ON THE UNIFORM COMPLETE CONVERGENCE OF ESTIMATES FOR MULTIVARIATE DENSITY FUNCTIONS AND REGRESSION CURVES

K. F. CHENG1 AND R. L. TAYLOR2

(Received Feb. 5, 1979; revised Jan. 28, 1980)

Abstract

Let $(X_1, Y_1), \dots, (X_n, Y_n)$ be a random sample from the (k+1)-dimensional multivariate density function $f^*(x, y)$. Estimates of the k-dimensional density function $f(x) = \int f^*(x, y) dy$ of the form

$$\hat{f}_n(\mathbf{x}) = \frac{1}{nb_1(n)\cdots b_{\nu}(n)} \sum_{i=1}^n W\left(\frac{x_i - X_{i1}}{b_1(n)}, \cdots, \frac{x_{\nu} - X_{i\nu}}{b_{\nu}(n)}\right)$$

are considered where W(x) is a bounded, nonnegative weight function and $b_1(n), \dots, b_k(n)$ and bandwidth sequences depending on the sample size and tending to 0 as $n \to \infty$. For the regression function

$$m(x) = \mathbb{E}(Y|X=x) = \frac{h(x)}{f(x)}$$

where $h(x) = \int y f^*(x, y) dy$, estimates of the form

$$\hat{h}_n(x) = \frac{1}{nb_1(n)\cdots b_k(n)} \sum_{i=1}^n Y_i W\left(\frac{x_1 - X_{i1}}{b_1(n)}, \cdots, \frac{x_k - X_{ik}}{b_k(n)}\right)$$

are considered. In particular, uniform consistency of these estimates is obtained by showing that $||\hat{f}_n(x) - f(x)||_{\infty}$ and $||\hat{m}_n(x) - m(x)||_{\infty}$ converge completely to zero for a large class of "good" weight functions and under mild conditions on the bandwidth sequences $b_k(n)$'s.

¹ Research supported by National Institute of Environmental Health Scicences Under Grant 5T32 ES07011.

² For this author, revisions made while supported by the Air Force Office of Scientific Research under Contract Number F49620-79-C-0140.

Key words and phrases: Weight function, bandwidth sequences, regression function estimates, and complete convergence.

AMS Classification Number: Primary 62E15 and 62E40, Secondary 60F15.

1. Introduction

Let (X, Y) be a (k+1)-dimensional random vector with the joint probability density function $f^*(x, y)$ and let X be a k-dimensional random vector with the continuous marginal density function f(x). Some modified multivariate density function estimates for f have been discussed by Cacoullos [2] which were based on a random sample $(X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n)$ from f^* . In particular, estimates $f_n(x)$ for the multivariate density function f(x) of the form

$$f_n(\mathbf{x}) = \frac{1}{nb^k(n)} \sum_{i=1}^n W\left(\frac{\mathbf{x} - \mathbf{X}_i}{b(n)}\right)$$

were considered where W(x) is a bounded, nonnegative, integrable weight function such that

$$\int_{R^k} W(x) dx = 1$$

and b(n) is a bandwidth sequence depending on the sample size and tending to 0 as $n \to \infty$.

For the regression function m(x) of Y on X,

$$m(x) = E(Y|X=x) = \frac{h(x)}{f(x)}$$

where $h(x) = \int y f^*(x, y) dy$, Watson [9] and Nadaraya [5] independently proposed the following regression function estimates for the case k=1:

(1.2)
$$m_n(\mathbf{x}) = \frac{h_n(\mathbf{x})}{f_n(\mathbf{x})} = \sum_{i=1}^n Y_i \frac{W\left(\frac{\mathbf{x} - X_i}{b(n)}\right)}{\sum\limits_{j=1}^n W\left(\frac{\mathbf{x} - X_j}{b(n)}\right)} .$$

Thus, the estimates for h(x) are

$$(1.3) h_n(\mathbf{x}) = \frac{1}{nb^k(n)} \sum_{i=1}^n Y_i W\left(\frac{\mathbf{x} - \mathbf{X}_i}{b(n)}\right).$$

An heuristic treatment of $m_n(x)$ as a weighted average of the Y_i 's can be found in Watson [9]. The local properties of (1.1) and (1.2) have been studied extensively (see Rosenblatt [7]), and global measurements of deviations of $m_n(x)$ from m(x) and $f_n(x)$ from f(x) are given by

(1.4)
$$||m_n(x) - m(x)||_{\infty} = \sup_{x \in \mathbb{R}^k} |m_n(x) - m(x)|$$

and

(1.5)
$$||f_n(\mathbf{x}) - f(\mathbf{x})||_{\infty} = \sup_{\mathbf{x} \in \mathbb{R}^k} |f_n(\mathbf{x}) - f(\mathbf{x})|.$$

In this paper the important large sample properties of the more general estimates $\hat{f}_n(x)$ and $\hat{m}_n(x)$ are explored where

(1.6)
$$\hat{f}_n(x) = \frac{1}{nb_1(n)\cdots b_k(n)} \sum_{i=1}^n W\left(\frac{x_1 - X_{i1}}{b_1(n)}, \cdots, \frac{x_k - X_{ik}}{b_k(n)}\right),$$

$$\hat{m}_n(\mathbf{x}) = \frac{\hat{h}_n(\mathbf{x})}{\hat{f}_n(\mathbf{x})},$$

and

(1.8)
$$\hat{h}_n(x) = \frac{1}{nb_1(n)\cdots b_k(n)} \sum_{i=1}^n Y_i W\left(\frac{x_1-X_{i1}}{b_1(n)}, \cdots, \frac{x_k-X_{ik}}{b_k(n)}\right).$$

Here, W(x) is a nonnegative, bounded weight function and the bandwidth sequence $b_j(n)$'s depends on the sample size n and tends to zero as $n \to \infty$. The rate of convergence to zero need not be uniform, and the possible weight functions include more than the uniform kernels. Attention will generally be restricted to a density function $f^*(x, y)$ with compact support $[a_1, b_1] \times [a_2, b_2] \times [a_3, b_3]$ (for notation convenience only k=2) and weight functions W(x) which satisfy

$$\int_{a_1'}^{b_1'} \int_{a_2'}^{b_2'} W(x) dx = 1$$

and vanish outside $[a'_1, b'_1] \times [a'_2, b'_2]$. Also, the continuity of $f(\mathbf{x})$ and $h(\mathbf{x})$ on compact support $[a_1, b_1] \times [a_2, b_2]$ and on $[a'_1, b'_1] \times [a'_2, b'_2]$ are assumed. However the compact support of $f(\mathbf{x})$ can be eliminated (Lemma 2) when $f(\mathbf{x})$ has a pth moment, p > 0.

