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Summary

The multinomial logistic response model has been used in the
analysis of data from longitudinal studies of RERF’s mortality cohort
population. The model was restricted to linear and quadratic dose-
responses for practical as well as biological reasons. The advantages
and disadvantages of the multinomial logistic model are pointed out.
Numerical comparison is made of the maximum likelihood (ML) esti-
mates of parameters obtained by binomial and multinomial logistic
procedures. The dose-response difference between two independent
“same age” groups is evaluated from the ML estimates of parameters
under a linear logistic response model. A significant dose-response dif-
ference between two independent “same age” groups in the years
1950-1959 and 1960-1969 is noted only for the 15-24 age group for all
cancers other than leukemia.

1. Introduction

Let a ¢xkXxs contingency table be denoted for ¢=1,2, -.-,s by

Stratum  Category (Dose)

(Age) 1-eej vk
1 diy
. . Specific causes of death
1.1) d. at ¢-th time period
ijr

1~ Survivors at ¢-th time
s Eldﬁﬂ period
Cases alive at (t—1)-th

c ni;t A .
R time period
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We shall assume that the observations, di;, - - -, d!,,, are independently
and multinomially distributed with parameters =!;' and Pj, ---, P},

<0<lé Pitjl<1> (see Appendix 1). When r=1, we have the ordinary
=1

binomial distribution. Let us suppose that the parameters P}, ---, P},
have the multinomial logistic response (Cox [6], Bock [4], Kudo and
Ito [14]).

We have applied this approach to RERF’s cohort mortality experi-
ence from 1950 to 1969 (Jablon and Kato [12]). The reasons for using
this multinomial logistic response approach in the analysis of these
data are several in number; they include 1) evaluation of the dose-
response after eliminating the effects of nuisance parameters (Fleiss
[8]); 2) assessment of the dose-response difference between two time
periods by classifying the cohort data into the same time intervals,
say age groups; 3) examination of competing risks in a given popula-
tion (Chiang [5], Havid [11]), and 4) evaluation of the characteristics,
convergence, and computability of maximum likelihood estimates of
parameters based on the logistic response model (see Berkson [3], Cox
[7], Ashton [2]).

The purposes of this paper are, first, to apply a multinomial re-
sponse procedure to longitudinal data arising in epidemiologic studies,
especially to the mortality risks in a complete cohort, and second, to
evaluate the dose-response difference between two independent age
groups from the maximum likelihood estimates of parameters obtained
by a multinomial response procedure.

Recently Koch et al. [13], Stanish et al. [16] and Woolson et al. [17]
have proposed methods of analyzing longitudinal studies with incom-
plete or missing data. Their approaches differ from the one set out
here.

2. Multinomial logistic response model

The two multinomial logistic response models applied hefe are de-
fined as follows:

Model 1I: log[Pi‘ﬂ/(l—li} P:,-,)]=x:,,=a£,+ﬁle,~,
=1
2.1)
Model 11 : 1og[ ,.»,l/<1—lz P;,L)}=zzﬂ=as,+ﬁﬁzDz,+rﬁlD:,
=1

where «of, denotes the age effect of the ¢-th time period for specific
causes of death of the I-th kind and B! and 7!, are the radiation ef-
fects, that is, the increase in the probability of death with increase
in exposure (D,;).
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3. Estimation of parameters

The joint multinomial logistic response distribution in (2.1) is
given by
[ k

Fi r —_mt—=1 dé .
(3.1) L= 1T const. [1+l§ exp (Zﬁ,,)} 4 zU; [exp (Ziﬂ)] ",

i=1j=1 t=1

We assume the deaths to be mutually exclusive events among the s
time periods. The maximum likelihood (ML) estimates of (&, ---, o,
B4y + -, B OF 7iy, +++, 7%,) can be easily obtained by the Newton-Raphson
iteration procedure. The ML estimates of (o, ---, o, B4, ---, 8,) for
the linear response model, for instance, are obtained by the (v+1)-th
iteration, i.e.,

[0151(”'1' 1)y fr ety air(”"’ 1)’ Bgl(v"' 1): ) .Bir(”“i"l)]
=[a%1(”)7 Y agr(”)’ .‘921(1")9 Tty ,Bé,(l))]

¢ otlog L ... OlogL o*log L o OlogL| !

dat0al, |w daldal, 1w  dat0fh, l» dat,08,

~

v)
d*log L ... dlog L
o aairaﬂi;l 52 aazraﬁi;r

dlogL| 9logL
084085 1w 0BH0B:

d*log L
0o, 0att.,

~

v)

~

v)

dtlog L
. 085,08, 1w
r dlog L 1

oat, &)

dlog L

o0at, o)

dlog L
0By 1o

dlog L

L 0B, o J
o*log L
dat,0at),
The inverse of this matrix of second derivatives is a matrix whose
elements are the asymptotic variances and covariances of the ML

where =0 when t#t or i#4 for [=1,2, .-, 7.
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estimates. These latter estimates in the multinomial logistic model
are asymptotically equivalent to those of the binomial logistic model
when the sample size is large. The multinomial logistic model is ap-
plicable here because the ultimate categories of the underlying quanti-
tative response are the result of a nesting of several mutually exclusive
classifications of the same subjects, n!;!, in the independent (%, 7, t)-th
cell.

