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Summary

Some new type of modifications of binomial and Poisson distribu-
tions, are discussed. First, we consider Bernoulli trials of length n
with success rate p up to time when m times of successes occur, and
then, changing the success rate to yp, we continue the remaining trial.
The distribution of number of successes is called the modified binomial
distribution. The Poisson limit (n tends to infinity and p tends to O,
keeping np=21) of the modified binomial is called the modified Poisson
distribution. The probability functions of modified binomial and Poisson
distributions are given (Section 1).

A new concept of (m, r)-modification is introduced and fundamental
theorem which gives the relations between the factorial moments of
any probability function and the factorial moments of its (m, r)-modi-
fication, is presented. Then some lower order moments of the modified
binomial and Poisson distributions are given explicitly (Section 2).

The modified Poisson of m=2 is fitted to the distribution of num-
ber of children for Japanese women in some age group. The fitting
procedure is also presented (Section 3). Some historical sketch concern-
ing the modification and generalization of binomial and Poisson distri-
butions is given in Appendix.

1. The modified binomial and Poisson distributions

In an earlier paper [20], we considered the following Bernoulli
scheme: First, we try Bernoulli trials with success rate p up to m
(<n) times of sucesses occur. Next, changing the success rate p to
rp (0<y<1), we continue the remaining trials of the total length =.
The distribution B,(x) of the number of successes was called the mod:i-
fied binomial distribution. Throughout of this paper we shall refer
this distribution as MB(n, p; m, 7).
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THEOREM 1 ([20]). For MB(n, p; m, ), the probability function is
given by

(:)p‘(l—p)"", 2=0,1,---, m—1,
U S L R i oo B Raty

r=m,m+1,---,n.

k=m

The expression (1) in Theorem 1 is not convenient when one takes
a Poisson limit. Then we shall give another expression for (1).

THEOREM 2. The second expression of (1) is equivalent to
(2) B,,,(m+l)="k;§":‘ B(m+k;n, p)BL &, 7)
where
Ble;n, p)=( 7 JPL—pr.
ProOF. We first note that
B(; n—k, 19)="5] B(hi n—k, P)BU; b, 7).

Then we have
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which completes the proof.
Next, we shall consider the limiting form of MB(n, p; m, y) when
(3) n—oo and p—0 keeping np=21.

We call this the modified Poisson distribution and refer to it as MP(2;
m,r). It is well known that when the limit (8) is taken

B(k; n, py— P(k; 2) ,
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where ‘
P(k; ))=e 24[k! .
Then as the direct consequence of Theorem 2 we obtain
THEOREM 3. For MP(2; m,r), the probability function is given by

P(x; 2), O=e=m—-1),

(4) P(x)={
:Ij P(m+k; )Blx—m; k, 1), (x=m) .

k -m

We note that the following expression is more convenient to calculate
the probability function than (4).

JmADL & (D) [
(5)  Palm)=Pm+1; ap ek 51 o bE Lo

We further note that MP(i; m, y) can be regarded as the Poisson point
process such that the intensity function is 4 by the time of the mth
occurence of event and then the intensity is reduced to yi. This is a
special case of self-exciting point processes, see for example Snyder [19].

For special references, we shall show the first 6 terms in the case
of m=2 (putting a=(1—7)A):

P(0)=¢~

P2(1)=Ze“

Py(2)= (1 )2 [e*—(1+a)]

Py(3)= ( )3 [(—2+a)e"+(2+a)]

P()=—T¢" 2(1 )4 [(6—4a+a?)e —(6+2)]
P2(5)—m[( 24+18a— 60+ ¥)e* + (24+6a)] .

Some graphical representation of the probability functions of modi-
fied Poisson for some typical parameter values is given in Fig. 1-Fig. 3.

2. The (m, y)-modification and the relation between moments

One can directly obtain the mean and the variance of modified
Binomial or modified Poisson distribution from their probability funec-
tion. But we generalize our modification and give some formulas on
factorial moments for this general case.
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Let H={h(x, y)} be a stochastic matrix of finite or denumerable
dimension such that

> h(z, y)=1.
y=20
Then for any probability function f(x) of £=0

g(y)= P h(z, ) f(x)

becomes also a probability function. ¢ may be called H-modification of
f. Especially we put

r10...0: b
01...0:
R 0
00.--1
L 1=y Q@=p) - (I=7y™
H®M= : —
A RRRRE (7™ r =y
0 E r2 ..... (n _é m) 7,2(1 _ T)n—m—z
: 0 .
L : rmm J

Then it is easily seen that our modified binomial and Poisson distribu-
tions are H{-modification and H{7-modification of the ordinary binomial
and Poisson distributions respectively. We call this type of modifica-
tion as (m, r)-modification.