The major results of this paper give a new class of "good" weight functions under mild conditions on the bandwidth sequences $b_i(n)$'s. Uniform consistency of the estimates $\hat{f}_n(\mathbf{x})$ and $\hat{m}_n(\mathbf{x})$ is obtained since $||\hat{f}_n(\mathbf{x}) - f(\mathbf{x})||_{\infty}$ and $||\hat{m}_n(\mathbf{x}) - m(\mathbf{x})||_{\infty}$ converge completely to zero (which implies convergence with probability one). The main tools in obtaining these results will be approximating polyhedral functions and sub-Gaussian techniques and will parallel the development in Taylor and Cheng [8].

The modulus of continuity, $\omega_q(\delta_1, \delta_2)$, is defined by Billingsley [1] as

$$\omega_{g}(\delta_{1}, \delta_{2}) = \sup_{\substack{|t_{1}-s_{1}| \leq \delta_{1} \\ |t_{2}-s_{2}| \leq \delta_{2}}} |g(s_{1}, s_{2}) - g(t_{1}, t_{2})|$$

for $\delta_1, \delta_2 > 0$; $(s_1, s_2), (t_1, t_2) \in [a_1, b_1] \times [a_2, b_2]$; and $g \in C([a_1, b_1] \times [a_2, b_2])$, the space of continuous functions with domain on $[a_1, b_1] \times [a_2, b_2]$.

DEFINITION (Chow [3]). A random variable X is said to be sub-Gaussian if there exists $\alpha \ge 0$ such that

(1.9)
$$\mathbb{E}\left[\exp\left(tX\right)\right] \leq \exp\left(\frac{\alpha^2 t^2}{2}\right) \quad \text{for all } t \in \mathbb{R}.$$

If X is sub-Gaussian, then let

$$\tau(X) = \inf \{ \alpha \ge 0 : \text{ Inequality (1.9) holds} \}.$$

Some basic properties of sub-Gaussian random variables which will be used include:

If $P[|X| \leq K] = 1$ and E[X] = 0, then

$$E[\exp(tX)] \leq \exp(K^2t^2)$$
.

If $\tau(X) = \alpha$, then

$$(1.10) P[|X| \ge \lambda] \le 2 \exp(-\lambda^2/2\alpha^2).$$

The sum of two independent sub-Gaussian random variables is sub-Gaussian.

A sequence of random variables $\{X_n\}$ is said to converge completely to a random variable X if

(1.11)
$$\sum_{n=1}^{\infty} P[|X_n - X| > \varepsilon] < \infty$$

for each $\varepsilon > 0$.

Main results 2.

In this section it is shown that $||\hat{f}_n(x) - f(x)||_{\infty}$ and $||\hat{m}_n(x) - m(x)||_{\infty}$ converge completely to zero under conditions on the modulus of continuity of the weight function W(x) and the rate of convergence to zero by the bandwidth sequences $b_i(n)$'s.

LEMMA 1. If (i)
$$nb_1^2(n)b_2^2(n) > n^s$$
 for some $\delta > 0$,
(ii) $\omega_W \left(\frac{(b_1 + b_1') - (a_1 + a_1')}{n^{r_1}b_1(n)}, \frac{(b_2 + b_2') - (a_2 + a_2')}{n^{r_2}b_2(n)} \right) = o(b_1(n)b_2(n))$ for some integers $r_1, r_2 > 0$ and (iii) $f(r)$ has a compact support $[a_1, b_1] \times [a_2, b_1]$ then

tegers $r_1, r_2 > 0$, and (iii) $f(\mathbf{x})$ has a compact support $[a_1, b_1] \times [a_2, b_2]$, then

(2.1)
$$\sup_{\boldsymbol{s} \in \mathbb{R}^2} \left| \hat{f}_n(\boldsymbol{s}) - \frac{1}{b_1(n)b_2(n)} \to W\left(\frac{s_1 - X_{11}}{b_1(n)}, \frac{s_2 - X_{12}}{b_2(n)} \right) \right| \to 0$$

completely as $n \to \infty$ where $\hat{f}_n(\mathbf{s})$ is defined in (1.6).

PROOF. First, $[a'_1, b'_1] \times [a'_2, b'_2]$ may be expanded to include (0, 0) if

 $(0,0) \notin [a'_1,b'_1] \times [a'_2,b'_2]$. For the positive integers r_1 and r_2 , let $I_{si} = [t_{s,i-1},t_{si}]$, s=1 or 2, where $t_{si} = (a_s + a'_s) + [(b_s + b'_s) - (a_s + a'_s)]i/n^{r_s}$ and let $I_{ij} = I_{1i} \times I_{2j}$. Thus,

$$[a_1+a_1', b_1+b_1'] \times [a_2+a_2', b_2+b_2'] = \bigcup_{i=1}^{n^{r_1}} \bigcup_{j=1}^{n^{r_2}} I_{ij}.$$