Ashford [1] has examined the use of a series of mutually exclusive
intervals, i.e., a quantitative response scale, to approximate the nor-
mal distribution and has shown that the parameters associated with
the underlying probability may be estimated from the semi-quantal
response. He also noted that this statement holds good only if it is
known what parameters there are to be estimated and that the method
of analysis depends on the validity of the relatively large number of
assumptions which must necessarily be made. Gurland et al. [9], Cox
[6] and Haberman [10] discuss various aspects of this issue.

Death is not a repetitive event and it is usually attributed to
a single cause; however, various risks competing for the life of an
individual must be considered in cause-specific studies. To do so, Chiang
[6] introduced the use of risks based upon a multinomial approach with
the conditional distribution of the numbers of deaths and the number

r
of survivors, i.e., di,, and »n{;'—>)d};, given n};' individuals alive at
=1

time £—1, which is the probability distribution of (3.1). The advan-
tages of the multinomial logistic response model were pointed out as
the main reasons to use this approach in the Introduction. There are
disadvantages also; they include 1) that it is somewhat more trouble-
some to determine different dose-responses by cause of death, 2) that
it is inconvenient in that a large information matrix is required, and
3) that much computing time is required for the numerical conver-
gence of the ML estimates. The numerical procedure continues until
doty, -+, dat,, 4B, ---, 48:, or dv4, ---, 4y, in (3.1) each become less
than 1075,

We have computed the approximate values of the ML estimates
of parameters in the binomial logistic model, and then in the multi-
nomial logistic model. With regard to the solution of the ML equa-
tions of the binomial model, a computational procedure based on a fixed
l-level and t-period was employed. The first values estimated by mini-
mizing the sum of the weighted squares

3 37 {0t Pia(l— P} {log [Piul(1— Pl —log [P/ 1— Pl

for each of the (I, t)-th classes were used as the initial values of the
iteration for computing the approximate values of the ML estimates.
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Table 1 ML estimates of parameters between binomial and multinomial models,

1950-1969

All cancers

Age at Leukemia except leukemia Other causes
1950 8] Bix107° &) Byx107° 5 Bx107"
Binomial Logistic Model
5-14 Est. =7.16 10.50%%% _8.00 -10.34%%*# -4.01 8.89N.s.
SE .29 1.20 Jah o 1.84 .06 8.96
15-24 Est. -7.36 T7.52%%% _5.67 1.65 N.S. -3.15 -2.3LN.S.
SE .31 1.40 J1h o 1.27 .04 4.88
25-34 Est. -7.11  8.34%¥% _}4 47 2 63%% -2.85 -5.67N.S.
SE .35 1.50 .10 .83 .05 5.97
35-44 Est. -8.04 11.87%%% _3,31 .37N.S. -2.40 y 30N.S.
SE .50 1.80 .05 .69 .04 L4.63
4s5-54 Est. -6.29 5.509%%  _2 59 .68N.S. -1.39 3.24N.8.
SE .21 1.4 .04 .u8 .02 3.23
55-64 Est. -6.80 9.16%¥% _2 12 .67N.S. -.21  4.28N.s.
SE .33  1.60 .04 .55 .02 3.65
65+ Est. -7.44  7.88% -2.42 .98N.S. 1.43 -1.49N.S.
SE .60  3.64 .06 .88 .ol 6.79
ggmgggggtziggsg=d.f_ 233.10%%% 48.39%%# 5.41N.S.
(HO . ﬁi = = = 8"{ = 0)

x2 value of goodness of fit under the model =

85.56 with 84 4.f.N.S.

Multinomial Logistic Model

5-14 Est. =~7.14 10.56%%% _7.98 10.45%%% -4.01
SE .29 1.20 by 1.84 .06

15-24 Est. -=7.31 7.52%%% 5 62 1.66N.S. =3.14
SE .31 1.40 .14 1.27 .04

25-34 Est. -=7.04 8.36%% -4.41 2.65%% -2.84
SE .35 1.50 .10 .83 .05

35-44 Est. =7.91 11.94%*x _3 22 J47N.S. -2.36
SE .50 1.80 .05 .70 .04

4s-54 Est. -5.98 5.75%%% _2 3L .81N.S. =1.30
SE .22 1.41 .04 .h9 .02

55-64 Est. =5.99 9.69%%% 1 U2 1.18% .01
SE .33 1.61 .04 .59 .03

65+ Est. =5.24 8.69% -.30 1.72N.S. 1.99
SE .60 3.74 .07 1.24 .05

Homogenity test:

x2 value with 7 d.f. 239-10%¥* 53.26%%%

(HO : si = sé = ... = B% = 0)

x% value of goodness of fit under the model = 82.l49

VO WO WE Ul U &N 000

.98N.S.
.97

.O4N.5s.
.88
.80N.s.
.98
.05N.S.
.65

.42N.S.
.28
L1T7#
.98
.00N.S.
.66

9.95N.S.

with 84 4.f.N.S.

