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Summary

Expressions for the moment generating functions, cumulants and
coefficients of kurtosis of a generalization of the logistic distribution
are derived and used to show that any symmetric version of this dis-
tribution can be closely and simply approximated by a Student ¢ dis-
tribution. Related approximation of the distribution of the logistic
sample median is discussed.

1. Introduction
The logistic distribution defined by the distribution function
(1.1) F(z)=[1+exp (—2)]™,

—oo<x< oo, has been used in a variety of statistical studies: Verhulst
[11], Pearl and Reed [7] and several other authors used it in the study
of population growth; Berkson [1] and Cox [2] employed it in a model
for analyzing bioassay and quantal response experiments; Plackett [8]
considered its use in problems involving censored data; Gumbel [3],
Gumbel and Keeney [4] respectively showed that it is a limiting dis-
tribution of the standardized mid-range and the extremal quotient of
a sample. Recently Mudholkar and George [6] pointed out that because
of its large tails, the logistic distribution standardized so as to have a
unit variance, is closer to a similarly standardized Student ¢ distribu-
tion with 9 degrees of freedom than it is to a standard normal distri-
bution.

Although various generalizations of this distribution have been
proposed, notably by Gumbel and Dubey (see Johnson and Kotz [5]
and Prentice [10]), not very much is known about their properties. In
this paper some properties of a generalization of the logistic distribu-
tion are described. After obtaining expressions for the cumulant of
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the generalized logistic distribution, it is shown, by equating cumulants,
that the symmetric version of the distribution is very well approximated
by the Student ¢ distribution. Furthermore, it is shown that the
parameter of the symmetric generalized logistic distribution and the
degree of freedom of the Student ¢ distribution which approximates
it, can be very well fitted by a least squares line. These results are
used to suggest approximations for the distribution of the logistic sam-
ple median.

2. The generalized logistic: Moment generating functions
and cumulants

Let X be a beta random variable with parameters p and ¢ (denoted
by beta (p, q)) and let

(2.1) Y=log [X/(1—X)] .

Y has been called a generalized logistic random variable by Johnson
and Kotz [5]. The moment generating function of Y is readily shown
to be given by

(2.2) er(0)=I'(p+0)I"(q—06)/I'(D)I'(q) -

For values of (p, q) equal (1, 1) and (oo, o), the distribution of Y can
be shown to be respectively logistic and degenerate normal. Moreover
it can be shown that Y has the same distribution as —log F'(2q, 2p)—
log (¢/p), where F(2q, 2p) is an F statistic with 2¢ and 2p degrees of
freedom. This last fact can be used to show that Y+log (¢/p) has ex-
treme value minima and extreme value maxima when the values of
(p, q) are (1, o) and (oo, 1) respectively. The density function of Y+
log (p/q) was given by Prentice [10].

By using the well-known definition of the gamma function, namely

(2.3) I'z)= [e‘” 1T eﬂ / [z n]i]'l(1+zn“)} :

n=1

where z is any complex number, and r is the Euler constant, and I'(-)
is the gamma function, it can be shown that

@4  Te+or@-0=|ee oo /leo) Toe.m)],
where

(2.5) £0)=pq+(q—p)0—0",

and
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(2.6) 7@, n)=1+(p+gm ' +£0O)m" .
Hence
@7 er(0)=1{£(0)/£(6)} le {# 0, )/¥(6, )} .
But
ﬁgp‘(ﬁn ﬁ[(n+p)(n+q) 02—(z:p)0]
-enesa) - o)
=firon I [-arata)

therefore

o= g i 1 eTae T

Simplifying further, it is easily shown that

= ¢ —(q—p)f 1™
2.8 0= 1—-_ 2"\ PP
&9 wO=[ -t
Consequently the cumulant generating function is given by
(2.9) log ¢y (0)=— é log [(n+p)(n+q)—{6°'—(¢—p)i}]
+33 log (n+p)(n+9) ,

and the rth cumulant by

dr

@10)  k(V)=-3 =

log [(n+p)(n+q)— {6"—(g—D)0}1|o-0 -

In particular, the first four cumulants are given respectively by

@11)  &(Y)=(p—0) 3 [(n+p)(n+g)]"
(212)  K(Y)=32(n+p)(n+)] "+ 3 (p—gfl(n+ P (n+9)]

213)  w(Y)=3 6(—q)[(n+p)(n+9)]+3 20— (04 D) (n+))

and
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214  r(V)=3 [12/{(n+P)(n+9)}+24p— ) {(n+p) (n+)}*
+6(p—)'/{(n+p)(n+9)} 1.

In the special case when p=q¢=21, corresponding to the symmetric
generalized logistic

(2.15) or(0)=TI [1—6/(n+2/1".

