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Abstract

Let (X, Yy),---,(X,,Y,) be a random sample from the (k+1)-
dimensional multivariate density function f*(x,y). Estimates of the

k-dimensional density funection f(x)=gf*(x, y)dy of the form

fulx)=

1 :V‘_.W(

®— X . T — X )
nbl(n) ’ . .bk(n) i=1 ’

by(n) b(n)

are considered where W(x) is a bounded, nonnegative weight function
and b(n), ---, bi(n) and bandwidth sequences depending on the sample
size and tending to 0 as » — oco. For the regression function

_ _ o h(x)
m(x)—E(YlX—x)—m

where h(x)=gyf *(x, ¥y)dy, estimates of the form

b — 1 z r,— X % — Xue
"= 5 payl O )

are considered. In particular, uniform consistency of these estimates

is obtained by showing that || Fx)—F(%)]]. and ||%.(x)—m(x)||.. con-
verge completely to zero for a large class of “ good ” weight functions
and under mild conditions on the bandwidth sequences b.(n)’s.
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1. Introduction

Let (X,Y) be a (k+1)-dimensional random vector with the joint
probability density function f*(x,y) and let X be a k-dimensional
random vector with the continuous marginal density function f(x).
Some modified multivariate density function estimates for f have been
discussed by Cacoullos [2] which were based on a random sample
X, Y), (X5, Yy, -+, (X, Y, from f*. In particular, estimates f,(x)
for the multivariate density function f(x) of the form

12 x—X,
(1.1) fﬂ(x)—nbk(n) 2 W< b(n) )

were considered where W(x) is a bounded, nonnegative, integrable
weight function such that

Skk Wix)dx=1

and b(n) is a bandwidth sequence depending on the sample size and
tending to 0 as n — oo,
For the regression function m(x) of Y on X,

’m(x)=E(Y|X=x)=%

where h(x)=S'yf *(x, y)dy, Watson [9] and Nadaraya [5] independently

proposed the following regression function estimates for the case k=1:

v
_hax) _ 3 b(n)
(1.2) m,(X)= =Y, .

flx) = S (x=X

f;l W( b('n)j>

Thus, the estimates for h(x) are

-1 3 x—X,
(1.3) )= s 3 Y.w( o ).

An heuristic treatment of m,(x) as a weighted average of the Y,’s can
be found in Watson [9]. The local properties of (1.1) and (1.2) have
been studied extensively (see Rosenblatt [7]), and global measurements
of deviations of m,(x) from m(x) and f,(x) from f(x) are given by

(1.4) [ ma(x) —m(x)]| = supklm,.(x)—M(x)l

and
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(1.6) I fu(%) — £ (x)] o =8up | fu(x) — f ()] -

xeRrk

In this paper the important large sample properties of the more
general estimates f,,(x) and 7.,(x) are explored where

Aoy 1 i =Xy . B Xa

(1.6) f"(x)“nbl(n)---bk(n) §W< bin) ' bn) )
. ha(x)

1.7 A
(L.7) = F
and

NS D O s o
(1.8) ""(")‘mizﬂw ) b )

Here, W(x) is a nonnegative, bounded weight function and the band-
width sequence b,(n)’s depends on the sample size n and tends to zero
as n— oco. The rate of convergence to zero need not be uniform, and
the possible weight functions include more than the uniform kernels.
Attention will generally be restricted to a density function f*(x,y)
with compact support [a,, b] X [as, b;] X [as, bs] (for notation convenience
only k=2) and weight functions W(x) which satisfy

[ Y
L1 Weodx=1

and vanish outside [af, b]] X[a}, b}]. Also, the continuity of f(x) and
h(x) on compact support [a,, b]X[as b] and on [a}, b]] X[a}, b}] are as-
sumed. However the compact support of f(x) can be eliminated
(Lemma 2) when f(x) has a pth moment, p>0.

