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Summary

The concept of ignorance prior distribution is extended to the case
of a hyperparameter. This leads to a procedure of formulating the
partial ignorance of the original parameter. Its application to the
estimation of the mean of a multivariate normal distribution with a
particular hyperparameterized prior distribution of the mean leads to
an improper prior distribution with the corresponding posterior mean
very close to the James-Stein estimate.

1. Introduction

Stein ([56], p. 280) discussed a strange inconsistency between the
posterior distribution of the mean & of a multivariate normal distribu-
tion with covariance matrix equal to the identity, obtained by assum-
ing the uniform improper prior distribution, and the distribution of the
observation 2 when ¢ is known. Efron [3] expounded the phenomenon
as one of the controversies in the foundation of statistics. This is
typically represented by the inconsistency between the posterior in-
equality Prob {||£]|>]|z|| |x} >0.50 and the data distributional inequality
Prob {||x]|>]¢]| |6} >0.50, where ||x|| denotes the Euclidean norm of x.
Efron argues that, being emphasized by the introduction of the James-
Stein estimate, this inconsistency suggests that a theory of objective
Bayesian inference, if exists, must be a great deal more subtle than
previously expected.

Strawderman [7] obtained proper Bayes minimax estimators of ¢
by assuming the prior distribution of ¢ to be normal with zero mean
and covariance matrix ¢*I with ¢* distributed according to the distribu-
tion (1—a)™'27%d4, where 1=1/(14+¢°) and 0=<a<1l. He acknowledges
the suggestion by Stein for the choice of the prior distribution for
which the calculations are tractable. This convenience for the calcula-
tion was also the main reason of the choice of the improper prior
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density =(&)=||£||7?** by Stein [5], where ¢ is the dimension of &, to
avoid the inconsistency mentioned in the preceding paragraph. Later,
Stein [6] developed an argument for the use of a nearly harmonic
prior density in the absence of firm prior information. He developed
a comparison between the James-Stein positive part estimate and the
related formal Bayes estimate based on the improper harmonic prior
density =(£)=||¢||79** and concluded that the difference would not be
significant.

The purpose of the present paper is to provide an answer to the
question raised by Efron about the so-called objective Bayesian infer-
ence. It is shown that, in the Strawderman’s Bayesian model, the
uniform prior distribution over (0, o) of the transformed parameter
r=log (1+¢? provides a reasonable representation of ignorance of o
This is based on the extension of our interpretation of Jeffreys’ igno-
rance prior distribution as an impartial prior distribution (Akaike [1])
to the case of an ignorance prior distribution of a hyperparameter.
The ignorance prior distribution of ¢* thus obtained represents a par-
tial ignorance of # and corresponds to the limiting case a=1 of the
Strawderman’s prior distribution. It is confirmed analytically, and also
experimentally, that the corresponding prior distribution of ¢ is close
to the harmonic prior suggested by Stein.

2. Representation of partial ignorance

When we adopt a distribution p(x|0) as an approximation to the
distribution p(x|6’), we measure the degree of approximation by the
entropy of p(x|6') with respect to p(x|6) which is defined by

o1 109 o010} = — | ZELD 1og (BED i
@D B, pC10)=—) DR log |ZE 08 plalond
Jeffreys’ ignorance prior distribution can now be interpreted as the
locally, or sometimes globally, impartial prior distribution of the para-
meter 6, defined as the uniform distribution in the space of some
transform ¢ of the parameter # where a small deviation dg=¢'—¢
causes equal decrease of entropy for every ¢, where ¢ and ¢’ cor-
respond to 6 and ¢ of (2.1), respectively (Akaike [1]).

