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1. Introduction

Let X, X;,+-+, X,,--+ be a sequence of independent random vari-
ables from a normal distribution with mean g and variance ¢°. For

each n, define )_(,,=n“‘;fn_‘,X,- and Snz(n——l)“i(Xi—X',,)z. Then the
loss incurred in estimating g by X,, when fixed sample size is n, is
1.1) L.=a(X,— p)+c*n

where a>0 and cost ¢*>0. The risk for (1.1) is given by

1.2) v,,(c):%%z—}-c*n .

If ¢* is known, it turns out the integer value n* which minimizes (1.2)
is given by

1.3) n*=inf {nglng-‘i} )
c

where c¢=c*/a If ¢° is unknown, we estimate ¢* by estimator S,, based
on X;,--+, X,, that is,

(1.4) N,=inf {ngm{n2_2_—‘§l} ,

where m is a positive constant integer. Then if N,=n, we estimate

¢ by X,. The sequential procedure given by (1.4) is due to Robbins
[6]. But we note that Ray [4] and Starr [6] believed the expected
value of N, defined by (1.4) becomes smaller than n* in application.
So Starr [6] modified (1.4) as follows:

1.5) N,=inf {ngmngk—is"—} ,
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where k, is decreasing sequence and converges to one. Furthermore
he investigated in some detail for the risk efficiency from asymptotic
viewpoints as ¢—0. However he does not give how to choose k,.
After a time, Starr and Woodroofe [7], in fact, proved that E Sy <d’
So we propose to use the unbiased estimator of the standard deviation
o instead of one of ¢°. That is, in (1.5) we define

e T (52 r(3):

This sequence k, will be shown to be decreasing and be one as n— oo,
later. On the other hand, Simons [8] considered the reverse stopping
variable M, to evaluate E N;, that is,

1.7 M,=sup {ngmln%%sn}
—m—1 it w=lS for all n=m.
C

Then by the general theory in martingale, he obtained E Sy, =¢*. Un-
fortunately we can not use the reverse stopping time M, as the usual
stopping time. But we have E Sy <¢’=E S, . This fact shows us that
“middle point” between N; and M, will be near to »* and the risk
(1.2) will be small. Thus we propose the following stopping variable:

(1.8) N=inf {ngmun—lyg_&z_—v, nZ;%} .

Then when N=n, we estimate g by X,. At first we remark N,<N.
Furthermore corresponding to (1.5) we propose the following rule:

(1.9) N,=inf {ngml(n—l)zz__ ’“?"-lfm-“ , niz k,”;Sn} .

To avoid the complexity of the sequence k, in the procedure N;, the
properties of N are investigated and we give numerical comparison for
the above four procedures.

2. Properties when ¢ is fixed

At first we have the following:

THEOREM 2.1. For N defined by (1.8), we have
(2.1) P (N>n)=20"
where 0<p<1.
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PROOF. Since we have
2.2) P(N>n)§P<(n—1)2<—i—Sn_l or n2<ls,,)
Cc

<2max IP <(n—1)2<%Sn_,>, P <n2<—l'-S,.>} .

As we can express S, as ainz_lz,/(n——l), where Z; (1=1, 2,---, n—1) are
i=1

independent random variables distributed according to y* distribution
with one degree of freedom, we have for 0<t<1/2

2.3) E[exp <tiz"§{ i—ﬂ?}ﬂz{exp<——nzc )(1—2t)-1/2}("_”

g a?

=P <’n2<—1—S,,> .
c
Then for large n,, we have exp [—mnict/d*](1—2t)"?=p<1 for all n=mn,.
By the same consideration we obtain the desired conclusion.

We remark that E N exists for all {>0 from the above theorem.
THEOREM 2.2. We have

(2.4) EX,=x, Var(X,)=o'E (71\7_>

and (VN)(Xy—p)o and N stochastically independent and the former is
distributed according to a standard mormal distribution.

PROOF. This proof is based on that X, and S, (for all k<n) are
stochastically independent. Refer to Ray [4] and Robbins [5] in detail.