Significant levels:
Data in 1950-1969 are shown in Appendix 2.

N.S. P>.05; *P<.05; **P<.01; ¥**P<.

001.
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The desired degree of accuracy (stable fifth decimal) was obtained after
the 3rd to the 5th iteration. The ML solution of the multinomial
model was obtained using the ML estimates of the binomial parameters
as the initial values. The convergence had the desired degree of ac-
curacy (less than 107°) after the 4th or 5th iteration. Numerically,

r+1 A
the sum of the estimated probabilities, i P;;, in the binomial model
=1
satisfies approximately the probability 1 for each of the (4, j) cells
even when the sample size is not large where ri“lp,-'ﬂ denotes the
=1

estimated probability of survivors when l=r+1 (Appendix 2). The
expected values obtained by the binomial model are almost the same
as those of the multinomial logistic model. However, the ML estimates
of the parameters associated with the two response models differ more,
particularly as the number of deaths increases as is shown in Table 1.
For this reason, the ML estimates were computed under a quadratic
response model for the same cohort data in 1950-1969, but Table 2
shows the results of the multinomial logistic response model only.
The equality of marginal totals of observed and estimated frequencies
in the i-th rows is supported in the binomial logistic model or multi-
nomial logistic model, but not guaranteed in the j-th column.

4, Approximate relative risk

Let P{, be the mortality rate from specific causes (I=1, ---, 1)
among atomic bomb survivors with the deaths classified by age (1=1,
<+, ¢), dose (=1, ---, k) and time period (t=1, --.,s). The mortality
rates among the exposed survivors with these independent characteris-

tics are defined by P/,=exp () / [1 +é‘i exp (2 ,,)] where 2i,,=a!,+8,.D,,

or A, =al+puD;,,+ 74D}, in the simple linear or quadratic form, respec-
tively, for 7=2, .-., k. Similarly, the mortality rates among the con-

trol survivors are given by P, =exp (1) / [1+§}1 exp (lﬁ,,)} where 14, =a;.

We shall consider now the odds that the exposed survivors will
die of a specific cause of death. These odds are expressed by

4.1) lepitjl/<1—§ Pitjl> =exp (aﬁl+ﬁ£lDij) ,
or =exp (o}, + i Di;+ 70 Diy)

in the simple linear and quadratic forms, respectively. The odds that
an individual in the control group will die of a specific cause of death
are given by
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(4.2) Qz'—‘Pitu/(l—é‘n i£1l> =exp (af;) .
Thus the ratio defined by (4.1) and (4.2) becomes
4.3) 2,/92,=exp (.leDij) ’

or =exp (igleij"I“rgzDzj)

and is a function of the dose-response alone. The odds ratio (4.3) is
well known as an approximate relative risk. Using the asymptotic
normality of the maximum likelihood estimates, we can easily calculate
the asymptotic 100(1—a)% confidence intervals (Otake [15]).

5. Comparison of approximate relative risk between time periods
with the same age group

From (4.3), let exp (BiD;;), ---, exp(B:D,;) for a fixed Il-level be
the respective approximate relative risks estimated for ¢=1,2, -.-, s,
where D,, denotes the mean dose in (3, j)-th cell. We shall consider
the simplest case where s=2, i.e.,

t=1 (R.R}) t=2 (R.R})

exp (.é}Dlj) -
(5.1) exp (B:D;;) exp (8:D;)

exp(#D.)  exp(&D.)

where the successive age intervals must be of equal length. Thus,
comparison of relative risks between two periods involves the dose-
response difference after eliminating the effects of the control levels.
That is, the dose-response difference from (4.1) is defined by

(5.2) R.RR.Ri=exp (B—B)D,, .

The significance of the dose-response difference under the hypothesis
H,: exp (8 —p)=1 can be tested by the statistic (8—8)¥V (&—§!) which
is distributed as y* with 1 degree of freedom, where V(8—4) is the
estimate of the asymptotic variance for the dose-response difference

between two periods. The inequalities for the asymptotic 100(1—ea)%
confidence intervals of (5.2) are

(5.3)  exp[(B—A)—t.YV (B—F) 1<exp (B—F) -
Sexp [(Bi—B)+t.Y V(B—8)]

where ¢, denotes the 100a%, value of a normal deviate.
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6. Statistical test of the dose-response relationship

The significance of the difference in dose-responses among the ¢
age groups can be evaluated by x* under the hypothesis Hy: gi=8i=
-..=p8:=0 for each of t=1,2,-.--,s under a fixed l-level. The test
statistic is