Now we want to incorporate our prior information by specifying
a particular prior distribution of #. To represent our uncertainty in
the choice of the prior distribution, we consider the use of a family
of prior distributions p(f|p) parameterized by a hyperparameter p. If
we specify a proper prior distribution p(o) of o and the data x is ob-
served the Bayes procedure transforms the prior distribution p(6|p)p(p)
into the posterior distribution p(6|x|e)p(p|x), where the two factors are
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respectively given by

2.2) p(0|z|0)=LEOPELO) 13 p(p)z)=PElL)P()
(@|p) ()

defined with p(x[p):S 2(%]6)p(6]0)d8 and p(x)=S 2(z|p)p(o)dp. Since we

are certain that under the assumption of p(6|p) we will adopt p(6]x|p)
as our posterior distribution the choice of p(p) affects our inference
only through the definition of p(p|x). Thus we can extend the de-
finition of ignorance prior distribution to the present situation by re-
placing p(x|6) of the preceding paragraph by p(x|p). The resulting

prior distribution p(ﬁ)zs (0 p)p(p)dp, which may be improper, would

then be a representation of our partial ignorance of 4.

3. Partial ignorance of the mean of a multivariate normal
distribution

To treat the problem discussed in Introduction we put #=¢ and
assume that p(x|0) represents a g-dimensional normal distribution with
mean 6 and covariance matrix equal to the identity I. We also as-
sume that p(d|p) is a g-dimensional normal distribution with mean 0
and covariance matrix pI. By convolving the above two distributions
we get p(x|p) which is a g-dimensional normal distribution with mean
0 and covariance matrix (1+p)I. By (2.1) we have

B{p(-10. (-1} = (L) {log (11%’:)—11—1‘;41} ,

and we can see that the entropy is a function of log (14 o')—log (1+p)
only. This shows that by the transformation r=log (1+p) the same
difference in r produces the same decrease of entropy everywhere.
Thus the ignorance prior distribution of p, which is globally impartial
to the choice of p in this case, is defined by the uniform distribution
with respect to dr.

The (improper) prior distribution of @ is

3.1) p(a)-:S:(z’lm)"” exp(——z%ﬂﬁllZ)T@f;
=<?17r—)q/23_q/2 S: vq/2-—1<_s_:}-3_;> exp (—v)dv ,

where s=||6||%/2 and v=s/p. Obviously p(f) is approximated by Cs¢*
when s is large and by Cs~#?**! when s is close to 0. This suggests
that our prior distribution shows a good agreement with the Stein’s
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suggestion of nearly harmonic prior density. It puts more weight on
smaller values of ||4|| than the harmonic prior ||#||~¢*? which is obtained
by replacing (1+p) 'dp by dp in (3.1).

4. Estimation of the mean of a multivariate normal distribution

For the present p(x|6) the entropy B{p(-|6'), p(-|6)} is equal to
—(1/2)||6—¢"||>. Thus we can see that the quadratic loss coincides
with our entropy criterion. When p is known the Bayes estimate of
8 is given by {p/(1+p)}x. The mean of the posterior distribution of ¢
is then given by 6*=E,.{p/(1+p)}x, where E,, denotes the expecta-
tion with respect to the posterior distribution of p when z is observed.
This posterior distribution p(p|x) is given by

p@mozca+wrﬂ%ump(—§a§;5HMP)

Thus we have
EPII {1/(1+p)} = Tq+2(s)/Tq(s) ’

where s=||z||?/2 and
—\7 yart -3
T(s) SI u exp< )du .

With the change of the variable u into v=s/u we get T, (s)=s""*r(q/2, ),
where r(a, ) denotes a normalized incomplete gamma function

r(a, x)= S: v~ texp (—v)dv .

From the equality 7(g/2, 8)=(q/2—1)r(q/2—1, s)—s¥*"'exp (—s) for ¢>2,
we get the recurrence formula

T,M(s):EqS—Tq(s)——sl— exp (—3)

with Tys)=s"'{l—exp(—s)} and T\(s)=s""2x"2{¢((28)"*)—0.5}, where
#(x) denotes a cumulative distribution function of a unit normal variate.