The major results of this paper give a new class of “ good ” weight
functions under mild conditions on the bandwidth sequences b,(n)’s.
Uniform consistency of the estimates f,.(x) and m.,(x) is obtained since
|| /() — £(%)]| and ||7h.(x)—m(x)]||.. converge completely to zero (which
implies convergence with probability one). The main tools in obtaining
these results will be approximating polyhedral functions and sub-Gaus-
sian techniques and will parallel the development in Taylor and Cheng
[8]. :
The modulus of continuity, w,(3,, 3,), is defined by Billingsley [1] as

w,(3y, 3;)=_sup |g(s;, 82)—9g(ts, )]
1t1—8,159,
[ta—3851 53,

for 4, 8,>0; (81, 82), (B, Ey) € [a;, b]] X [az, b;]; and g € C([a,, b,] X [a,, b.]), the
space of continuous functions with domain on [a,, b,] X [a,, bs].
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DEFINITION (Chow [3]). A random variable X is said to be sub-
Gaussian if there exists =0 such that

o’t?
(1.9) E [exp (tX)] < exp <_é_) for all ¢ ¢ R.

If X is sub-Gaussian, then let
7(X)=inf {e¢=0: Inequality (1.9) holds}.

Some basic properties of sub-Gaussian random variables which will
be used include:

1. If P[[X|=£K]=1 and E X=0, then

E [exp (tX)]=exp (K't") .
2. If «(X)=a, then
(1.10) P X|=2]=2exp (—2%/27) .

3. The sum of two independent sub-Gaussian random variables is sub-
Gaussian.

A sequence of random variables {X,} is said to converge completely
to a random variable X if

(1.11) SIPIX,—X[>e]<eo

for each £>0.

2. Main results

In this section it is shown that ||f,,(x)—- Ff(x)|l. and ||7m.(x)—m(x)|]
converge completely to zero under conditions on the modulus of con-
tinuity of the weight function W(x) and the rate of convergence to
zero by the bandwidth sequences b;(n)’s.

LEMMA 1. If (i) nbi(n)bi(n)>n’ for some 3>0,

(ii) ww<(b‘+ff,)1;(($+ao, wﬁfﬁl;g;-‘_ao)=0(b1(n)bz(n)) for some in-

tegers 7y, r,>0, and (iii) f(x) has a compact support [a,, b]]X[a,, b,], then

; 1 $i—Xu 8—Xg
FO =i B o o)

completely as n — oo where fn(s) 18 defined in (1.6).

—0

2.1) sup

8cR?

ProoF. First, [af, b{] X[a;, b]] may be expanded to include (0, 0) if
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0, 0) ¢ [af, b]] X [a}, bj]. For the positive integers r;, and 7, let I;=
[tsi-1 t], s=1 or 2, where t,=(a,+a})+[(b,+b)—(a,+a})]i/n™ and let
L,=I;xL, Thus,

n'l n"2

[a,+ai, by+b]] X [a;+as, b+ bj]= U1 ] Lj
i=1j=1

Since W and f vanish outside [af, )] X [a}, )] and [a,, b;] X [a;, b,] respec-
tively and b(n) — 0 and by(n) — 0, the sup in (2.1) need only be taken

over [ay-+al, b+bIx[ax+al, by+b]. Let o= +b2b ((Z;Jf“s) for s=1
or 2 and let
X, X, X, X
W , w H_g 2 \_EW , 2
o 8= W (=gt = s | =B W (3= 3= bz(n>>

for each k=1, ---,n. Thus, E W(s)=0 for each s e [a;+aj, b,+b]]x
[a;+ai, b,+bj] and each k. Furthermore,

(2.2) ww,‘(a}n 3,)= sup |Wk(sb 8)— Wk(tu &)

Is;-t;1s8}
[8g—ty] 582,
X X
< Wis — k1 , 8— x2
= e <s‘ bu(n) bz(n)>
Isg=tyl S8y X, x
—wlt P ‘
<l by(n)’ bz(n)>
X, X
s EWl(s— K g— X2
Tk, ¢ b)) bz("l')>
Isg—tylSe% X, X
EW< . |
bi(n ) bz('n)>

é za’W(arln a:) .