(6.1) r=F3"8

which has approximately a x* distribution with ¢ degrees of freedom,
where B’:(Bﬁ, [i;, cee, ,@2) are the ML estimates of the parameters and

(cxe)

2! a matrix whose diagonal elements are asymptotic variances and
whose off-diagonal elements are zero under the model proposed by (3.1)
since the stratum of the ¢ age groups are assumed to be mutually in-
dependent. If no dose-response relationship among the ¢ age groups
is noted in a cross-sectional analysis for all periods combined from
1950 to 1969, we conclude that the data satisfy the hypothesis H,: 5;
=B;="---=8,=0 for all time periods of t=1,2, ---,s under a fixed [-
level. If a significant difference for all periods is noted, it is of in-
terest to test the dose-response relationship for each time period under

the hypothesis H,: gi=8;=.--=8:=0, and to evaluate the dose-response
within each age group. The test statistic is now
(6.2) 2=BYIV (B)

which has a #’ distribution with one degree of freedom under the
hypothesis H,: f:=0, where V(/§§) denotes the asymptotic variance of
the ML estimate ,éi of g.

7. Numerical evaluation

The data from 1950 to 1969 in the RERF Life Span Study Extended
[12] are the basis of this numerical evaluation of the multinomial logistic
response model; four alternative states are considered, namely, death
from leukemia, from cancers other than leukemia, from other causes
and still living. The mean doses used here are 0, 3.7, 21.7, 70.3, 141.6
and 349.1 for each of the six dose groups based on all ages combined.
Table 3 shows the observed and expected values of the data classified
into the above three types of deaths for the period from 1950 to 1959
and the number of survivors in 1950 by age and dose. Table 4 gives
the observed and expected numbers of deaths for the period from 1960
to 1969, and the number of survivors in 1960 by age and dose. The
data for the two periods combined, namely 1950-1969, are shown in
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Table 3 Relationship between observed and expected values by age and dose,

1950-1959
Ase at Radiation Dose in rad
8950 Deaths Total 0 1-9 10-49 50-99 100-199 200+
otal “Obs. Exp. Obs. _Exp. Obs. _ Exp. Obg. _ Exp. Obs.  Exp. Obs, Ean,
1
5-14 Leukemia W) 1 3 2.61 1 1.66 0 1.48 1 .59 3 .77 6 6.8
All cancers 1
other. than leuk, (4132) 2 1 .40 [ .25 0 .23 0 .09 o0 .1 1 .92

Other causes  (d33) 141 48 57.57 41 35.55 28 27.30 11 7.19 6 5.19 7 8.20
Subjects o}y 15286 6675 - 4084 - 2998 - 700 - 423 - 406 -

1
15-24 Leukemia [CPRTY) 15 ] 2.93 2 2.01 3 1.32 1 .62 3 .22 6 6.90

All cancers
other than leul

Other causes (dzjs) 392 195 166.21 101 110.14 46 61.55 10 18.63 22 19.09 18 16.38
Subjects (t(’zj) 17109 7099 - 4716 - 2668 - 835 - 898 - 893 -

1
% (dzjz) 13 6 5.45 4 3.62 2 2.03 ] .63 ] .66 1 .61

1
25-34 Leukemia (daj]) 10 2 1.82 2 1.13 (] .92 0 45 1 .69 5 4,99

All cancers 1 .
other than 1¢uk.(d312) 27 9 10.93 9 6.57 4 4.65 2 1.5 1 137 2 1.93

Other causes  (d333) 290 122 126.21 80 75.23 52 5L19 15 15.40 10 11.61 11 10.37
Subjects Gl 1062 4425 - 2646 - 1828 - 573 - 459 - 493 -

1
35-44 Leukemia (dkjl) 8 0 -89 0 .51 1 .50 1 .25 1 W44 5 5.41
1

All cancers
other than leuk,

Other causes (dhjS) 418 179 177.66 99 97.83 76 78.82 20 22.70 22 18.12 22 22.87

(d.,jz) 114 55 48.85 30 26.87 17 21.55 2 6.14 2 4.81 8 5.78

Subjects (.ﬂd) 11571 5122 - 2806 - 2205 - 59 - 430 - 414 -
1

45-54 Leukemia (dSJl) 20 9 6.25 3 3.50 2 3.13 0 1.19 1 1.4 5 4.52
All cancers 1

other than 1euk.(d5.‘|2) 328 127 140.75 8L 77.17 73 62.52 21 18.19 11 14.55 15 14.82

Other causes (dsjg) 990 452 442.29 229 241.15 197 190.25 48 51.50 35 37.05 29 27.75
Subjects (n%j) 12472 5499 - 3004 - 2392 - 664 - 496 - 417 -