Since W and f vanish outside $[a'_1, b'_1] \times [a'_2, b'_2]$ and $[a_1, b_1] \times [a_2, b_2]$ respectively and $b_1(n) \to 0$ and $b_2(n) \to 0$, the sup in (2.1) need only be taken over $[a_1+a'_1, b_1+b'_1] \times [a_2+a'_2, b_2+b'_2]$. Let $\delta_n^s = \frac{(b_s+b'_s)-(a_s+a'_s)}{n^{r_s}b_s(n)}$ for s=1 or 2 and let

$$\tilde{W}_{k}(s_{1}, s_{2}) = W\left(s_{1} - \frac{X_{k1}}{b_{1}(n)}, \ s_{2} - \frac{X_{k2}}{b_{2}(n)}\right) - \operatorname{E}W\left(s_{1} - \frac{X_{k1}}{b_{1}(n)}, \ s_{2} - \frac{X_{k2}}{b_{2}(n)}\right)$$

for each $k=1, \dots, n$. Thus, $E \tilde{W}_k(s) = 0$ for each $s \in [a_1 + a'_1, b_1 + b'_1] \times [a_2 + a'_2, b_2 + b'_2]$ and each k. Furthermore,

$$(2.2) \quad \omega_{\widetilde{W}_{k}}(\delta_{n}^{1}, \delta_{n}^{2}) = \sup_{\substack{|s_{1}-t_{1}| \leq \delta_{n}^{1} \\ |s_{2}-t_{2}| \leq \delta_{n}^{2}}} |\widetilde{W}_{k}(s_{1}, s_{2}) - \widetilde{W}_{k}(t_{1}, t_{2})|$$

$$\leq \sup_{\substack{|s_{1}-t_{1}| \leq \delta_{n}^{1} \\ |s_{2}-t_{2}| \leq \delta_{n}^{2}}} |W\left(s_{1} - \frac{X_{k1}}{b_{1}(n)}, s_{2} - \frac{X_{k2}}{b_{2}(n)}\right)$$

$$- W\left(t_{1} - \frac{X_{k1}}{b_{1}(n)}, t_{2} - \frac{X_{k2}}{b_{2}(n)}\right)|$$

$$+ \sup_{\substack{|s_{1}-t_{1}| \leq \delta_{n}^{1} \\ |s_{2}-t_{2}| \leq \delta_{n}^{2}}} |\operatorname{E}W\left(s_{1} - \frac{X_{k1}}{b_{1}(n)}, s_{2} - \frac{X_{k2}}{b_{2}(n)}\right)$$

$$- \operatorname{E}W\left(t_{1} - \frac{X_{k1}}{b_{1}(n)}, t_{2} - \frac{X_{k2}}{b_{2}(n)}\right)|$$

$$\leq 2\omega_{W}(\delta_{n}^{1}, \delta_{n}^{2}).$$

Hence, $\omega_{\widetilde{W}_k}(\delta_n^1, \delta_n^2) \leq 2\omega_W(\delta_n^1, \delta_n^2) = o(b_1(n)b_2(n))$ for each k from Condition (ii). For $\varepsilon > 0$ let

$$(2.3) \quad A_{n} = \left[\sup_{\substack{a_{1} + a_{1}' \leq s_{1} \leq b_{1} + b_{1}' \\ a_{2} + a_{2}' \leq s_{2} \leq b_{2} + b_{2}'}} \left| \frac{1}{nb_{1}(n)b_{2}(n)} \sum_{k=1}^{n} \tilde{W}_{k} \left(\frac{s_{1}}{b_{1}(n)}, \frac{s_{2}}{b_{2}(n)} \right) \right| > \varepsilon \right] \\ = \left[\max_{\substack{1 \leq i \leq n^{T_{1}} \ (s_{1}, s_{2}) \in I_{ij} \\ 1 \leq i \leq n^{T_{2}}}} \sup_{(s_{1}, s_{2}) \in I_{ij}} \left| \frac{1}{nb_{1}(n)b_{2}(n)} \sum_{k=1}^{n} \tilde{W}_{k} \left(\frac{s_{1}}{b_{1}(n)}, \frac{s_{2}}{b_{2}(n)} \right) \right| > \varepsilon \right].$$

Hence,

$$(2.4) A_n \subset \left[\max_{\substack{1 \le i \le n^{T_1} \\ 1 \le i \le n^{T_2}}} \left| \frac{1}{nb_1(n)b_2(n)} \sum_{k=1}^n \tilde{W}_k \left(\frac{t_{1i}}{b_1(n)}, \frac{t_{2j}}{b_2(n)} \right) \right|$$

$$egin{aligned} &+\max_{\substack{1 \leq i \leq n^{r_1} \ 1 \leq j \leq n^{r_2}}} \sup_{(s_1, \, s_2) \in I_{ij}} \left| rac{1}{n b_1(n) b_2(n)} \sum_{k=1}^n \left[ilde{W}_k \left(rac{s_1}{b_1(n)}, rac{s_2}{b_2(n)}
ight)
ight. \ &- \left. ilde{W}_k \left(rac{t_{1i}}{b_1(n)}, rac{t_{2j}}{b_2(n)}
ight)
ight]
ight| > arepsilon
ight]. \end{aligned}$$

However,

$$\max_{\substack{1 \leq i \leq n^{r_1} \\ 1 \leq j \leq n^{r_2}}} \sup_{(s_1, s_2) \in I_{ij}} \frac{1}{n b_1(n) b_2(n)} \sum_{k=1}^{n} \left| \tilde{W}_k \left(\frac{s_1}{b_1(n)}, \frac{s_2}{b_2(n)} \right) - \tilde{W}_k \left(\frac{t_{1i}}{b_1(n)}, \frac{t_{2j}}{b_2(n)} \right) \right| \\ \leq \frac{2 \omega_W(\delta_n^1, \delta_n^2)}{b_1(n) b_2(n)} .$$