Let f be the (m, r)-modification of f and we write

KB=S10f(m+l),  ER=Z1"f(m+1)

izr
where

=i(l-1)---(—r+1).
Then we have

LEMMA 1.

H=1K

Proor. Noting that

h
Lgr l(r)( ’Z‘ )Tt(l — r)h—t — h(r).rr
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we have
(m)__ r) h’ 1 h—1
Hy=31 Zf(m+h)<l>r(1—r)
h
l

= 2 fomtmy (-
=" STROf(m-+h) .

Next, we note that ¥ is the rth factorial moment about m. In
general, there is the following relation between y{¥ and the ordinary
factorial moment

#m=}_‘_: lmf (l) .
l2r

LEMMA 2.

r—1
=3 (" L) (% Dt ot (= Dyrimm)

=0

where

r(m)=(" L) -5 (M LTI G

Jj=0

Proor. Noting that

(x;m)z(_l)r<m—m;*‘7'_1> , for z<m

we have
k=5 (", f@- (- S (T ).

Furthermore using the relation

R0 ()=
we can obtain

=5 (" 2 (2 fe-on B (MR @)

1=0

=3 (m ?,IJ”)( : )(—1)%:!#(7«—4;)
("R (0 )

z=0

LEMMA 3.

For=rot 3 () (7 ) r—miG =D -
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PrOOF. Noting that

we have

ﬂ(r);#<r) ) <m+l>[f(m+l) — f(m+1)]

r
=3 (,™) 2 (4 )iFm+D—s(m-+D]

h=0

¢ B8 — PG
3 () FE

Using Lemma 1, the proof is completed.

Combining Lemma 2 and Lemma 3 and changing the order of sum-
mations, we obtain

THEOREM 4.

Bon— e 5 NN S m —
Bt = 516 r, ) 242433 (= 1/(,7 ;) 0* =Dy (m)

where
. _T_j m m—l‘l'i i+1
Cor =5 0, %) (" e
Especially, we shall show the results of lower order case:
;7(1)=T#(1)+(1_T)771(’m)

fo=2my(l—71)pan+ Tz#m +2m(1 —7)m(m) —2(1 — ") (m) .

The following theorems are the direct consequence of the above rela-
tions.

THEOREM 5. The mean and the variance of MB(n,p;m,y) are
given by

(6)  p=rp+@A—r)m(m),
(7)  d=rmp(l—rp)+2r1—r)mnp—(1—7)(2rnp—2m—1)z,(m)
—[A=n)m(m)I—2(1 —7")zy(m) .
THEOREM 6. The mean and the variance of MP(A; m, v) are given by
(8)  w=ri+(1—p)m(m),
(9)  d=ri+2r(1—r)mi—(1—7)(2ri—2m—1)x(m)
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—[A—a(m)}—2(1—1*)my(m) .
Note that (8) and (9) are the limits (3) of (6) and (7) respectively.

One may show other statistical properties of (m, y)-modification.
But we shall only show a result on probability generating function.

THEOREM 7. Let f be the (m, v)-modification of f and we write
AY=3tf@, AO=2tf@ .

Then

(i) A@)=A@)—t"B(),

(i) ArO=420-3 (] )(,";) et Bo®),
where

B(t)=3 f(m+»)[t—(1—7+7)]

and F™(t) denotes the rth derivative of F'(t) with respect to t.

PRroOOF. (i)
A(t)= Pty f(x)
=Ser@+ s 3 (1, ) rra—yenes@)

-

S /@4 3 -7ty f@)
=A(t)—t"B(?) .

(ii) It is the direct consequence of (i).
Since it is easily seen that

tr=A"1),  jp=A"Q1), BP)=Q—r)u,

then we have an alternative proof of Lemma 3.