1
55-64 Leukemia (dg41) 10 2 2.53 0 1.47 2 1.28 2 .58 1 <71 3 3.43

All cancers
other than leuk,

Other causes (d5j3) 1403 635 623.13 362 350.55 256 261.61 53 76,92 53 51,03 44 39.76
Subjects (nosj) 8012 3578 - 2011 = 1494 - 434 - 283 - 212 -

1
65+ Leukemia (d7:|1) 3 1 .86 1 .49 0 JAb 0 .17 o .17 1 .87

All cancers 1
other.than leuk, (dzjz) 256

Other causes (d”;) 2264 1039 1047.32 604 575.97 418 435.42 99 107.59 63 56.64 41 41,06
Subjects (IP”) 4862 2245 - 1235 - 935 - 232 - 123 - 92 -

1
(dez) 371 187 166.35 80  93.44 57 69.22 22 19.95 17 12.85 8 9.19

119 114.64 59 63.41 48 49,31 13 13.14 10 7.74 7 7.76

1
Total Leukemia @ 41) 80 17 17.89 9 10.77 8 9.07 5 3.85 10 5.41 31 33,01

All cancers
other than leuk.

1
Other causes (d,43) 5898 2670 2640.39 1516 1486.42 1073 1106.14 256 299.93 211 198.73 172 166.39
Subjects (no_j) 79736 34643 ~ 20502 - 14520 - 4032 - 3112 - 2927 -

1
(@, 42) 1111 504 487.37 263 271.33 201 209.51L 60 59.€9 41 42.09 42 41.01

i R 3 R N A

Note: E (‘i%ﬂ)z-ngj * P, =n};exp (Z}'.jl)/[l +¢§1 exp (Z}ﬁ)], where 1};,=a},+ B4 D,;, di=
the number of deaths in the (4, 7, I)-th cell for 1950-1959 and n!,=the number
of alive subjects in the (7, j)-th cell in 1950 for i=1,2, ..., 7 (age) and j=1,2,
+++,6 (dose).
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Table 4 Relationship between observed and expected values by age and dose,
1960-1969

135

Age at

Radiation Dose in Rad

200+

Deaths G 19 T0-49 50-95 __100-199
1960 Total Obs. Exp. Obs.  Exp. Obs. Fxp. Obs. Exp. Obs. Expo. T
" Obs.  Exp. Obs. Exp. Obs.. Fxp. Obs. Exp. Obs. FExp. Qbs. Fxp.
15-24  Leukemia (230 12 2 2.8 1 1.6 3 14k 0 .55 3 .68 5 5.1
2 .
AlL cancers ok, (4212) 9 3 1.8 1 117 0 1.03 0 .40 1 .50 4 4.06
2
Other causes  (dp43) 136 65 61.70 38 37.39 22 26.54 6 5.60 3 2.9 2 1.83
Subjects (n2)) 15129 6623 - w042 - 2970 - 688 - 414 - 392 -
2 .
25-3%  Leukemis (dy91) 5 1 1.6 0 111 3 .68 0 .27 0 .38 1 .92
2 . .
A s ewk.(daf2) 50 15 1899 17 1279 8 753 2 2.62° 3 321 5 4.8
2
Other causes  (d3j3) 309 114 126.37 93 84,53 51 48.27 17- 15.43 17 15.71 17 17:69
Subjects (§) 16689 6898 - 4609 - 2617 - 82 - 8 - 868 -
2
35-44  Leukenia (1) 7 2 181 0 111 1 .87 1 .38 1 .51 2 2.32
2
::te:"t‘f‘:;smk (dy32) 104 32 39,12 26 23.5 18 17.20 9 6.2 9 6.14 10 11.80
o2
Other causes  (d,43) 272 107 116,34 78 69.20 47 47.8 15 14.87 14 1.9 11 11.%
Subjects (n7)) 10007 4292 - 2555 - 1m2 - 556 - 4 - 415 -
2
45-54  Leukemia (ds31) s 0 .76 1 .4k 1 .42 0 .9 0 .31 3 2.88
2 .
s euk.(d512) 299 132 13188 64 7233 64 57.19 21 15.59 7 1118 11 10.73
' 2
Other causes  (dgj3) 557 244 249.28 148 136.33 99 106.76 30 28.33 19 19.54 17 16.76
Subjects (n2) 11031 4888 - 2677 - 211 - - 405 - 319 -
2
55-64 Leukemia (dgg1) 10 3 395 3 219 2 1.83 1 .60 O .56 1 .87
2
A e ers euk (@6d2) 561 231 264.41 137 136.16 120 106.58 28 30.59 24 23.85 21 21.40
2
Other causes  (dg33) 1515 647 654.95 386 350.86 261 287.28 93 83.54 65 66.38 63 62.99
Subjects (fy) 11134 4911 - 2691 - 2120 - 595 - 49 - 368 -
2
65+  Leukemia @731) 7 0 1.89 3 109 1 .98 0 .4 1 .45 2 2.16
2
Al s ewk (6712) 653 282 285.63 163 159.81 127 125.46 36 38.26 24 22.63 21 21.23
2
Other causes (dzj;) 3862 1676 1727.24 996 963.02 749 743.27 232 216.37 121 119.73 88 92.37
Subjects «ndj) 8567 3840 - 2140 - 1648 - 47 - 262 - 200 -
2 v
Total Leukemia @3,) 4 8 12,63 8 7.58 11  6.22 2 243 3 2.89 14 14.26
All cancers 2 .
AlL cancer leuk'(d;jz) 1676 695 721.97 408 403.80 337 314.99 96 93.65 68 6751 72 74.08
Other causes  (4,3) 6651 2853 2935.88 1739 1650.33 1229 1259.96 393 364.14 239 237.09 198 203.60
Subjects (n2g) 72647 31452 - 18714 - 13238 -am - 2850 - 2682 -
Note: E(é’ Y=n} 2 a1 2 1 : 42 42 43 1 3 2
e: ip)=ny;* Pl =n};exp (13;) +ZZ‘1 exp (4i;) |, where 4}, =}, +p4LDyy, dip=