Since $2\omega_W(\delta_n^1, \delta_n^2) = o(b_1(n)b_2(n))$ by Condition (ii), there exists $N(r_1, r_2)$ such that

$$A_n \subset \left[\max_{\substack{1 \leq i \leq n^{r_1} \\ 1 \leq j \leq n^{r_2}}} \left| \frac{1}{nb_1(n)b_2(n)} \sum_{k=1}^n \tilde{W}_k\left(\frac{t_{1i}}{b_1(n)}, \frac{t_{2j}}{b_2(n)}\right) \right| > \frac{\varepsilon}{2} \right]$$

for all $n \ge N(r_1, r_2)$. Using the basic properties of sub-Gaussian random variables $\left[\left\{\tilde{W}_k\left(\frac{t_{1i}}{b_1(n)}, \frac{t_{2j}}{b_2(n)}\right): k=1, 2, \cdots, n\right\}$ for each i, j, for each $n \ge N(r_1, r_2)$

$$\begin{split} & \text{P}\left[A_{n}\right] \leq \text{P}\left[\max_{\substack{1 \leq i \leq n^{r_{1}} \\ 1 \leq j \leq n^{r_{2}}}} \left| \frac{1}{nb_{1}(n)b_{2}(n)} \sum_{k=1}^{n} \tilde{W}_{k}\left(\frac{t_{1i}}{b_{1}(n)}, \frac{t_{2j}}{b_{2}(n)}\right) \right| > \frac{\varepsilon}{2} \right] \\ & \leq \sum_{i=1}^{n^{r_{1}}} \sum_{j=1}^{n^{r_{2}}} \text{P}\left[\left| \frac{1}{nb_{1}(n)b_{2}(n)} \sum_{k=1}^{n} \tilde{W}_{k}\left(\frac{t_{1i}}{b_{1}(n)}, \frac{t_{2j}}{b_{2}(n)}\right) \right| > \frac{\varepsilon}{2} \right] \\ & \leq n^{r_{1}+r_{2}} 2 \exp\left(-\varepsilon^{2}/4||W||_{\infty}^{2} B_{n}\right) \end{split}$$

where

$$||W||_{\infty} = \sup_{(s_1, s_2) \in \mathbb{R}^2} |W(s_1, s_2)|$$
 and $B_n = \sum_{k=1}^n \left(\frac{1}{nb_1(n)b_2(n)}\right)^2 = \frac{1}{nb_1^2(n)b_2^2(n)}$.

To obtain the complete convergence of (2.1), consider

$$(2.5) \qquad \sum_{n=1}^{\infty} P[A_n] = \sum_{n=1}^{N(r_1, r_2)} P[A_n] + \sum_{n=N(r_1, r_2)+1}^{\infty} P[A_n]$$

$$\leq N(r_1, r_2) + \sum_{n=N(r_1, r_2)+1}^{\infty} 2n^{r_1+r_2} \exp\left(\frac{-\varepsilon^2 n b_1^2(n) b_2^2(n)}{4||W||_{\infty}^2}\right)$$

$$\leq N(r_1, r_2) + \sum_{n=N(r_1, r_2)+1}^{\infty} 2n^{r_1+r_2} \exp\left(-cn^{\delta}\right)$$

where $c = \varepsilon^2/4||W||_{\infty}^2$. Thus the series in (2.5) converges by the integral test.

The compact support of the f(x) can be relaxed if any moment p>0 exists. Lemma 2 summarizes this result and again is stated only for k=2. The proof of Lemma 2 is similar to the univariate case in Taylor and Cheng [8] and is omitted. Recall that $||(a,b)|| = (a^2 + b^2)^{1/2}$.

LEMMA 2. If (i) $nb_1^2(n)b_2^2(n) > n^s$ for some $\delta > 0$, (ii) $\int ||\mathbf{x}||^p f(\mathbf{x}) d\mathbf{x}$ $< \infty$ for some p > 0, and (iii) $W\left(\frac{2 + (b_1' - a_1')}{n^{r_1}b_1(n)}, \frac{2 + (b_2' - a_2')}{n^{r_2}b_2(n)}\right) = o(b_1(n)b_2(n))$ for some integers $r_1, r_2 > 1/p$, then

$$\sup_{\boldsymbol{s}\in R^2} \left| \hat{f}_n(s_1, s_2) - \frac{1}{b_1(n)b_2(n)} \to W\left(\frac{s_1 - X_{11}}{b_1(n)}, \frac{s_2 - X_{12}}{b_2(n)} \right) \right| \to 0$$

completely as $n \to \infty$ where $\hat{f_n}(s)$ is defined in (1.6).

LEMMA 3. If the underlying density, f, is uniformly continuous, then

$$(2.6) \qquad \sup_{(s_1,s_2)\in \mathbb{R}^2} \left| \frac{1}{b_1(n)b_2(n)} \to W\left(\frac{s_1-X_{11}}{b_1(n)},\frac{s_2-X_{12}}{b_2(n)}\right) - f(s_1,s_2) \right| \to 0.$$

PROOF. Since f is uniformly continuous on R^2 , given $\varepsilon > 0$ there exists $\delta > 0$ such that $|f(s_1', s_2') - f(s_1, s_2)| < \varepsilon$ whenever $||(s_1', s_2') - (s_1, s_2)|| < \delta$. Let N be sufficiently large so that $||(b_1(n)y_1, b_2(n)y_2)|| < \delta$ for all $n \ge N$ and all $(y_1, y_2) \in [a_1', b_1'] \times [a_2', b_2']$. Since $W(y_1, y_2) = 0$ for $(y_1, y_2) \notin [a_1', b_1'] \times [a_2', b_2']$,

$$(2.7) \qquad \left| \frac{1}{b_{1}(n)b_{2}(n)} \to W\left(\frac{s_{1}-X_{11}}{b_{1}(n)}, \frac{s_{2}-X_{12}}{b_{2}(n)}\right) - f(s_{1}, s_{2}) \right|$$