3. Applications

In Fig. 4, the percentages of Japanese women in the age group
less than 50 according to the number of children born to them, are
presented (9355 samples are surveyed at 1st June, 1972. Source: Inst.
Population Problems [12]). The dotted line is the probability function
MP(2.24; 2, 0.522). It will be seen that the fit is satisfactory. In this
case the value of 1—7 is interpreted as the birth-control factor after
having two children.
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In the following we shall show the fitting procedure. Omitting 2
from the relation (8) and (9), we have

AQl—7)—2B(1—y)+C=0,
where
A=2r,—4r,+ 7, B=2r,—(2—p)m,—2p , C=p—d.
Solving this equation we have
r=D+Y(1—-Dy—-E,

where

1B __ (p—m)(2—m) =£____ p—at
b= A (2_751)24-2(71'2—2),‘ E A (2—71';)2+2(7r2—2)'

Furthermore from (8) we have
A=(p—A=7)m)[r .
The data of Fig. 4 is the following:
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Number of children 0 1 2 3 4 5 6
Percentage .118 .204 .419 .189 .050 .014 .006
Modified Poisson .106 .238 .395 .183 .059 .015 .004

Then one can estimate
£=1915, 4'=1.280,
#,=2—2P,(0)— Py(1)=1.560 ,
#,=83—3P,(0)— Py(1)=2.442 .
Consequently one obtains
$=0.145++0.142=0.522 ,  1=1.17/0.522=2.24 .

In Fig. 5, we also give the same type data (8598 Japanese women)
surveyed at 1st June, 1977 (Source [13]). The percentage of women
having two children increased since 5 years ago. This corresponds to
the fact that the birth-control factor is strengthened as y=0.299.

In Fig. 6, the distribution of 2759 women in the age group 40-49
of the data of 1977. In this case y=0.245. Fig. 7 is the distribution
of 3411 women in the age group 30-39. The fit is rather poor because
there are some couples who intend to have further children.
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APPENDIX

Various modified and generalized forms of

binomial and Poisson distributions

We first note that the adjective “modified” and “ generalized”
have often been used in a restricted kind of modification and general-
ization. When the original distribution is

Pr{X=x}=P(x) (#=0,1,2,---)
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then the so-called modified distribution is given by
P'(0)=0+4+(1—6)P(0)
P'(x)=(1—0)P(x) (z=1,2,---)

with 0<4<1. We do not list up the works of this truncation type
modification, because the book by Johnson and Kotz [15] should serve
as a source of references. If g,(t) and g,(t) are the probability gener-
ating functions of F, and F, respectively, then the distribution having
the probability generating function g,(g,(t)) is called generalized F; dis-
tribution. And generalizing distribution Fj is also called “ generalizer ”.
Almost all cases, generalized distributions are equivalent to the some
type of compound distributions (see Gurland [11]).

Woodbury [22] considered a general Bernoulli scheme in which the
probability of a success depends on the number of previous successes.
Let p, be the probability of success after x previous success and denote
by P(m,x) the probability of x successes in 7» trials. Then one can
formulate the following equation:

P(n+1, x+1)=p,P(n, 2)+(1—p;.)P(n, x+1) .

When no pair of p,’s are equal one can also obtain
r—1 i
Pr, 5)=T] 5. 3 1—2)"|T[ (5—D) -

The general form of this distribution is rather complicated.
Rutherford [17] considered the special case where p,’s are deter-
mined by two parameters through the relation

p.=p+cx  (¢>0).

In this case one has

_ Tt Ey 18\
P(n, 9)= LB 53¢ /(% )a—p—ciy.

Chaddha [3] treated two different cases

— cx+p 0
Pe=-] (c>0),

=P 0),
y Tt (¢>0)

where ¢ is called the coefficient of contagion. Some graphical repre-
sentations of these probabilities are presented.
Our modified binomial distribution MB(n, p; m, v) is also the two-
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parameter special case such as
P r=m-—1
D=
P r=m.

The Woodbury’s model can be further extended to the case in
which the probability of a success depends on both the numbers of
previous successes and trials, say p,,. Then we also have the recur-
rence relation :

P(n+1, 2+1)=p,.P(n, 2)+(1—p...)P(n, 2+1) .

But this general scheme is less interesting because too many param-
eters are included. We only note the two-parameter special case such as

a+cx
a+b+en

Put1,a=
In this case
T@+G—19 T 6+G-10)
j'l;[; (@+b+(F—1)e)

=)

This is the so-called Pélya-Eggenberger distribution, which was initially
considered by Greenwood and Yule [10] and shortly afterwards was in-
dependently rediscovered by Eggenberger and Pdlya [7].