Hence for any positive integer r, the cumulant

@16)  x(¥)=—3} -1 log [1—6%/(n-+ )}

S22l an)

§=0

(r—1)! i (n+2), if r is even,

0, if » is odd.

When 2=m or m+1/2, m a positive integer, these cumulants have
forms that are easy to compute: Let A=m+41/2, and let » be a posi-
tive even integer. It can be shown that

kA Y)=24(r—1)! 33 (2n+1)" .
But
3 (2n+1)-r=§0 @n+ 1)_,_%: @n+1)

=S =3 @)= S @n+1)”
=27@ - 13 @+,

=0

where C(r)———i n~", is the zeta function. Hence
n=1

(2.17) k(Y)=2(2"—1)(r—1)1(r)— 2+ (r—1)! '"2_: (2n+1)~".
In particular,

(2.18) K Y)=n'—8 '"z_i: @n+1)~

and

(2.19) (Y)=2n'—192') (2n+1)*.
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By a similar procedure, it can be shown that when 1=m,

(2.20) k. Y)=2[(r—1)!][c(r)—’g 2n"] .
When =2 and 4,

(2.21) o Y)=n2/3-—':§': on?

and

(2.22) Kk Y)=27z4/15—’;§ 120+,

This latter case is of some interest: When m=2, it can be shown
that the moment generating function ¢,(d) can be expressed as

(2.23) v (6) =’"T[: (1—6%/n?) (x8/sin x6) ,

where (nf/sin z6) is the moment generating function of the logistic dis-
tribution function given by equation (1.1). It can be shown that ¢,(6)
is the moment generating function of the median of (2m—1) independ-
ent logistic variates.

3. Student t-approximation

The similarities in the shapes of the logistic and the normal dis-
tributions have been noted by several authors. An excellent summary
of this observation is found in Johnson and Kotz [5]. Recently, how-
ever, Mudholkar and George [6] showed that the Student ¢ distribution
function with 9 degrees of freedom, when standardized so as to have
variance one provides a better fit of a standardized logistic distribution
than the standard normal. By equating coefficients of kurtosis we now
show that this property extends to essentially all members of the family
of symmetric generalized logistic.

The coefficient of kurtosis of a symmetric generalized logistic with
parameter =1 is given, using equations (2.19) and (2.20), by

1-2[71"‘—9‘:)1%‘,1 n"jl/[nz—ﬁmz_}l n‘z}z, if 2=m
n=1

n=1
3.1 Y)= m— m—
@D AY) 2[7r‘——96 3] (2n+1)":]/[7r2—8 ) (2n+1)'2T,
n=0 n=0
if 2=m+1/2.
Equating £,(Y) to 6/(v—4) the coefficient of kurtosis of a Student ¢ with
v degrees of freedom, we get
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4+5[n2—6 bS) n'z]z/[n'"—QO S| n“:l if 2=m,

(3.2) = 4+3[n2—8 '"2'3: @n+ 1)-2]2/ [n‘—96 "i;:: (2n+1)"]
if z=m+1/2.

Let [v] be the integer closest to v, and let

(3.3) k=[] .

Also let

(3.4) Y=Y/ {((Y)}'

and

(3.5) G =t/[k/(k—2)]"*

be the standardized symmetric generalized logistic variate with param-
eter 2, and the standardized Student ¢ variate with k degrees of free-
dom respectively. The approximation proposed here is given for —oo
<y<oo, by

(3.6) P{Y*<y}=P {ti<y}
or equivalently by

(8.7 P{Y<y}=P {ti<ey},
where

(3.8) c=[k/{(k—2)(Y)}]"*,

k(YY) being given by equations (2.18) and (2.21) when 2=m+1/2 and
m respectively.

4. Least squares fit of the parameters

The tedious computations in the calculation of [v] by using equa-
tion (3.2) can almost be totally eliminated because of the following
rather interesting observation. Using values i=1, 1.5, 2, 2.5, 3, 3.5
and 4 and the corresponding values [v]=9, 12, 14, 17, 20, 23 and 25,
a least squares line of [v] in terms of 2 is found to be

(4.1) $=8.25+5.51 .

The goodness of this fit is illustrated below in Table I. It is clear
from this table that the values of k¥ computed by using the two equa-
tions are essentially the same. Moreover, the two equations seem to
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Table I. Values of k computed by equation (3.2) and (4.1)

2 1 1.5 2 2.5 3 3.5 4

[ 9 12 14 17 20 23 25

[5] 9 11 14 17 19 23 25
[51-[v] 0 1 0 0 1 0 0

[v]=Value of & computed using equation (3.2)
[#]1=Value of k computed using equation (4.1)

give the same value of k for all A: For example when 1=4.5 and 5.0,
both equations give values k=28 and 31.

