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Summary

This paper examines a simple transformation which enables the use
of product method in place of ratio method. The convenience with the
former, proposed by Murthy [3], is that expressions for bias and mean
square error (mse) can be exactly evaluated. The optimum situation
in the minimum mse sense and allowable departures from this optimum
are indicated. The procedure requires a good guess of a certain param-
eter, which does not seem very restrictive for practice. Two methods
for dealing with the bias of the estimator are mentioned. An exten-
sion to use multiauxiliary information is outlined.

1. Introduction

Consider a finite population with N units U,,-.-, Uy. The variate
of interest ¥ and the auxiliary variate x related to ¥ assume real non-
negative values (Y;, X;) on the unit U,, 1=1,---, N. This non-negativity
condition is met by almost all sample survey universes. Y and X are
unbiased estimators of the parameters Y and X corresponding to the
variates ¥ and x respectively, based on any probability sampling design.
Examples of such parameters are population totals and means. The
value of X is assumed to be known. When the coefficient of correla-

tion p between Y and X is positively high it is traditional to use the
ratio method of estimation, where Y,: f’X/X’ estimates Y. The bias

and mse of Y, are, upto second order moments

1.1) B(Y)=Y(1-k)V,,
(1.2) M(Y)=Y[Vy+(1—2k)Vy] ,

where V., are the relative central moments defined by
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(1.3) V.,=E(Y-Y){(X—X)|YX/,
(1.4) k=Vu/Va=0¥ValV .

The closeness of the expressions (1.1), (1.2) respectively to the actual

bias and mse of l?', depends much on the composition of the population,
the sampling design and the sample size. Hence these expressions must
be taken with reservation (Murthy [4], p. 365).

2. Product method as alternative to ratio method

In contrast to the above, exact expressions for the bias and mse
can be obtained if the product method of estimation is used. Motivated
by this, consider simple transformations that render the situation suit-
able for a product method instead of the ratio method. For instance

let Z:L—-X, where L is a scalar to be chosen. Clearly Z is unbiased

for Z=L—X and cor (ff, VA )=—p. Now consider the following esti-
mator of Y:

(2.1) Y,=Y2/Z .

Writing Y= Y(1+e), VA =Z(1+e) where E (¢))=E (e,)=0, we get the bias
and mse of 17,,, with 6=X/(L—X), as follows:

(2.2) B(Y,)=—0YV,,
(2.3) M(Y,)=Y[Vy+0(0—2k) Vo +20(0 Vis— Vi) +62 V3] .

The variance estimators for products of estimators have been considered
by Goodman [1].

M( Y,,) is minimized when 8,,,=(kVy+ Vy)/(Vie+2V,+ V) and the
corresponding L is

2.4) Loy = (14 00pt) X/Oops
=(1+1/k) X+ 2Vy+ Vyu— Vu/k) X[(k Vi + Vy) .

Let Y denote Y, for optimum L. The bias and mse of Y;* are given
respectively by (2.2) and (2.3) with 6 replaced by 6.,. It is ideal to
know L, so that Yp* can be computed. But in most surveys this is
not the case, since Y=E(?) is itself unknown, let alone the V,,. At
best an approximation to L., can be obtained.

For simple random or varying probability sampling with replace-
ment or any scheme involving independent subsamples, the bias and

mse of Yp have the form



ALTERNATIVE TO RATIO METHOD 113

(2.5) B(Y,)=—0YVin=—0YpVViViln,
(2.6) M(Y,)=Y[{Vi+0(0—2k) Vi) n+206 Vi, — Vi) n®

+0{ V4 (n—1)(Va Vi +2ViH}n']

where V/; stands for V, in (1.3) for a sample of one unit or for one
subsample and 7 is the sample size or the number of subsamples as
the case may be. Expression (2.5) indicates that for large » the rela-
tive bias B(Y,)/Y is likely to be negligible since |B(Y,)|/Y<0v ViV n.
Also by replacing V,; in terms of V/, in (2.4) it is seen that L., and
(14+1/k)X have closely comparable magnitudes, the remaining term be-
ing usually negligible. The value of X is known, but the exact value
of k is rarely available. However in repeated surveys or studies based
on multiphase sampling, where information regarding the same variates
is collected on several occasions, it is possible to guess accurately the
values of certain parameters. This problem has been studied among
others by Murthy ([4], pp. 96-99) and Reddy [8]. Hence we assume
that & can be guessed. In turn a good approximation L, for L, can
be obtained. We examine below to what extent L, may deviate from

L, and yet give an estimator better than YT or Y.

3. Allowable departures from optimum

To get tangible ideas, the V,; with ¢+5>2 are ignored in the vari-
ous expressions. Thus 6,,,=k and

(3.1) M(Y}H=1-)Y'Vu=(1-p) V(Y),
(3.2)  M(Y)=Y[Va+00—2k) Vil = M(T;}) [1+&0%/(1— )] ,
if 0=60,=k(14¢) when L=L,. It is seen that M(f’p*) is the same as

the variance of the difference estimator Y—h(X—X) in the ideal case,

namely when & is the coefficient of regression of ¥ on X. M( Y,,*) is
also the same as the large sample approximation to the mse of the
regression estimator. From (3.2) it follows that the proportional in-

crease in mse of ff,, over that of Yp* is less than « if
(3.3) le|<V(1—p%afp* .