the number of deaths in the (s, 7, {)-th cell for 1960-1969 and n},=the number
of alive subjects in the (i, j)-th cell in 1960 for i=2, ...,7 (age) and j=1, 2,

+++, 6 (dose).
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Table 5 Mortality data in 1950-1969

Cause of death 1950-1959 % 1960-1969 % 1950-1969 %

Leukemia | 80 .1 46 .1 126 .2
L Saneers o 1111 1.4 1676 2.3 2787 3.5
Other deaths 5898 7.4 6651 9.2 12549 15.7
Survivors 72647 91.1 64274 88.5 64274 80.6
Total 79647 100.0 72647 100.0 79736 100.0

Appendix 2. Table 5 shows the total mortality rate by cause and time
period.

The dose-response relationship among the ¢ age groups obtained
from (6.1) can be shown to be significant at less than the 0.19; level
for leukemia and all cancers other than leukemia but not significant
for other causes of death (Table 1). The linear response model intro-
duced here gives a good fit to the data (*=82.49 with 84 d.f. N.S.).
No quadratic response relationships among the ¢ age groups were
noted for any of the three causes of death (Table 2). Thus, these
mortality data can be adequately represented by a linear response re-
lationship.

Table 6 shows the linear dose-response relationship between 1950-
1959 and 1960-1969 by age and cause of death. There is a good fit of
the model to the observed deaths (see Tables 3 and 4). As is evident
from Table 6, the dose-response relationship in the leukemia data for
the period 1950-1959 is significant for all age groups, but this is not
true for the period 1960-1969. The dose-response relationship among
the seven age groups was found to be significant only for all cancers
other than leukemia in 1960-1969.

It is of interest to compare the dose-response difference in the
same age group between 1950-1959 and 1960-1969 when the risks in
the control level are eliminated. These results computed by (5.2) and
(5.8) are shown in Table 7. A significant positive dose-response differ-
ence was observed only between the two 15-24 age groups and then
only for all cancers other than leukemia. In the leukemia data, the
hypothesis that the dose-response between the two time periods is not
different was satisfied in all comparisons between the same age groups.
We conclude, therefore, that no significant difference in leukemia has
been noted for any age group between the two time periods, i.e.,
1950-1959 and 1960-1969. The competing risks in the cohort mortality
data for the period from 1950 to 1969 used here appear to be negligi-
ble for the ML estimates based on a semi-quantal response which are
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Table 6 ML estimates of parameters for muiltinomial model,
1950-1959 and 1960-1969
A%gsgt Leukemia ALl eigﬁizzigxcept Other causes
at 1960 ki Byx0” a3 Byx0™ o B3xa0™
1950-1959 (t=1)
5-14 Est. -7.84 10.00%** _9,71 10.49% -4.73 25.25
SE .HQ 1.63 1.03 4,31 .09 10.16
15-24 Est. <7.77 8. Lo¥%x -7.15 ~-.34 N.S., -3.73 -6.93
SE .38 1.59 .30 3.57 .06 6.86
25-34 Est. =7.76 g.18%%% -5.97 1.32 N.S. -3.53 -8.62
SE .ho 1.95 .21 2.10 .06 8.58
35-44 Est. =8.61 12.U48%#*x -4.61 1.21 N.S. -3.32 14,48
SE .68 2.37 .10 1.19 .05 6.12
45-54 Est. =6.67 6.48%%% _3 55 .96 N.S. -2.41 -5.24
SE 27 1.59 .06 .Th .ol 5.25
55-64 Est. =-7.01 g.Q7R¥%¥* -2.82 -.10 N.S. -1.50 3.08
SE .42 2.02 .06 .89 .03 4,72
65+ Est. -7.14 9.34* -2.25 .16 N.Ss. -.03 .09
SE .73 3.82 .70 .11 .03 6.67

Homogenity test;

x¢ value with 7 d.f.