5. lllustration of proposed approximation

Table II below illustrates the approximation given by equation (3.6).
The table shows that the symmetric generalized logistic distribution is
very well approximated by the Student ¢ distribution. This approxi-
mation improves as 2 increases. For 2=1, the maximum value of |Fiy(x)
—Ty(x)| is less than 5x107% This bound decreases rather rapidly, be-
coming less than 10~* when 1=4.

6. Student t and normal approximations of the median of
logistic variates

A consequence of the proposed approximation is that it gives small
sample Student ¢ and normal approximations for the median of logistic
variates. Let X, X;,---, X;,_; be independent logistic random variables,
each with a distribution function given by equation (1.1). Let X, ..,
be the rth ordered statistics among the X’s and let U, U, -, Us_s

Table II. Student ¢ approximation for the symmetric
generalized logistic distribution

2=1, k=9 (Logistic) 2=1.5, k=11 A=2, k=14
Fy(x) Fy(x)— Ty(x) Fy(x) Fy(x)— Ty(x) Fy(x) Fy(x)— Ty(x)

0.10 0.54522 0.00132 0.54342 0.00040 0.54250 0.00026
0.20 0.58970 0.00253 0.58624 0.00077 0.58445 0.00049
0.30 0.63277 0.00354 0.62788 0.00107 0.62534 0.00069
0.50 0.71236 0.00467 0.70567 0.00141 0.70211 0.00094
0.90 0.83650 0.00356 0.83044 0.00100 0.82700 0.00074
1.25 0.90613 0.00115 0.90295 0.00158 0.90102 0.00021
1.75 0.95985 | —0.00894 0.95992 | —0.00499 0.95992 | —0.00027
2.5 0.98938 | —0.00083 0.99050 | —0.00029 0.99118 | —0.00019
3.0 0.99568 | —0.00038 0.99649 | —0.00007 0.99698 | —0.00005
4.0 0.99929 0.00001 0.99954 0.00005 0.99967 0.00002
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Table II. (Continued)

1=3, k=20 1=3.5, k=23 1=4, k=25
Fz) | Fx)=Tz) | Fylx) | F@)=Tu(z)| Fu(z) | Flz)—Tlz)

0.10 0.54158 0.00013 0.54131 0.00009 0.541124 0.00002
0.20 0.58267 0.00025 0.58216 0.00019 0.58178 0.00004
0.30 0.62279 0.00035 0.62207 0.00026 0.62153 0.00006
0.50 0.69850 0.00048 0.69747 0.00037 0.69670 0.00008
0.90 0.82336 0.00042 0.82230 0.00032 0.82150 0.00003
1.25 0.89890 0.00016 0.89826 0.00013 0.89778 | —0.00003
1.75 0.95991 | —0.00011 0.95990 | —0.00008 0.95990 | —0.00006
2.5 0.99196 | —0.00010 0.99220 | —0.00008 0.99239 | —0.00001
3.0 0.99751 | —0.00003 0.99767 | —0.00002 0.99779 0.00001
4.0 0.99979 0.00001 0.99982 0.00000 0.99985 0.00009

A=Parameter of the symmetric generalized logistic.

k=Degree of freedom of Student .
Fy(z)=Distribution function of standardized symmetric generalized logistic.
Ty(x)=Distribution function of standardized Student £

be independently and identically distributed uniformly on the interval
(0,1). It is well known that for each 7, 1<1<2n—1, X, has the same
distribution as log {U,/(1—U,)}. Consequently, since log {z/(1—x)} is
monotonically increasing in z, the median X,,, , of the X’s is equiva-
lent in law to log {U,:.,-/(1—U,._1)}. But U,,._, is a beta variate
with parameters both equal to ». Therefore X, ,, , has the same dis-
tribution as log [beta (n, n)/{1—Dbeta (n, n)}], the symmetric generalized
logistic variate with parameter n.

An immediate consequence of this observation is that the distribu-
tion of a standardized logistic sample median may be approximated by
a standardized Student ¢ distribution. Table II shows that this approxi-
mation is quite good even when the sample size 2n—1 is as small as
7, a value which corresponds to a symmetric generalized logistic with
parameter n=4. Furthermore for small sample sizes, such as 3 and 4,
corresponding to n=2 and 2.5 respectively, the approximation could be
used.

Another consequence of the above observation is that it suggests
a normal approximation for the distribution of the logistic sample me-
dian for moderate sample sizes. For example, for a sample size 11,
the approximating Student ¢ distribution which has 36 degrees of free-
dom is known to be close to the normal distribution. For sample sizes
of 21 or more, corresponding to Student ¢ distributions with more than
55 degrees of freedom, the normal approximation should be quite good.
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