$$= \left| \frac{1}{b_{1}(n)b_{2}(n)} \int_{\mathbb{R}^{2}} W\left(\frac{s_{1}-x_{1}}{b_{1}(n)}, \frac{s_{2}-x_{2}}{b_{2}(n)}\right) f(x_{1}, x_{2}) dx_{1} dx_{2} - f(s_{1}, s_{2}) \right|$$

$$= \left| \int_{\mathbb{R}^{2}} W(y_{1}, y_{2}) f(s_{1}-b_{1}(n)y_{1}, s_{2}-b_{2}(n)y_{2}) dy_{1} dy_{2} - f(s_{1}, s_{2}) \right|$$

$$= \left| \int_{\mathbb{R}^{2}} W(y_{1}, y_{2}) [f(s_{1}-b_{1}(n)y_{1}, s_{2}-b_{2}(n)y_{2}) - f(s_{1}, s_{2})] dy_{1} dy_{2} \right|$$

$$= \varepsilon \int_{\mathbb{R}^{2}} W(y_{1}, y_{2}) dy_{1} dy_{2} = \varepsilon$$

uniformly in (s_1, s_2) for all $n \ge N$. Hence

$$\sup_{s_{\in R^2}} \left| \frac{1}{b_1(n)b_2(n)} \to W\left(\frac{s_1 - X_{11}}{b_1(n)}, \frac{s_2 - X_{12}}{b_2(n)} \right) - f(s_1, s_2) \right| \to 0$$

as $n \to \infty$.

If the density, f, is continuous on R^2 and has compact support, then it is uniformly continuous and all pth moments exist. Conditions

(ii) and (iii) of Lemma 2 are easily satisfied, and the more general hypotheses of Lemmas 2 and 3 are listed for Theorem 1. First, it should be indicated that the case where f is only known to be continuous on $[a_1, b_1] \times [a_2, b_2]$ is not entirely excluded from consideration.

COROLLARY 1. If the underlying density function, f, is only known to be continuous on $[a_1, b_1] \times [a_2, b_2]$, then for arbitrarily small $\varepsilon_1, \varepsilon_2 > 0$

$$\sup_{\substack{a_1+\epsilon_1 \le s_1 \le b_1-\epsilon_1 \\ a_2+\epsilon_2 \le s_2 \le b_2-\epsilon_2}} \left| \frac{1}{b_1(n)b_2(n)} \to W\left(\frac{s_1-X_{11}}{b_1(n)}, \frac{s_2-X_{12}}{b_2(n)}\right) - f(s_1, s_2) \right| \to 0$$

as $n \to \infty$.

The ε 's in Corollary 1 and Corollary 2 can be considered as functions of n which tend to zero as $n \to \infty$. The proof of the following theorem is immediate from Lemmas 2 and 3 since for each $\varepsilon > 0$

$$(2.8) \quad P\left[\sup_{s_{\epsilon R^{2}}}\left|\frac{1}{b_{1}(n)b_{2}(n)}\sum_{k=1}^{n}W\left(\frac{s_{1}-X_{k1}}{b_{1}(n)},\frac{s_{2}-X_{k2}}{b_{2}(n)}\right)-f(s_{1},s_{2})\right|>\varepsilon\right] \\ \leq P\left[\sup_{s_{\epsilon R^{2}}}\left|\frac{1}{b_{1}(n)b_{2}(n)}\sum_{k=1}^{n}\left[W\left(\frac{s_{1}-X_{k1}}{b_{1}(n)},\frac{s_{2}-X_{k2}}{b_{2}(n)}\right)\right.\right. \\ \left.-E\left.W\left(\frac{s_{1}-X_{11}}{b_{1}(n)},\frac{s_{2}-X_{12}}{b_{2}(n)}\right)\right]\right|>\frac{\varepsilon}{2}\right] \\ \leq P\left[\sup_{s_{\epsilon R^{2}}}\left|\frac{1}{b_{1}(n)b_{2}(n)}E\left(\frac{s_{1}-X_{11}}{b_{1}(n)},\frac{s_{2}-X_{12}}{b_{2}(n)}\right)-f(s_{1},s_{2})\right|>\frac{\varepsilon}{2}\right]$$

and each of the terms in (2.8) is a convergent series in n. All of the conditions will be stated in Theorem 1 for easy reference, and in particular will be stated for arbitrary k-dimension.

THEOREM 1. Let $\{X_n\}$ be independent random vectors with the same density function $f(\mathbf{x})$ which is uniformly continuous on R^k . Let $W(\mathbf{x})$ be a nonnegative weight function which is continuous on its compact support $[a'_1, b'_1] \times \cdots \times [a'_k, b'_k]$ and integrates to 1. If (a) $nb_1^2(n) \cdots b_k^2(n) > n^3$ for some $\delta > 0$, (b) $\int ||\mathbf{x}||^p f(\mathbf{x}) d\mathbf{x} < \infty$ for some p > 0, and (c) $\omega_W\left(\frac{2+(b'_1-a'_1)}{n^{r_1}b_1(n)}, \cdots, \frac{2+(b'_k-a'_k)}{n^{r_k}b_k(n)}\right) = o(b_1(n) \cdots b_k(n))$ for some integers $r_1, \dots, r_k > 1/p$, then

$$\sup_{\boldsymbol{s}\in R^k}\left|\frac{1}{nb_1(n)\cdots b_k(n)}\sum_{i=1}^nW\left(\frac{s_1-X_{i1}}{b_i(n)},\cdots,\frac{s_k-X_{ik}}{b_k(n)}\right)-f(s_1,\cdots,s_k)\right|\to 0$$

completely as $n \to \infty$.

