dt] +Ke 5P,

since E [U.(s)/q(s))*’<Ks?. By choosing 6 sufficiently small, the last
upper bound of (2.25) can be made less than ¢/m for m sufficiently
large. But, as in (2.19) of Fears and Mehra [4], we have

Ua(t) 2_5_}3_5_,
qt) | — 217 2

Now (2.15) follows from (2.25) and (2.26). The rest of the proof pro-
ceeds exactly as in Theorem 2.1 of Fears and Mehra [4] with obvious
modifications.

(2.26) P[ sup
0st<6/R

(b) Weak convergence of Ly(t)

The proof of Theorem 3.1 of Fears and Mehra [4] may be adopted
verbatim to our case after replacing their Theorem 2.1 by our Theorem
2.1 and their Lemma 2.1 by our (2.15). Thus Theorem 3.1 of Fears



CHERNOFF-SAVAGE THEOREM FOR DEPENDENT SEQUENCES 219

and Mehra [4] remains valid without the stationarity assumption and
with ¢(m)=0(m™?) and ¢(n)=0(n"?.

(c) Chernoff-Savage Theorem
Let ;z=gl J(t)dFH™'(t) where J is a nonconstant function of bounded
0

variation on (s, 1—e) for all ¢, 0<e<1/2, that induces the Lebesgue-
Stieltjes measure v on (0, 1) and satisfies
(i) [J@®)|=K[t(1—1t)]"*r for some K>0 and 1/2>7>0,

() N-231|C¥—7{min [§/N, 1—1/N}|<d,, with oy=o(1).
j=1

Assume that yy=y,+O(N*%) and that FH' is differentiable a.e. |v| for
sufficiently large N. Let

L=(1—2,){2;"", U(FIL;I) —(1—=2)""a, Vo(GHz;l)} ,

where b, (a,) is the a.c. (wrt Lebesgue measure) derivative of FH,'
(GH;'). Hence we arrive at the following result.

THEOREM 2.2. Assume that {X,} and {Y,} are two independent and
uniform mizing sequences of random variables having absolutely contin-
uous finite dimensional distributions with ¢(m)=0(m™?) and ¢(n)=
O(n7%. Then, under the above conditions, NY¥(Ty—p) is asymptotically

normally distributed with mean 0 and variance 02=S:S:cov (L(u), L(v))
-dy(u)dv(v).

3. Two-sample linear rank statistics for strong mixing sequences

It is clear from the development of Section 2 that a result analo-
gous to Theorem 2.2 may be established for strong mixing (but not
necessarily stationary) sequences. It should be noted here that the
arguments of Fears and Mehra [4] can be adopted to show the weak
convergence result for a strictly stationary strong mixing sequence

with mixing number a(m) satisfying i‘,mi[a(m)]‘/z"<oo for some re¢
m=1

(0,1/2). In this section we will again waive the stationarity assump-
tion and assume a(m)=0(m~%*"%) for some 3>0. The following theorem
obtains the weak convergence of V,, to V for a strong mixing sequence
of random variables, from which the asymptotic normality of two-
sample linear rank statistics is established. This is a generalization of
a result of Yoshihara [9].

THEOREM 3.1. Let {X,} be a strong mixing sequence such that
a(m)=0(m=*"%) for some 3>0. Then V, converges weakly to a Gaussian
process V, as defined in Theorem 2.1.
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PrOOF. As in Theorem 2.1, first we show that U,(t) converges to
Ut), 0=t<1, and then show that, given ¢>0, there exists a 4¢ (0, 1/2)
and an integer M =M(g, a, 3, K) such that, for all m=M,

(3.1) P( &gg,le(t)l.z_e)ée .

Now, that U,(t) is asymptotically normal follows from Corollary 1(f)
of Withers [7] since 3. i%a(i)=3] 280(i~*~)< 3 #0(i-)<Kj for some K
i=1 i=1 i=1

>0. To establish the tightness we follow the argument of Yoshihara
[9]. Recall the definition of 7, in (2.8) and note that, for all 0<s<t
=1,

4

(3.2) E |Un(t)— Un(s)|'=m"*E l ,‘Z K

=24m* 12=1 2% E 9imis mer g eatit sriul »

where 3°* denotes the summation over all combinations of indices such
that 1=<1, 7, k, u<m and j+k+u<m—1i. Using Lemma 1 of Davydov
[8] without the stationarity assumption we have, for some r>1,

(3-3) |E 77t(m+j"7i+j+k77¢+/+k+u)|§lE 7)¢7)¢+1|
éGa(j)l—l/r(E lﬂilr)llr
=6a(s) """ (t—s)"".

Similarly we have

(3-4) IE (77i7]t+j7]i+j+k)ﬂj+j+k+u|éIE 77i+/+k77i+j+k+ul
<6a(u)-Yr(t—s)r.

Finally, with repeated applications of Lemma 1 of Davydov [3], we
have

(3-5) |E (7h”h+j) (7h+1+k7h+j+k+u)|
ZIE 904 1B 9ep j4x0it g1 04ul +60(K) V(B |9imes | YT
<36a(7)Sa(u)*(t —8)**+6a(k) ~Vr(t—s8)Vr .

Collecting terms from (3.3), (3.4), and (3.5), it follows that
(8.6) E|Un(®)— Un(s)|*
éKm'2{3 i S a(k)l—l/r(t_s)l/r_l_i S a(j)ma(u)m(t—s)m} ’
i=1 1=1
where 31 denotes the summation over all indices j, usk, j+k+u=

m—1, and K, here and hereafter, denotes a generic constant (not
necessarily the same). But for all m sufficiently large,
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37) m™ 3350 a(i) S mot 3 (k1) alk)
i=1 =1
=Km™,

where p=(5/2+08)(1—1/r)—2 with r>(2+4)/8 for some 34>0, as in
Lemma 2 of Yoshihara [9]. Also note that, for all m sufficiently large,

(3.8) m?3S S () eu)s s [z, a(jw*}’gzk o,
i=1 k=1 j,usk 1

i=
since a(m)=0(m~%*"?), for some 3>0. Therefore, we have
(3.9) E|U.(¢)— Un(s)|'=K[m~*(t—8)""+(t—9)*],

which agrees with (16) of Yoshihara [9] with his y=1—1/r. Thus the
tightness is proved. Next, defining (¥ as in (2.16) and proceeding as
in Theorem 2.1 with necessary modifications, it is not difficult to see
that (8.1) is satisfied. The balance of the proof remains unaffected.
Theorem 3.1 is now proved.

Note that the argument of Fears and Mehra [4] applies to establish
the weak convergence of the L, process. Thus the following Chernoft-
Savage theorem is obtained for strong mixing sequences. The detail
proof is omitted.

THEOREM 3.2. Assume that {X,} and {Y,} are independent and
strong mixing sequences of random variables having absolutely continuous
finite dimensional distributions with a(m)=0(m=**"%) and a(n)=0(n"%*"?)
for some 3>0. Then the conclusion of Theorem 2.2 holds.
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