Next we evaluate E N'. We define the following reverse stopping
variable corresponding to M, in (1.7)

(2.5) K=sup Icg'm—llkz<-(1:—S,c

—m—2 it =1, for all k=m—1.
C

Then K=(m—2)L,+KIz, where A= A {k*=(1/c)S.} and I, stands for
=m-1

an indicator function of A. Since N<K-+2, we have

(2.6) ENéEK+hﬂm—%+7%4Eﬁ§H&

(E Sx=m+—=

1
ve

e

=m+
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On the other hand, since E N;<m+o/+/ ¢, nevertheless Ny<N, we
remark the expectation of N does not increase so much. For E N',
by considering submartingale as in Nagao [3], we have the following
theorem :

THEOREM 2.3. For N defined by (1.8), we have

(2.7

g
Ve

R [ =T v

3. Properties when ¢—0

Taking ¢ sufficient small, we have from (1.8)

0 (B S Bl

Since Sy—¢® a.s. as ¢—0, we have lim N/n*=1. Since E[sup S,]< oo

c—0

(see, for example, Zacks [9], p. 561), lim E N/n*=1. Thus we have
c—0

THEOREM 3.1. For N defined by (1.8), as ¢c—0 we have

(3.2) imN =1  and limEN_7.

To obtain the limiting distribution of N, we show the following
lemma.

LEMMA 38.1. Let X\, X3, -+, X,, -+ be a sequence of independent
random variables distributed according to chi-square distribution with
one degree of freedom and let N(c) be a stopping variable such that N(c)
is monotone increasing tending to infinity as ¢c—0 and n(c) be an in-
creasing sequence temding to infinity as ¢—0, where ¢>0. If N(c)
/n(c)—1 in probability, then the random variable Xy.,/v N(c) converges
to zero in probability.

ProOF. Since N(c)/n(c)—1 in probability, for any 0<r, <1 there
exists ¢,>0 such that for all ¢<e,

(3.3) P( -17%—1‘ >7)>§r

Then we have

B0 P[RS Ee e =)
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R (R e >

gP(%;e, %—~1!§ﬂ>+r

(X1 +n)] P( Xk
k=Cn(cX1-m] vk

As the distribution of X, is the same as that of X;, we have

_Z_e>+r.

@) P(Jhze)s, B0 P(JpEe) e
But
(3.6) P(X,2evF )= ( E) S:/W exp <—_””21)dx

]

Thus as ¢—0 we have lim P (Xy.,/¥N(c))=e)<r. Therefore we obtain
c—0

the desired conclusion.

THEOREM 3.2. As c¢—0, the limiting distribution of {v2n*}(N
/n*—1) is a standard mormal distribution.

ProoF. By (3.1) we have
3.7 max{ 2n*[ Ve +<‘/i_”-_‘ —1)], «/2n_*<_‘/_f_i—1)}

ag

B 201 B[ 205 (455 )

Then the limiting distribution of the R.H.S. is distributed according to

a standard normal distribution by Theorem 3.1 and Anscombe [1]. Thus

we must show that the L.H.S. is so. Then S, can be expressed as

(1/(n——1))7§_,} 2z (n=2,3,--.) where {Z,} are independent random variables
1=1

with the same distribution as ¢* times chi-square distribution with one
degree of freedom, we have

(3.8) \/N—l SN\/ N Zg-l .
- N

Since (N—2)"'=0,(n*""?) and 1—(N—1)"'Zy_,/Sy=1+40,(n*""?) by Lemma
3.1 we have
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(3.9) «/27*[ Ve +( VS —1>]= o {_@—1} Fol(l) .
g g g

Therefore the theorem is proved.

As possible measures of the usefulness of this procedure, we con-
sider the risk efficiency and the regret. By Theorem 2.2, since

(3.10) 5(¢)=E Ly=c*E <7{,.>+cEN,

the risk efficiency is given by

@ =2 L (N)en()

Then we shall show lim E (n*/N)=1. Since N/n*—1 in probability as
c—0
¢—0, for any e, >0, the exists ¢,>0 such that for all ¢<e¢,

(3.12) P<‘—£—i—-1‘§s>gl—7].