COROLLARY 2. If all of the conditions of Theorem 1 are satisfied

except it is only known that f is continuous on its compact support, then for arbitrarily small $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_k > 0$,

$$\sup_{\boldsymbol{\alpha}+\boldsymbol{\epsilon} \leq \boldsymbol{s} \leq \boldsymbol{b}-\boldsymbol{\epsilon}} \left| \frac{1}{nb_1(n)\cdots b_k(n)} \sum_{i=1}^n W\left(\frac{s_1-X_{i1}}{b_1(n)}, \cdots, \frac{s_k-X_{ik}}{b_k(n)}\right) - f(s_1, \cdots, s_k) \right| \to 0$$

completely as $n \to \infty$ where $a+\epsilon \le s \le b-\epsilon$ indicates that the relationship holds in each coordinate.

The condition $nb_1^2(n)\cdots b_k^2(n) > n^s$ need not hold for all n but only eventually. Also, the condition could have been stated as

$$\int_{a}^{\infty} x^{r_1 + \dots + r_k} \exp\left(-cxb_1^2(x) \cdot \cdot \cdot b_k^2(x)\right) dx < \infty \qquad \text{for some } d > 0$$

where $b_i(x)$'s are functions which generate the bandwidth sequences $b_i(1), b_i(2), \dots, i=1, \dots, k$, and c>0 is a constant.

Attention is now directed to establishing the uniform complete convergence of $||\hat{m}_n(x) - m(x)||_{\infty}$ to zero. Again, for notational convenience k=2.

LEMMA 4. If the regularity conditions in Lemma 1 are satisfied, then

$$\sup_{\boldsymbol{s} \in \mathbb{R}^{2}} \left| \frac{1}{n b_{1}(n) b_{2}(n)} \sum_{i=1}^{n} Y_{k} W\left(\frac{s_{1} - X_{i1}}{b_{1}(n)}, \frac{s_{2} - X_{i2}}{b_{2}(n)}\right) - \frac{1}{b_{1}(n) b_{2}(n)} \operatorname{E} Y_{1} W\left(\frac{s_{1} - X_{11}}{b_{1}(n)}, \frac{s_{2} - X_{12}}{b_{2}(n)}\right) \right| \to 0$$

completely as $n \to \infty$.

PROOF. The proof follows similarly to the proof of Lemma 1. First, define

$$\tilde{W}_{i}^{*}(s_{1}, s_{2}) = Y_{i} W\left(s_{1} - \frac{X_{i1}}{b_{1}(n)}, s_{2} - \frac{X_{i2}}{b_{2}(n)}\right) - \mathbb{E}\left(Y_{1} W\left(s_{1} - \frac{X_{11}}{b_{1}(n)}, s_{2} - \frac{X_{12}}{b_{2}(n)}\right)\right)$$

where

$$egin{split} & \mathrm{E}\left(\,Y_{1}W\Big(s_{1}\!-\!rac{X_{11}}{b_{1}(n)},\,s_{2}\!-\!rac{X_{12}}{b_{2}(n)}
ight)\!
ight) \ & =& \int_{\mathbb{R}^{3}}y\,W\Big(s_{1}\!-\!rac{x_{1}}{b_{1}(n)},\,s_{2}\!-\!rac{x_{2}}{b_{2}(n)}\Big)f^{*}\!\left(x_{1},\,x_{2},\,y
ight)\!dx_{1}\!dx_{2}\!dy \;. \end{split}$$

Thus, $EW_i^*(s_1, s_2) = 0$ for all s_1 , s_2 and i and $\omega_{W_i^*}(\delta_n^1, \delta_n^2) \leq 2M\omega_W(\delta_n^1, \delta_n^2)$ where $||Y_i|| \leq M$ a.s. Hence, $\omega_{\widetilde{W}_i^*}(\delta_n^1, \delta_n^2) = o(b_1(n)b_2(n))$ a.s., and the remainder of the proof follows from the proof of Lemma 1 with the new constant being $c' = \frac{\varepsilon^2}{4M^2||W||_2^2}$.

A moment condition again could be used to relax the assumption of compact support for Y with the modifications being similar to Lemma 3 but will not be stated. The next result will establish the convergence for the mean.

LEMMA 5. If h(x) is uniformly continuous on R^2 , then

(2.9)
$$\sup_{s \in \mathbb{R}^2} \left| \frac{1}{b_1(n)b_2(n)} \to Y_1 W\left(\frac{s_1 - X_{11}}{b_1(n)}, \frac{s_2 - X_{12}}{b_2(n)}\right) - h(s_1, s_2) \right| \to 0$$

as $n \to \infty$.

PROOF. First,

$$(2.10) \quad \frac{1}{b_{1}(n)b_{2}(n)} \to Y_{1}W\left(\frac{s_{1}-X_{11}}{b_{1}(n)}, \frac{s_{2}-X_{12}}{b_{2}(n)}\right)$$

$$= \frac{1}{b_{1}(n)b_{2}(n)} \int_{\mathbb{R}^{3}} y \, W\left(\frac{s_{1}-x_{1}}{b_{1}(n)}, \frac{s_{2}-x_{2}}{b_{2}(n)}\right) f^{*}(x_{1}, x_{2}, y) dx_{1} dx_{2} dy$$

$$= \frac{1}{b_{1}(n)b_{2}(n)} \int_{\mathbb{R}^{2}} \mathbb{E}\left(Y_{1}W\left(\frac{s_{1}-x_{1}}{b_{1}(x)}, \frac{s_{2}-x_{2}}{b_{2}(x)}\right) \middle| X_{11}=x_{1}, X_{12}=x_{2}\right)$$

$$\cdot f(x_{1}, x_{2}) dx_{1} dx_{2}$$

$$= \frac{1}{b_{1}(n)b_{2}(n)} \int_{\mathbb{R}^{2}} W\left(\frac{s_{1}-x_{1}}{b_{1}(n)}, \frac{s_{2}-x_{2}}{b_{2}(n)}\right) h(x_{1}, x_{2}) dx_{1} dx_{2}$$

$$= \int_{\mathbb{R}^{2}} W(y_{1}, y_{2}) h(s_{1}-b_{1}(n)y_{1}, s_{2}-b_{2}(n)y_{2}) dy_{1} dy_{2}.$$