Since we have || —0%||=(28)"*{T,.«(8)/ To(s)} we get |[x—6%||<2"* for
s<1. For s=1 we have |la—0*||=(2s)""{s'r(q/2+1, 8)/r(a/2, 8)} =2""r(q/
241, )/7(q/2,1). Thus we can see that the difference of the losses
||6*—6]|*> and ||x—6||* is bounded. Brown ([2], p. 898) has shown that
such an estimate 6*, which is a generalized posterior mean defined by
an improper prior distribution p(6), is admissible if

| i) dr=co,
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where f(r) is defined by f(r):Sp(xlﬂ)p(())d& for r=||z|. In the pre-
sent case we have

=\~ L o -q/2 <_ 1 2> dp
7 So (27:) (1+p)™" exp 2(1+P),r 1+p

With the change of the variable p into t=7%(2(1+p)) we can show
that (r*'f(r))'>rz"}I'(¢/2). Thus the present 6* satisfies the Brown’s
condition of admissibility.

Although Strawderman [7] limited his prior distribution of 1=1/
(1+p) to 27%/(1—a) (0<a<]), it is easy to see that his proof of mini-
maxity holds for ¢=4 with the improper prior density A~ which cor-
responds to the case a=1. Since A17'di=(1+p) 'dp is identical to our
ignorance prior distribution of p, this shows that our #* dominates x
as an estimate of 6 and is minimax. In particular, we have x—6*=
{T44(s)/ To(8)}x, where

TEES) =<ﬁw_II%)(qﬁz B qE2 ex’f‘q((;)S) )

Taking into account the equality

Bl ol

we can see that the quantity within the above second parentheses
grows from 0 to ¢/(¢g—2) as s is increased from 0 to infinity. Since
the positive part James-Stein estimator is defined by {1—(¢—2)/||z||*} 'z,
where 4 denotes the positive part, this suggests that the present #*
is more shrinking than the James-Stein estimator for large values of
[|z||?, while it is less shrinking for small values of ||x||%.

5. Numerical results

The comparison of the performance of the present estimate 6* with
that of James-Stein estimate has been performed by a Monte Carlo ex-
periment. The experiment was performed by first sampling % from
N(O, I) to define =ou and then defining the observation by z=0+2z with
z independently sampled from N(0, I). The trial was repeated 1000 times
for a set of ¢’s. The positive part James-Stein estimate, #* and the
estimate corresponding to the harmonic prior ||]|~?*?, computed by the
formula (24) of Stein ([6], p. 361), were obtained together with the
least squares estimate and the Bayes estimate when ¢ was known.
These estimates are denoted by J-S*, 6*, harmoniec, LS and BAYES,
respectively. For an estimate 6(x) the loss is defined by ||8(x)—8|%
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The sample averages of the loss are shown in the Table. The square
root of (sample variance of ||6*—6|*)/1000 is denoted by SD and its
values are shown within the parentheses in the Table.

Table

Comparison of average losses. SD denotes the square root of
the sample variance divided by the sample size.