Then we have

* * * 1
3.1 L”__:S » S e ap<
(8.13) N I¥/m-1se N P+ IN/m*—1]>s Nd T 1—¢
+_”ip<_ly.§1_s>+ 7
m n* 14¢
1 n¥ (N ) 7
=< —— P(i1-— .
_1——s+m n* s+1+e

Since P (Ny/n*<1—e)=o0(c™ %) by a similar calculation as Simons [8],

we have Iim En*/N<1 if m=3. On the other hand, by Fatou’s lemma
lim En*/N=1. Therefore we have the following:

THEOREM 3.3. For the stopping variable N defined by (1.8), the risk
efficiency <(c) is asymptotically one as ¢c—0 1f m=3.

Next we consider the regret w(c) which is given by

(3.14) «(¢)=E Ly—E L,.=¢"E n*—*N +cE(N—n*)=cE —(N;Vn_*)z. .
n

We shall prove w(c)—0 as ¢—0. By Theorem 2.3,

(3.15) E Ll\%n_*f_z E (N—n%)+ n*(n;"v— N)
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*
<=m+n*E l-n——ll .
N

Thus we shall show E|n*/N—1|—0 as ¢—0. Since n*/N—1 a.s.,
E(n*/N)<c and E (®n*/N)—1 when ¢—0 as we show it in the proof
of Theorem 3.3, m*/N is uniformly integrable. (See, for example,
Chow, Robbins and Siegmund [2], p. 4). Thus E|(n*/N)—1]—0 as
¢—0. Therefore we have the following :

THEOREM 3.4. For the regret w(c) defined by (3.14) we have
(3.16) lim w(c)=0 .
-0

4. Numerical example

Before we present the results of Monte-Carlo experiments for com-
parison of four procedures, first of all we show the monotonicity of K,
defined by (1.6). Let x=(n—1)/2, then k, can be expressed as f(x)=
I'lz+11/{s/ 2 I'[x+1/2]}. Thus we show that this function f(«) is mono-
tone decreasing for all £>>0. Taking a logarithm for f(x), we have

(1) g(@=log f(s)=—log z-+log I'a-+1]~log Ia++] .

Then we have

dg(x 1,2 1 1
(4.2) fl(x : =——§x_+n§> < s+1)2+n w+1+n>
__ 1yl 1
2¢ 2 =0 (x+14+n)(x+1/2+n)
<_ 1 l e 1
2 2 =0 (w+1+n)(m+n)

Thus the function f(x) is monotone decreasing. Also k, converges to
one as n—oo by Stirling’s formula.

Next we fix ¢*=5? and we obtain the following results by repeat-
ing the experiment 20,000 times in TOSBAC 5600. We remark that
the expected values of S,’s for the procedures N, and N, in examples
below stand for E k%S,.

Ezxample 4.1. This example shows the change of the expectations
of N’s and other for two different initial values of pseudo normal ran-
dom number in case n*=10 and m=4.
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Proce- Expected Variance Efficiency Expected

dure | value of N’s of N’s &(c) Regret w() | ya1ue of Sy's

N 10.66 7.721 1.0503 0.25157 21.855

10.65 7.665 1.0497 0.24857 21.863

N, 9.40 7.958 1.0703 0.35132 21.079

t 9.40 7.942 1.0699 0.34969 21.126

N, 9.75 7.666 1.0604 0.30192 22.586

z 9.71 7.770 1.0618 0.30877 22.389

N, 11.02 ©7.290 1.0457 0.22838 23.256

8 10.97 7.426 1.0468 0.23410 23.065

From this table it turns out that each value does not depend on an
initial value of pseudo normal random number by taking suitable order
8o much.

Example 4.2. This example shows the change of the expectation
of N’s and other for one of the initial sample size m in case n*=20.