Other modification of Binomial scheme was treated by Schelling [8]
and Dandekar [6]. They considered a situation in which if a trial ac-
tually resulted in a success, then the play is interrupted for m trials.
The probability of exactly x successes in n trials is given by

wzlr 2""7 |: n—1l ]+1v
m—+1
where C is the normalizing constant. The moment expressions of this
distribution are rather complicated. But for large n the following ap-
proximations are available:

np_ o mpg
1+mp (1+mp)

y:
Then using the relation

.
g 1—p
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one can estimate the parameter p (or A=mp). Another parameter m
could be estimated from the relation
2
1&.:.1__(1_.1,)% .
noop 1z
Consul [4] considered an urn model depending on predetermined
strategy and obtained the other type of two-parameter binomial distri-
bution (named by quasi-binomial) such as

P(n, 5)=(} |p(p+40)~"(1—p—gay .

Especially, putting
o= l ’ p=¢,
"

then

[n(=e]
P(n, x)

x=0
is reduced to Birnbaum and Tingey’s [2] expression for

Pr {sup {F(t)—F(t)} >} ,

where F’,,(t) is the empirical distribution function of the theoretical
distribution function F(t).

The first and most important modification of Poisson distribution
is given by “mixtures” of several Poisson distributions. The resultant
distribution is called compound distribution and “mixing” distribution
is called compounder.

The compound Poisson distribution compounded by the gamma dis-
tribution is given by

PG(x)=

Teﬁ*l—(a_)— S: (e 2 [x) " le*da= I;(!‘;j(':;) (ﬁf—l >x< 19-}—1 )., .

This (so-called negative binomial distribution) was initially treated by
Greenwood and Yule [10].

As the compounder one takes the Poisson distribution the resultant
distribution is

(eiglal) 3 (e~ 2l5! (x=21)
PP(z)= =

exp[—2(1—e™?)] (x=0).
This is the Neyman’s [16] type A distribution. Since the probability
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generating function is expressed by
exp [—A(l—e*"-9)],

this is also the generalized Poisson with Poisson generalizer, see Feller [8].

Adelson [1] considered the “ quasi-compound” Poisson distribution,
namely the distribution of the sum of m independent random variables,
X, X5, -, X, with

Pr {X,=jk} =€ 42/k! .

Since the probability generating function of this distribution is given by
exp [~ 41—t | =TT exp[- 2,0 -],
j=1 j=1
this is not an usual type mixture. But using the recurrence relation

P(a:+1)=;.i_l- ‘z'”;) (i+1D)A P@—i)  (z(m)=min (z, m))

i=

P(0)=exp [—i zi}

given by Adelson, we can avoid some computational difficulties in the
use of this type of distributions.
The two-parameter special case such as

212(1_p)pj-12 ’ j=19 29"'

was initially considered by Galliher et al. [9], using the term stuttering
Poisson. We would like to apply the term “stuttering Poisson” to the
class of distributions defined by Adelson.

There is an important distribution which is both the compound and is
the gemeralized one and is similar to the Neyman Type A distribution.
Thomas [21] constructed a model for the distribution of numbers of
plants of a given species in randomly placed quadrats. She showed that
the probability of x plants in any one quadrat is given by

TP(O)=¢*,
TP(x):ex__; k";: <i)zk(k¢)1-ke—k¢ @=1).

This distribution was ordinary called the double Poisson distribution by
Thomas but is now referred as Thomas distribution.

Further modified form of two-parameter Poisson was given by
Consul and Jain [5] as the limiting version of a generalized negative
binomial distribution considered by Jain and Consul [14]. The prob-
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ability function is given by
CP(x)=2(A+xy)*'e~ 0+ [x] £2=0,1,2,...
and the moments are

A s A
- ag —‘———3 .
(1-7)

This is also some limiting form of the urn model’s two-parameter quasi-
binomial distribution give by Consul [4].

Dandekar [6] obtained another type of modification which is the
Poisson limit of Schelling’s [18] model. (He did not refer [18].) The
cumulative probability function of Dandekar is

DF(z)=¢-4-m7 é [ —7yz)2)
i=o J! '

namely the first (x+1) terms in the Poisson series with the mean (1—
yx)A. Dandekar gave three examples in which this modified Poisson
distribution gives a satisfactory fit to the observed data. He notes that
in all three cases, the parameter y has a negative value. (The value
of y=m/n is the interruption rate in Schelling’s model.)
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