Hence, wy,(3}, 8) <2ww(3;, 37)=0(b(n)by(n)) for each k from Condition
(ii). For £>0 let

(2.3) AF[W[Q;?&,W W%Wéw(b,(n) bz('n)>|> ]
ay+aySsySby+D)
- [ér,lgfrl (sl,sg)eIu —ﬁgl(anz(n—) §=] LE < b(n)’ b;;z) > i >s} )
j=n"t
Hence,
(24) A"C[1<,<nr1 nbl(nl)bz(n) 2W( E@)’ bi:,))l

1=j=n"2
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+ max sup
1=i=n"1 (s1,s3) 1y
1=j=n"2

—W<b,t(l;z) bz%fz) >] l >s]'

WE [W < b(n)’ bE@) )

However,
max  sup ——I——i‘, Wk( Sy )—-W,,( by by )1
i<'S": 1 (s1,s8) Ty MDy(M)by(m) %=1 b(n) "~ by(n) by(n)’ by(n)
=j=n"2
< 20w (33, 37) ]
— bi(n)by(n)

Since 2wy(3:, 32)=0(b(n)by(n)) by Condition (ii), there exists N(r, r;)
such that

A"C[ii’fif:x m 2 W ( blt(lfz) bzt(2'l{l,) ) l >5 }
sism,

for all n=N(7,, r;). Using the basic properties of sub-Gaussian random

s T t tZJ e le— } :|
variables HW,( b))’ Bm) ) k=1,2, .-, nt for each 1, for each =

gN('rlv 1‘2)
1 LI t t €
P[A]l=P - = u by JIS &
[A.]= [gi’f )by & W<b1(n) bz(n)>‘> 2]
j<n"

1 st by \|oe
=2 Elp[l 1by(m)by(m) EW(bl(ﬁ) by(m) ) l > 2]
<n"*72 exp (—€'/4||W||% B,)

where

— 1 2- 1
”W”“_(,PS,EERJW(S” s)] and B,= k21<nb1(n)bz(’ﬂ)> T b m)bi(n)

To obtain the complete convergence of (2.1), consider

N(r 1T9)

@5  RPlAl= X PlAl+ 5 PlA)
- ri+7g - sznbz(n)bg(n)
sNrym)+ 520 exp( WL )

SN, )+ > 2nitniexp (—en)

n=N(r;,r9)+1

where c¢=¢¥4||W||%.. Thus the series in (2.5) converges by the integral
test.
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The compact support of the f(x) can be relaxed if any moment
»>0 exists. Lemma 2 summarizes this result and again is stated only
for k=2. The proof of Lemma 2 is similar to the univariate case in
Taylor and Cheng [8] and is omitted. Recall that ||(a, b)||=(a*+b%)"2.

LEMMA 2. If (i) nbi(n)bi(n)>n’ for some 38>0, (ii) Sllx”"f(x)dx

<oo for some p>0, and (iii) W( 2:5}2{;;3’0 , 2-;,(2%(_7:)1;) > =o(b,(n)by(n))

for some integers r,, r,>1/p, then

A 1 $i—Xu 8—Xip
Sup | Solen S2) =y o s )

completely as n— oo where f,:(s) 18 defined in (1.6).

—0

LEMMA 3. If the underlying density, f, is umiformly continuous,
then

—0.

1 $i— Xy 8&—X,
2.6 su EWw(S=Xu 3 “)—fs,s
@6 5% | Smbm) ( bin) ' by(m) (6 &)

ProoF. Since f is uniformly continuous on R? given ¢>0 there
exists >0 such that | f(s], s})— f(s, s.)|<e whenever ||(s], s)—(s, 8)||<3.
Let N be sufficiently large so that ||(b(n)y,, b(n)y:)||<d for all n=N
and all (y, %) € [a], b]] X [a}, B}]. Since Wi(y,, ¥,)=0 for (¥, ¥) ¢ [al, b]]1 X
[af, b,