Value Expected Variance Efficiency Expected
of m | value of N of N e(c) Regret o(c) | yalue of Sy's
Procedure N

5 20.82 13.6 1.023 0.058 23.6
10 20.88 11.9 1.017 0.041 23.7
20 21.87 4.6 1.008 0.020 24.2
25 25.15 0.34 1.027 0.066 24.9

Procedure N,

5 19.55 14.9 1.032 0.080 23.3
10 19.66 12.7 1.020 0.051 23.4
20 21.28 3.3 1.005 0.013 24.4
25 25.06 0.11 1.026 0.064 25.0

Procedure N;

5 19.78 15.0 1.031 0.078 23.8
10 19.97 12.5 1.019 0.047 24.1
20 21.38 3.5 1.006 0.014 24.9
25 25.07 0.15 1.026 0.064 25.4

Procedure Ny

5 21.12 12.9 1.021 0.053 24.2
10 21.17 11.9 1.016 0.041 24.3
20 22.08 5.0 1.009 0.023 24.9
25 25.18 0.41 1.027 0.067 25.4

In this example, if m is small, the goodness of procedures shows to
be invariant from viewpoint of efficiency and regret.
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Example 4.3. The following example gives the comparison of four
procedures.

Expected . : Expected
True Proce- Variance | Efficiency Regret
value of ) value of
value dure N’s of N’s e(c) w(c) Sy's
N 10.71 7.6 1.049 0.246 22.0
n*=10 N 9.41 7.9 1.070 0.346 21.1
m=4 N 9.73 7.6 1.060 0.298 22.5
N 11.00 7.4 1.046 0.229 23.2
N 15.67 11.8 1.041 0.135 22.9
n¥=15 A 14.36 13.2 1.061 0.203 21.1
m=4 N 14.65 12.8 1.054 0.180 23.2
N; 15.98 11.3 1.038 0.124 23.7
N 20.86 12.9 1.021 0.0512 23.7
n*=20 ' 19.64 14.0 1.026 0.0658 23.5
m=6 N 19.94 13.7 1.024 0.0608 24.1
N; 21.12 12.6 1.019 0.0484 24.2
N 25.85 15.7 1.015 0.0307 23.9
n¥*=25 N 24.67 16.7 1.020 0.0390 23.8
m=6 N, 24.93 16.1 1.017 0.0346 24.2
N; 26.15 15.0 1.014 0.0275 24.4
N 30.89 17.7 1.012 0.0194 24.1
n*=30 Ny 29.73 18.7 1.014 0.0235 24.0
m=6 N 29.99 18.1 1.013 0.0217 24 .4
Ns 31.17 17.6 1.011 0.0187 24.5
N 40.93 22.2 1.0076 0.0095 24.4
n*=40 A 39.74 23.5 1.0090 0.0112 24.3
m=6 N 40.08 22.1 1.0079 0.0100 24.7
N; 41.16 21.9 1.0076 0.0095 24.6
N 50.93 27.4 1.0061 0.0060 24.5
n*=50 N 49.85 27.7 1.0063 0.0062 24.5
m=6 N 50.11 26.8 1.0061 0.0060 24.8
N; 51.21 26.6 1.0056 0.0056 24.7
N 70.98 36.1 1.004 0.0027 24.6
n*¥=70 N 69.86 37.2 1.004 0.0030 24.6
m=6 N 70.11 36.4 1.004 0.0028 24.8
Ns 71.25 36.4 1.004 0.0027 24.8
N 101.00 52.1 1.003 0.0013 24.8
n*=100 N 99.87 52.3 1.003 0.0014 24.8
m=6 N: 100.10 51.6 1.003 0.0013 24.9
Ns 101.32 50.7 1.003 0.0013 24.9
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From this table it first turns out that N, procedure defined by (1.5)
with (1.6) is best and N; procedure defined by (1.9) with (1.6) is worst
at the point of expected values of N’s. Also we can say the proce-
dures N; and N are better than other procedures from the points of
efficiency and regret.
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