Next, N can be chosen large enough so that $||(b_1(n)y_1, b_2(n)y_2)|| < \delta$ for all $(y_1, y_2) \in [a_1, b_1] \times [a_2, b_2]$ when $n \ge N$. Hence, from the uniform continuity of h and (2.10),

$$\begin{split} &\left| \frac{1}{b_1(n)b_2(n)} \to Y_1 W\left(\frac{s_1 - X_{11}}{b_1(n)}, \frac{s_2 - X_{12}}{b_2(n)}\right) - h(s_1, s_2) \right| \\ &= \left| \int_{\mathbb{R}^2} W(y_1, y_2) [h(s_1 - b_1(n)y_1, s_2 - b_2(n)y_2) - h(s_1, s_2)] dy_1 dy_2 \right| \\ &\leq \varepsilon \int_{\mathbb{R}^2} W(y_1, y_2) dy_1 dy_2 = \varepsilon \text{ uniformly in } (s_1, s_2) \end{split}$$

for all $n \ge N$.

The following theorem on the complete uniform consistency of \hat{h}_n can be proved immediately from Lemmas 4 and 5.

THEOREM 2. If the regularity conditions of Lemmas 4 and 5 hold, then

(2.11)
$$\sup_{s \in \mathbb{R}^2} |\hat{h}_n(s_1, s_2) - h(s_1, s_2)| \to 0$$

completely as $n \to \infty$.

COROLLARY 3. If the regularity conditions of Lemma 4 are assumed and $h(s_1, s_2)$ is continuous on its compact support $[a_1, b_1] \times [a_2, b_2]$ only, then for arbitrarily small $\epsilon_1, \epsilon_2 > 0$

$$\sup_{(s_1,s_2)\in[a_1+\epsilon_1,b_1-\epsilon_1]\times[a_2+\epsilon_2,b_2-\epsilon_2]}|\hat{h}_n(s_1,s_2)-h(s_1,s_2)|\to 0$$

completely as $n \to \infty$.

The stage is now set to obtain the complete uniform consistency of \hat{m}_n to m.

THEOREM 3. If the regularity conditions of Theorem 1, Lemma 4 and Lemma 5 are satisfied and if there exist ε_0^1 , $\varepsilon_0^2 > 0$ such that in $[a_1 + \varepsilon_0^1, b_1 - \varepsilon_0^1] \times [a_2 + \varepsilon_0^2, b_2 - \varepsilon_0^2] = C \inf_{\mathbf{s} \in \mathcal{C}} f(\mathbf{s}_1, \mathbf{s}_2) = \mu > 0$ and $\sup_{\mathbf{s} \in \mathcal{C}} |m(\mathbf{s}_1, \mathbf{s}_2)| = v < \infty$, then

(2.12)
$$\sup_{s \in C} |\hat{m}_n(s_1, s_2) - m(s_1, s_2)| \to 0$$

completely as $n \to \infty$.

PROOF. First

$$(2.13) \sup_{\mathbf{s} \in C} |\hat{m}_{n}(s_{1}, s_{2}) - m(s_{1}, s_{2})|$$

$$\leq \sup_{\mathbf{s} \in C} \left| \frac{\hat{h}_{n}(s_{1}, s_{2})}{\hat{f}_{n}(s_{1}, s_{2})} - \frac{h(s_{1}, s_{2})}{\hat{f}_{n}(s_{1}, s_{2})} \right| + \sup_{\mathbf{s} \in C} \left| \frac{h(s_{1}, s_{2})}{\hat{f}_{n}(s_{1}, s_{2})} - \frac{h(s_{1}, s_{2})}{f(s_{1}, s_{2})} \right|$$

$$\leq (\inf_{\mathbf{s} \in C} \hat{f}_{n}(s_{1}, s_{2}))^{-1} |\hat{h}_{n}(s_{1}, s_{2}) - h(s_{1}, s_{2})| + \sup_{\mathbf{s} \in C} \left| \frac{h(s_{1}, s_{2})}{\hat{f}_{n}(s_{1}, s_{2})} - \frac{h(s_{1}, s_{2})}{f(s_{1}, s_{2})} \right|$$

$$\leq (\inf_{\mathbf{s} \in C} \hat{f}_{n}(s_{1}, s_{2}))^{-1} \{ |\hat{h}_{n}(s_{1}, s_{2}) - h(s_{1}, s_{2})| + \sup_{\mathbf{s} \in C} |m(s_{1}, s_{2})| + \sup_{\mathbf{s} \in C} |m(s_{1},$$

Since $\inf_{s \in C} f(s_1, s_2) = \mu > 0$ and $||\hat{f}_n - f||_{\infty} \to 0$ completely by Theorem 1, the result easily follows from Lemmas 4 and 5 and (2.13).

3. Comparisons and useful weight functions

In this part, a few brief comments on Nadaraya's [6] conditions and on useful weight functions which satisfy the results of this paper are listed for comparisons.

To obtain a strong law rather than uniform consistency in probability, the conditions on the weight function and bandwidth sequences are expected to be more stringent. For example in the case k=1, let f(s) and m(x) be unknown continuous density and regression functions on R. If

(N1) W(x) is a function of bounded variation such that

$$\sup_{x \in R} |W(x)| < \infty$$
 , $\lim_{x \to \pm \infty} |x| W(x) = 0$, $\int |W(x)| dx < \infty$, $\int W(x) dx = 1$;

(N2) $-\infty < A \le Y \le B < \infty$ with probability one and

$$\min_{-\infty < a \le x \le b < \infty} f(x) = \mu > 0 ; \text{ and }$$

(N3) $\sum_{n=1}^{\infty} \exp(-\gamma nb^2(n))$ exists for each $\gamma > 0$, then

 $||\hat{m}_n(x) - m(x)||_{\infty} \to 0$ with probability one (Nadaraya [6]).