8 —Xiu 8—X, _
w( bin)  bin) )= s s

1
€D |y

1 $i— % S$— X, _
= W SRz W< by(m) , by(m) >f(xn x)dx,dx,— f(s, Sz)|

[, W 9 £ = b0, 5=ty — £ (51, )|

=1, W, Wb, s—bim) - Flsu s)dudus|

=€ SR2 Wy, y)dydy,=¢

uniformly in (s;, s;) for all n=N. Hence

1 s —X, 8,—X, _
WEW< by(n) ! by(n) ) S(81, 82)

—0

sup
8ecR?

as n — oo,

If the density, f, is continuous on KR! and has compact support,
then it is uniformly continuous and all pth moments exist. Conditions
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(ii) and (iii) of Lemma 2 are easily satisfied, and the more general
hypotheses of Lemmas 2 and 3 are listed for Theorem 1. First, it
should be indicated that the case where f is only known to be continu-
ous on [ay, b;] X [as, b;] is not entirely excluded from consideration.

COROLLARY 1. If the underlying density function, f, is only known
to be continuous on [a,, b)) X[ay, b)], then for arbitrarily small e, &,>0

1 $— Xy 8—X,
E W( 1 u S 2\ __ ’ -0
a;+e S8 Sb -4y bl(n)b2(n) bl(n) bz(’n) ) f(sl 32)

AgtegS8ySby—eg

as n— oo,

The &’s in Corollary 1 and Corollary 2 can be considered as func-
tions of n which tend to zero as m— oco. The proof of the following
theorem is immediate from Lemmas 2 and 3 since for each ¢>0

@9 Pl iy 2 iy i) 0] >
<P [sun s iy 2 i )
-ew(se )l ]
=zl =7 i i) 1>

and each of the terms in (2.8) is a convergent series in n. All of
the conditions will be stated in Theorem 1 for easy reference, and in
particular will be stated for arbitrary k-dimension.

THEOREM 1. Let {X,} be independent random wvectors with the
same density function f(x) which is uniformly continuous on R*. Let
Wi(x) be a nonmegative weight function which is continuous on its com-
pact support [af, bj]1X - - X[af, bi] and integrates to 1. If (a) mbi(n)---

n)>n' for some 3>0, (b) S[lx[|”f(x)dx<oo Jor some p>0, and (c)

ww<ﬁﬂ__ai)_’ ce, M) =0(b1(’n)' . bk(n)) for some integerrs 74
n"1by(n) n7kby(n)
-+, 1, >1/p, then

sup

8eRk

1 n 1_Xi1 . 8 — .
nby(n)- - -by(n) i g ( by(n) ’ ’ by(n) > S(sy, y Si) 0

completely as m — oo.

COROLLARY 2. If all of the conditions of Theorem 1 are satisfied



UNIFORM COMPLETE CONVERGENCE OF ESTIMATES 195

except it 1s only known that f is continuous on its compact support,
then for arbitrarily small e, &, - -+, >0,

1 i s — X, 8, —X;
1 sw(s i, S ik \ e, 0
wresLy | () By ( b(n) by(n) ) Flou oo 8=

completely as n— oo where a+e<s<b—e indicates that the relationship
holds in each coordinate.

The condition nbi(n)---bi(n)>n’ need not hold for all » but only
eventually. Also, the condition could have been stated as

S: a1t e exp (—cabi(x) - - - bi(x))dx < oo for some d>0

where b,(x)’s are functions which generate the bandwidth sequences
b,(1), b,(2), ---, 2=1, ---, k, and ¢>0 is a constant.

Attention is now directed to establishing the uniform complete
convergence of [|[7m,(x)—m(x)||. to zero. Again, for notational con-
venience k=2.

LEMMA 4. If the regularity conditions im Lemma 1 are satisfied,
then

1 i 8 —Xy $—X,
su G| Y W 1 i , 2 1.
ReARTY X Rl < b(n) ' byn) >

1 si— Xy 8,—Xjp
ey 55 s )

completely as m — oo.