.gl =
(Hy 387

x2value of goodness of

15-24
25-34
35-414
45-54
55-65

65+

Homogenlty test;

1
LF]

Est.
SE

Est.
SE

Est.
SE

Est.
SE

Est.
SE

Est.
SE

DY

-7.84
L4l
-8.32
.53
=-7.73
.50
-8.68
)
-6.92
.35

-6.87
U9

value with 6 4.f.

. @2 =
(HO' 85

2
&3

164.99%** 11.30 N.S. -

=gl =
By 0)

fit under the model =3ip1.64 with 84 4.f.N.S.
1960-1969 (t=2)

10.10%%* 8,18 10.41***  _4.67 -19.26
1.77 .48 2.0l .09 18.68
4,32 N.S. -5.87 2.05 N.S. -3.98 3.23
3.38 .16 1.36 .06 6.81
7.07%% 4,66 2.93%% -3.57 -1.56
2.42 11 .90 .07 8.15

11.13%%% 3,53 .14 N.S. -2.89 -4.03
2.80 .0 .85 .05 6.75
3.27 N.S. -2.80 .62 N.S. -1.81 8.88
3.18 .05 .61 .03 3.84
9.19%%%  _1.85  1.37% -5.52 4,22
2.48 .05 .66 .02 3.95

73.33%%% Ll Llxxs -
2 =

87 0)

x? value of goodness of fit under the model=66,39 with 72 d.f. N.S.

See the significant levels in Table 1.
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Table 7 Dose-response difference with the 95% confidence intervals of
same age groups between 1950-1959 and 1960-1969

Leukemia All cancers other than leukemia

Age at Age at

1950 1960 i“ifln exp(ai‘éi) ‘{‘iﬁ‘ii ﬁ;n e"p(éi‘éi) lljgr};i'rc'
5-14 - - - - - - -
15-24 15-24 .997 1.002 1.006 1.003 1.011%%  1.019
25-34 25-34 .988 .995 1.003 .996 1.001 1.006
35-44 35-44 .988 .995 1.001 .999 1.002 1.005
45-54 45-54 .998 1.005 1.011 .997 999 1.001
55-64 55-64  .987 .994 1.002 .999 1.001 1.003
65+ 65+ .991 1.000 1.009 .998 1.000 1.002

Note: **P<.01 and all other differences are not significant.
The numerical evaluation showed the same values in the dose response differ-
ence of parameters estimated between the binomial and multinomial logistic
models.

almost identical with those based on a multi-quantal response. This
may be natural because both mortality rates between two time periods
are small.

Finally, it is expected that this approach will give more definitive
results when the additional cohort data from 1970-1979 are used.
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Appendix

Appendix 1 Illustration of cohort mortality data for ¢ time period

Sample size Fllow up study
4 4 4

nf ¢

3
d"l'l

2.
di)'l

L di}l

0 1 2 3

—{ time period

where 7!, is equivalent to nﬁ,‘l—li] diy of (1.1) for £=1,2, ++,s.
=1
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Appendix 2 Relationship between observed and expected values in

Sum of estimated Leukemia (2=1)

Age at probabilities
1950  Dose Total Observed Expected
(1) )] @) (Bi.)  (Multi.) . (Bi.) (Multi.)
ij (di 5 1)

1 1 6675 1.000 1.000 5 5.19 5.19
1 2 4084  1.000 1.000 2 3.30 3.30
1 3 2998  1.000 1.000 3 2.93 2.93
1 4 700 .998 1.000 1 1.14 1.14
1 5 423 .995 1.000 4 1.45 1.46
1 6 406 1.003 1.000 11 12.00 11.99
2 1 7099  1.000 1.000 1 4.53 4.53
2 2 4716  1.000 1.000 2 3.10 3.10
y 3 2668 1.000 1.000 6 2.01 2.01
2 4 835 .999 1.000 1 .90 .90
2 5 898 .998 1.000 3 1.66 1.66
2 6 893 1.001 1.000 7 7.80 7.80
3 1 4425 1,000 1.000 4 3.62 3.62
3 2 2646  1.000 1.000 2 2.23 2.23
3 3 1828  1.000 1.000 1 1.79 1.79
3 4 573 .998 1.000 1 .84 .84
3 5 459 .996 1.000 2 1.22 1.22
3 6 493  1.002 1.000 7 7.30 7.30
4 1 5122  1.000 1.000 0 1.66 1.66
4 2 2806 1.000 1.000 1 .95 .95
4 3 2205 1.000 1.000 2 .92 .92
4 4 594 .998 1.000 1 44 A
4 5 430 .995 1.000 1 .75 .75
4 6 414  1.003 1.000 8 8.28 8.28
5 1 5499  1.000 1.000 12 10.15 10.15
5 2 3004  1.000 1.000 6 5.66 5.66
5 3 2392 1.000 1.000 4 4.98 4.99
5 4 664 .999 1.000 1 1.82 1.82
5 5 496 .998 1.000 1 2.02 2.02
5 6 417  1.001 1.000 6 5.36 5.36
6 1 3578  1.001 1.000 2 3.98 3.97
6 - 2 2011 1.000 1.000 2 2.31 2.31
6 3 1494 .999 1.000 3 2,03 2.03
6 4 434 .997 1.000 2 .92 .92
6 5 283 .994 1.000 2 1.15 1.15
6 6 212 1.005 1.000 5 5.62 5.62
7 1 2245  1.000 1.000 1 1.31 1.31
7 2 1235  1.000 1.000 2 .74 .74
7 3 935 1.000 1.000 0 .65 .65
7 4 232 .998 1.000 0 L24 .24
7 5 123 .997 1.000 (] .22 .22
7 6 92 1.003 1.000 1 .84 .84