[ LS BAYES J-st o*  (SD) harmonic
(¢=2)
0.125 1.951 0.029 1.951 0.825 (.035) 1.951
0.25 1.951 0.113 1.951 0.851 (.036) 1.951
0.5 1.951 0.385 1.951 0.946 (.036) 1.951
0.75 1.951 0.697 1.951 1.078 (.038) 1.951
1.0 1.951 0.972 1.951 1.226 (.041) 1.951
1.5 1.951 1.352 1.951 1.496 (.048) 1.951
2.0 1.951 1.565 1.951 1.689 (.054) 1.951
3.0 1.951 1.762 1.951 1.891 (.060) 1.951
5.0 1.951 1.881 1.951 1.979 (.062) 1.951
20.0 1.951 1.948 1.951 1.955 (.062) 1.951
100.0 1.951 1.951 1.951 1.948 (.061) 1.951
(¢=4)
0.125 3.895 0.061 1.406 1.052 (.037) 1.929
0.25 3.895 0.231 1.518 1.130 (.037) 1.984
0.5 3.895 0.783 1.892 1.414 (.039) 2.179
0.75 3.895 1.405 2.332 1.808 (.044) 2.438
1.0 3.89%5 1.948 2.708 2.231 (.051) 2.707
1.5 3.895 2.692 3.207 2.940 (.064) 3.142
2.0 3.895 3.109 3.458 3.368 (.072) 3.410
3.0 3.895 3.497 3.675 3.713 (.080) 3.660
5.0 3.895 3.738 3.810 3.852 (.083) 3.807
20.0 3.895 3.883 3.887 3.888 (.083) 3.887
100.0 3.895 3.894 3.894 3.893 (.083) 3.894
(¢=9)
0.125 7.989 0.122 1.347 1.342 (.044) 2.028
0.25 7.989 0.467 1.640 1.547 (.044) 2.213
0.5 7.989 1.598 2.634 2.297 (.047) 2.879
0.75 7.989 2.888 3.786 3.323 (.056) 3.768
1.0 7.989 4.020 4.814 4.382 (.069) 4.666
1.5 7.989 5.573 6.148 6.000 (.092) 6.033
2.0 7.989 6.439 6.844 6.863 (.106) 6.79
3.0 7.989 7.235 7.445 7.518 (.116) 7.441
5.0 7.989 7.715 7.797 7.835 (.119) 7.797
20.0 7.989 7.979 7.984 7.989 (.121) 7.984
100.0 7.989 7.991 7.991 7.991 (.121) 7.991
(g=20)
0.125 20.152 0.306 1.422 1.718 (.047) 2.195
0.25 20.152 1.168 2.254 2.360 (.048) 2.821
0.5 20.152 3.969 5.007 4.676 (.058) 5.061
0.75 20.152 7.151 8.149 7.689 (.080) 7.941
1.0 20.152 9.946 10.843 10.541 (.106) 10.655
1.5 20.152 13.810 14.407 14.404 (.145) 14.387
2.0 20.152 15.999 16.394 16.415 (.162) 16.393
3.0 20.152 18.040 18.247 18.256 (.176) 18.247
5.0 20.152 19.316 19.397 19.399 (.184) 19.397
20.0 20.152 20.087 20.092 20.091 (.189) 20.092
100.0 20.152 20.147 20.148 20.147 (.190) 20.148
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It is remarkable that the performance of the positive part James-
Stein estimator J-S* becomes quite similar to that of 6* even for ¢=8.
For ¢=20, practically there is no difference. Although the numerical
result is not included in the Table, the comparative pattern of shrinking
of the estimators was just as predicted in the preceding sections. In-
cidentally, the harmonic estimator is not performing well compared
with 6* when ¢ is small. This is due to the difference of the prior
densities dp and (1+p) 'dp. It is interesting to see that 6* is perform-
ing satisfactorily even when ¢=2, where 6* is not minimax.

6. Concluding remarks

Although the analysis of statistical characteristics of Stein type
estimates has been well developed, there remained, as was mentioned
by Stein ([6], p. 346), the problem of choice among admissible estimates.

Recently Takada [8] developed an interesting characterization of
the positive part James-Stein estimator as the posterior mode corre-
sponding to a particular choice of the improper prior distribution.
However, by his paper, it is not clear how we can motivate the choice
of such a prior distribution. The result of the present paper shows
that the concept of partial ignorance combined with a particular hyper-
parameterized prior distribution provides a reasonable solution to the
problem contemplated by Stein. Once this observation is confirmed we
can quickly recognize that the same idea will be applicable to other
Bayesian models with hyperparameters.

It is often mentioned that the practical application of the James-
Stein estimate is rather limited. The present analysis shows that this
is natural as the estimate can be viewed as an approximation to a
generalized Bayes estimate with a rather limited structure of the prior
distribution. It is usually necessary to incorporate further prior in-
formation on the preference of parameter values through the specifica-
tion of the hyperparameterized prior distribution p(|p) to make the
estimate useful for a particular application.
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