For the results of this paper, the weight function W(x) was required to be nonnegative and continuous on its compact support along with a smoothness condition. The condition on the bandwidths sequence for the case k=1 reduces to $nb^2(n)>n^\delta$ for some $\delta>0$. For useful weight functions, Epanechnikov [4] considered multivariate density function estimates of the form

$$f_n(s_1, \dots, s_k) = \frac{1}{n} \sum_{i=1}^n \prod_{j=1}^k \frac{1}{b_j(n)} W_j \left(\frac{s_j - X_{ij}}{b_j(n)} \right).$$

Setting $b_j(n) = b(n)$ and $W_j(s) = W(s)$ for $j = 1, \dots, k$, the optimal weight function $W_0(s)$ was found to be

$$W_{\scriptscriptstyle 0}(s)\!=\!\left\{egin{array}{ll} rac{3}{4(5)^{^{1/2}}}\!-\!rac{3s^2}{20(5)^{^{1/2}}} & ext{ for } |s|\!\leq\!(5)^{^{1/2}} \ 0 & ext{ otherwise} \end{array}
ight.$$

in minimizing the relative global error. For this case, let $a=-(5)^{1/2}$ and $b=(5)^{1/2}$. Then, $W_0(s_1,s_2)=W_0(s_1)W_0(s_2)$, and $|W_0(s_1,s_2)-W_0(t_1,t_2)| \le c_1|s_1-t_1|+c_2|s_2-t_2|$ for constants c_1 and c_2 . Moreover, $\omega_{W_0}(\delta_n^1,\delta_n^2) \le \frac{c_1'}{b_1(n)n^{r_1}} + \frac{c_2'}{b_2(n)n^{r_2}}$ for constants c_1' and c_2' , and the optimal weight function easily satisfies the smoothness condition of this paper.

If the weight function $W(s_1, s_2)$ satisfies a Lipschitz condition of order α , then

$$|W(s_1, s_2) - W(t_1, t_2)| \le M ||(s_1, s_2) - (t_1, t_2)||^{\alpha} \quad \text{and}$$

$$\omega_W \left(\frac{2(b_1 - a_1)}{b_1(n)n^{r_1}}, \frac{2(b_2 - a_2)}{b_2(n)n^{r_2}} \right) \le M \left(\frac{(2b_1 - 2a_1)^2}{b_1^2(n)n^{2r_1}} + \frac{(2b_2 - 2a_2)^2}{b_2^2(n)n^{2r_2}} \right)^{\alpha/2}$$

for some M>0. Hence, bandwidth sequences $b_1(n)$ and $b_2(n)$ are to be

chosen so that

$$\frac{1}{b_1(n)b_2(n)} \left[\frac{1}{n^{r_1}b_1(n)} + \frac{1}{n^{r_2}b_2(n)} \right]^{\alpha} \to 0$$

as $n \to \infty$ for some integers r_1 , $r_2 > 0$. Let $b_1(n) = n^{-p_1}$ and $b_2(n) = n^{-p_2}$ for $p_1 > p_2 > 0$ and let $r_1 = r_2 = r$, then

$$(3.1) \qquad \frac{1}{n^{-(p_1+p_2)}} \left(\frac{1}{n^r m^{-p_1}} + \frac{1}{n^r m^{-p_2}} \right)^{\alpha} \leq \frac{2^{\alpha}}{n^{-(p_1+p_2)} n^{\alpha r} n^{-\alpha p_1}}.$$

If $\alpha > 0$ or $\alpha < -(p_1 + p_2)/p_1$, then a positive integer r can be chosen so that (3.1) converges to zero as $n \to \infty$.

For the bandwidth sequences $b_j(n) = b(n)$, Epanechnikov [4] found the optimum bandwidth sequence (minimizing the asymptotic relative global error) to be

$$b_0(n) \sim \left(\frac{kL^k}{nM_0}\right)^{1/(k+4)}$$

where k is the dimension, $L = \int_{R} W^{2}(x)dx$, and

$$M_0 = \int \cdots \int \left[\sum_{i=1}^k \frac{\partial^2 f(x_1, \dots, x_k)}{\partial x_i^2} \right]^2 dx_1 \cdots dx_k$$
.

When L and M_0 are bounded and $M_0 \neq 0$, then there is no difficulty in showing that the optimum bandwidth sequence satisfies the conditions of this paper. Finally, it should be noted that a weight function W(x) exists satisfying a Lipschitz condition of order $0 < \alpha < 1$ on [a, b] but which is not of bounded variation.

THE FLORIDA STATE UNIVERSITY UNIVERSITY OF SOUTH CAROLINA

REFERENCES

- [1] Billingsley, P. (1968). Convergence of Probability Measures, Wiley, New York.
- [2] Cacoullos, T. (1966). Estimation of multivariate density, Ann. Inst. Statist. Math., 18, 179-189.
- [3] Chow, Y. S. (1966). Some convergence theorems for independent random variable, Ann. Math. Statist., 37, 1482-1493.
- [4] Epanechinkov, V. A. (1969). Nonparametric estimates of multivariate probability density, Theory Prob. Appl., 14, 153-158.
- [5] Nadaraya, E. A. (1964). On estimating regression, Theory Prob. Appl., 9, 141-142.
- [6] Nadaraya, E. A. (1970). Remarks on nonparametric estimates for density function and regression curve, Theory Prob. Appl., 15, 134-137.
- [7] Rosenblatt, M. (1971). Curve estimates, Ann. Math. Statist., 42, 1815-1842.
- [8] Taylor, R. L. and Cheng, K. F. (1978). On the uniform complete convergence of density function estimates, Ann. Inst. Statist. Math., 30, A, 397-406.
- [9] Watson, G. S. (1964). Smooth regression analysis, Sankhyā, A, 26, 359-372.