Total 79736 - 126 126.01 126.00

Note: E(ﬁ;,,):n?,*P;,,:n‘{,/[l+exp —(i'm)] in a binomial model and E(z?;ﬂ)=n‘2,*

the number of deaths in the (4, 7, /)-th cell for 1950-1969 and n?,=the number

RADIATION EFFECTS RESEARCH FOUNDATION



MULTINOMIAL LOGISTIC RESPONSE MODEL 141

binomial and multinomial response models by age and dose, 1950-1969

All cancers other than

leukemia (L=2) Other causes (&=3) Survivors (&=4)
Observed ¢ Expected Observed Expected Observed Expected
. Bi.) (Multi.) . (Bi.) Multi.) (d:.)) (Bi.
(dijz) (dij3) 1j4 )
4 2.24 2.24 113 118.52 118.40 6553 6551.89
1 1.42 1.42 79 72.75 72.70 4002 4007.68
0 1.26 1.26 50 54.25 54,31 2945 2938.27
0 .49 .49 17 13.22 13.29 682 683.43
1 .61 .62 9 8.50 8.59 409 410.12
5 4.98 4,97 9 9.77 9.71 381 380.62
21 24,49 24.48 309 293.02 292.96 6768 6778.32
21 16.37 16.37 194 194.49 194.47 4499 4502.64
10 9.54 9.54 97 109.59 109.61 2555 2546.40
2 3.23 3.24 27 33.92 33.96 805 796.18
3 3.91 3.91 39 35.90 35.97 853 855.01
6 5.46 5.46 35 34.07 34.04 845 846.46
41 49.98 49.96 229 242.42 242.31 4151 4131.02
35 30.18 30.17 158 144.67 144.63 2451 2469.73
22 21.85 21.86 99 98.99 99.04 1706 1704.58
11 7.77 7.78 30 30.23 30.30 531 532.89
10 7.49 7.51 24 23,30 23,40 423 425,13
12 13.73 13.72 22 22.38 22.32 452 450.64
187 181.06 180.96 423 426.98 426.75 4512 4514.54
94 99.32 99.28 247 234.26 234.17 2464 2472.30
81 78.55 78.59 175 185.39 185.48 1947 1939.25
23 21.53 21.59 50 50.91 51.04 520 519.80
9 15.98 16.07 41 37.90 38.10 379 373.40
19 16.56 16.51 39 39.57 39.45 348 350.71
358 385.20 385.10 1099 1096.90 1096.60 4030 4007.82
218 210.92 210.89 615 599.79 599.69 2165 2188.01
193 169.88 169.92 458 479.83 479.97 1737 1736.83
49 48.63 48.69 141 134.88 135.06 473 478.03
35 37.99 38.07 100 102.62 102.85 360 352.52
36 36.37 36.33 92 90.97 90.83 283 284.79
398 384.74 384.43 1557 1601.17 1599.91 1621 1590.45
212 216.72 216.61 941 900.72 900.27 856 892.09
147 162.75 162.88 674 872.01 672.57 670 656.19
55 48.67 48.86 193 197.45 198.24 184 185.50
35 33.11 33.35 141 130.90 131.83 105 116.10
27 28.01 27.87 99 102.75 102.18 81 76.67
190 184.15 184.10 1793 1812.86 1812.28 261 247.35
90 101.64 101.63 1021 997.17 996.99 122 135.66
85 78.21 78.23 749 754.55 754.88 101 101.21
16 20.27 20.30 191 186.96 187.31 25 24.13
i6 11.45 11.48 96 98.92 59.21 11 12.06
9 10.28 10.27 74 73.54 73.33 8 7.59
2787 2786.99 2787.01 12549 12548.99 12549.00 64274 64274,01

R A 3 R R »
P;;=nf; exp (A;ﬂ)/[1+lz_:lexp (,l;-ﬂ):l in a multinomial model, where A,;,=d&;+ 8,D;;, dij;=
of alive subjects in the (7, 7)-th cell in 1950.
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