Proor. The proof follows similarly to the proof of Lemma 1.
First, define

i X X X X
* ’ =Y, — i y OS2 ) —E(Y,W{s— " A .
Wi*(sy, s5) iW<sl b(n) Sz by(n) > ( ! <81 by(n) o by(n) >>

where

E<Y‘W<S‘_ blj((;zl) A bf(i:) ))

= SR3 yW(sl— bla(C;z) , 83— b:f;a) ) S*(xy, 25, y)dardaedy .
Thus, E W*(s;, $)=0 for all s, s, and 7 and wy*(d;, 3;) <2Mwy (3}, J7)
where ||Y;[|[<M a.s. Hence, wyx(3;,d;)=o0(bi(n)b(n)) a.s., and the re-
mainder of the proof follows from the proof of Lemma 1 with the
e2

AW

new constant being ¢'=
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A moment condition again could be used to relax the assumption
of compact support for Y with the modifications being similar to Lem-
ma 3 but will not be stated. The next result will establish the con-
vergence for the mean.

LEMMA 5. If h(x) is uniformly continuous on R?, then

1 55— Xy &—Xu)_
WEY‘W( b(n) ~ bin) )~ hisu 2

—0

(2.9) sup

8cR?

as m— oo,
Proor. First,

1 8 — Xy sZ_XIZ
s B o i)

— 1 S$i— XLy S— %, *
——b_,('n)b—z(n)— SxayW< by(n) ' by(m) )f (x4, x5, y)dx,dwdy

(2.10)

1 $—& 88—
=y Y, 1= STV X =g, Xp=
bi(n)by(n) SE( 1W( b(x) ' i) ) W= o x)
'f(wl) xz)dmldxz

— 1 81— X S;— Xy
—W SRZW< by(n) ’ by(m) >h(w1’ xo)dx,d,

= ng Wy, y)h(si—bi(n)y, s:—bo(n)ya)dydy. -

Next, N can be chosen large enough so that ||(b(n)y,, by(n)y,)||<8 for
all (yy, v.) € [ay, )] X[a,, b;] when n=N. Hence, from the uniform con-
tinuity of % and (2.10),

1 $i—Xy 8,—X. _
‘W Y1W< bl(n) ’ bz(n) > h'(Sn Sz)

- l SR” Wy, yo)lh(si—by(n)yy, $,—by(n)ys) — (s, 8:)]dy,dy,

<e| W, wiydy:=¢ uniformly in (s, 5,
R

for all n=N.

The following theorem on the complete uniform consistency of ﬁn
can be proved immediately from Lemmas 4 and 5.

THEOREM 2. If the regularity conditions of Lemmas 4 and 5 hold,
then
(2.11) Sup | hu(s1, 85)—h(sy, 8,)] — 0
8cRr?

completely as n— oo,
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COROLLARY 3. If the regularity conditions of Lemma 4 are as-
sumed and h(s,, 8,) is continuous on its compact support [a,, b]x[a,, b]
only, then for arbitrarily small ¢, &,>0

A
sup | (81, 82)—h(81, 83)| — 0
(83,89)€lay+eg,by—¢y]x[ag+eg, bg—ey]

completely as n— oo.

The stage is now set to obtain the complete uniform consistency
of m, to m.

THEOREM 3. If the regularity conditions of Theorem 1, Lemma 4
and Lemma 5 are satisfied and if there exist &, ei>0 such that in
[ai+et, by—ei]l X [az+€i, b—e5] =C }Eg Sf(s1, 8)=p>0 and §Ecpim(3u &)|=v<
oo, then

(2.12) sup [a(81, 85) —m(81, 8)| — 0
completely as n — oo,

Proor. First
(2.13)  sup |ri,(s1, 8)—m(ss, 8))|

§Sup il:,,(sl, Sz) _ }:’(sly sZ)
8cC f,,(sl, 82) fn(sl) 82)

< (inf £(s1, 80)7! hu(s1, 8)—h(s1, 8)|+sup

<(inf folsy, 8) ™ {lAnlsy, 30)— sy, 50|
+5up|ms, ) Sup | filss, 8)—f(s1, sa)I}

h(si, 8) _ h(sy 8)
Fis, 8) (8 )
h(sy, s5) _ h(sy, 8y)
f,,(s,, 8)  JS(8, 8)

8cC

Since }ng S(s1, 8)=p>0 and || f,,——f ||« — 0 completely by Theorem 1,

the result easily follows from Lemmas 4 and 5 and (2.13).

3. Comparisons and useful weight functions

In this part, a few brief comments on Nadaraya’s [6] conditions
and on useful weight functions which satisfy the results of this paper
are listed for comparisons.

To obtain a strong law rather than uniform consistency in prob-
ability, the conditions on the weight function and bandwidth sequences
are expected to be more stringent. For example in the case k=1, let
f(s) and m(x) be unknown continuous density and regression functions
on R. If
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(N1) W(x) is a function of bounded variation such that
sung(m)Koo , lim |z W(x)|=0,
Te T—too

S |W(w)|de< oo , S W(w)do=1;

(N2) —co<AZSY<B<oco with probability one and
min  f(x)=p>0; and

—0<asSTSh<o
(N3) f.‘;. exp (—yrnb*(n)) exists for each y>0, then
n=1

[|7(x) —m(x)||.. — 0 with probability one (Nadaraya [6]).

For the results of this paper, the weight function W(x) was re-
quired to be nonnegative and continuous on its compact support along
with a smoothness condition. The condition on the bandwidths sequence
for the case k=1 reduces to mb*(n)>n’ for some 4>0. For useful
weight functions, Epanechnikov [4] considered multivariate density
function estimates of the form

n k _ g
= ).

b;(n)

Setting b,(n)=b(n) and W,(s)= W(s) for j=1, ---, k, the optimal weight
function Wy(s) was found to be

3 38
Wys)={ 456" 20(5)"

0 otherwise

for |s|=(5)"*

in minimizing the relative global error. For this case, let a=—(5)"*
and b=(5)"". Then, Wy(s;, 8;)= Wiy(s) Wi(s:), and |Wi(s;, ) — WL, &)<

4
¢i|si—ty|+cls;—1,| for constants ¢; and c¢;. Moreover, oy (3;, 37)= b c; -
(n)nn

for constants ¢, and ¢, and the optimal weight function

&
by(n)n
easily satisfies the smoothness condition of this paper.
If the weight function W(s, s;) satisfies a Lipschitz condition of
order a, then

[W(sy, 8)— W(ty, t)|<M||(s1, 82)— (¢, E)I|* and

2(b;—ay) 2(by—ay) <M (2b,—2a,)* | (2b,—2ay)*\*”
“’W< b(nyn’ bynyn: >= < By Bi(mynt: )

for some M >0. Hence, bandwidth sequences b,(n) and by(n) are to be
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chosen so that

1 1 1 7
by(n)by(1) [n'lbl(n) + n’2b2(n):l -

as n— oo for some integers 7, r,>0. Let b(n)=n"" and by(n)=n"7
for p,>p.>0 and let r,=7r,=7, then

3.1) 1 S W 2 _
n‘(P1+P2) n"n"?l n"n‘?z - n—(pl+p2)narn—upl

If @>0 or a< —(p,+p,)/p;, then a positive integer r can be chosen so
that (3.1) converges to zero as n — oo.

For the bandwidth sequences b,(n)=b(n), Epanechnikov [4] found
the optimum bandwidth sequence (minimizing the asymptotic relative
global error) to be

bo(n)~<:1[;; )1/(“4)

0

where k is the dimension, L=S W¥x)dx, and
R

M [ B8 e,

i=t ox?

When L and M, are bounded and M,+#0, then there is no difficulty in
showing that the optimum bandwidth sequence satisfies the conditions
of this paper. Finally, it should be noted that a weight function W(x)
exists satisfying a Lipschitz condition of order 0<a<1 on [a, b] but
which is not of bounded variation.
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