Thus to ensure only a small relative increase in mse, |¢| must be close
to 0 if p is high but can depart considerably from 0 if p is just mod-

erate. Also from (1.2), (3.2), we get M(Y,)—M(Y,)=Y[(k—1)—(6,—
k) 1V >0 when

(3.4) 6, lies between (2k—1) and 1.
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Similarly a necessary and sufficient condition for M( f’p)<V(f/') is
(3.5) 0<6,<2k .

To investigate where (3.4), (8.5) are satisfied simultaneously we distin-
guish between the cases 0=<k=1 and k>1.

Case (i) 0=k=x1

Here choose L,>2X so that 6, is in (0,1). If k¥ happens to be in
(0, 0.5), condition (3.4) is automatically met since 2k—1<0, but (8.5)
needs

(3.6) Ly>(1+41/2k)X .

On the other hand if %k is in (0.5,1), then (3.5) is always met since
2k>1 but (3.4) requires

3.7 Lo<[1+1/@k—1)]X .

Thus any L,>2X satisfying (3.6) or (3.7) as the case may be, will make
Y, an improved estimator.

Case (ii). k>1
Here choose L,<2X. In addition we need only that L,>[1+1/(2k

Table 3.1 Optimum L and lower and upper bounds
on the choice of L for typical values of k

A Lowg:l I:Z)und Optimum L Uppg; tz)und
(1) (2) (3) (4)
0.1 6.00X 11.00X oo
0.2 3.50X 6.00X oo
0.3 2.67X 4.33X co
0.4 2.25X 3.50X oo
0.5 2.00X 3.00X oo
0.6 2.00X 2.67X 6.00X
0.7 2.00X 2.43X 3.50X
0.8 2.00X 2.25X 2.66X
0.9 2.00X 2.11X 2.25X
1.0 2.00X 2.00X 2.00X
1.1 1.83X 1.91X 2.00X
1.3 1.63X 1.77X 2.00X
1.5 1.50X 1.67X 2.00X
2.0 1.33X 1.50X 2.00X
2.5 1.25X 1.40X 2.00X

3.0 1.20X 1.33X 2.00X
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—1)]X for f’, to be more precise than Y, or Y. To get a clearer idea
some typical situations are presented in Table 3.1.

Interestingly the choice L,=2.25X covers a fairly wide range for
k from 0.4 to 0.9, being actually optimum for £k=0.8. Similarly L,=
3.5X suits the range from 0.2 to 0.7 for k with optimum at £=0.4.
In fact the choice of L, is very flexible when k is moderate, say in
(0, 0.7). This flexibility disappears in the neighborhood of k=1. How-
ever a value like L;=1.9X is virtually safe for all k>1. Better selec-
tions can be made when % is known more precisely. Fig. 3.1 shows

regions where Yp is to be preferred.

1.0 2.0
A A
Y Y,
AN\
6y 0.5F Y, b 1.5} A
Y,
A
Y,
0 1.0 ,
0 0.5 1.0 1.0 1.5 2.0
k k
Case(i) 0<k<1 Caselii) k>1
Fig. 3.1

4. Case of negative correlation

When p<0, take Z=L+X so that cor(f’, Z):cor(f’, X'). Here
it is appropriate to compare f’,, with the traditional product estimator
YX’/X. An approximation to L,, is —(1+1/k)X. The restrictions on
the choice L, for L., can be investigated. It turns out that L,=0.25X
covers the range —0.9 to —0.4 for k, being the best at k= —0.8, while
L,=1.5X is suitable for k& in (—0.7, —0.2) being actually optimum at
k=—0.4. And a choice like L,=—0.10X is practically safe for all k<
—1. A Dbetter selection can be made if k is more precisely known.

Table 4.1 Rules of thumb for choosing L

k>0 k<0
Case L Case L
(1) (2) (3) (4)
0<k=<1/2 3.50X —1/25k<0 1.50X
1/2<k<1 2.25X —1<k<—1/2 0.25X

k>1 1.90X k<—-1 —0.10X
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The rules of thumb for choosing L when a firm guess of the value
of k cannot be made, but only an interval containing %k can be specified,
are given in Table 4.1. These rules are not applicable when k& is in
the neighborhood of either 0 or +1. In fact if k¥ is (i) close to 0 sim-
ple estimator Y is to be used, (ii) close to 1 either Y, or 17', with L=
2X may be used, and (iii) close to —1, Y,, with L=0 (which is the
same as the usual product estimator) may be used.

5. Unbiased estimators

From (2.2) it is clear that Yp is unbiased for Y when ¥ and X are
uncorrelated. However this situation is not to be preferred since there

will be an unacceptable increase in the variance as compared to V(f’).
The usable methods of dealing with the bias are outlined below. Method
(i) is suited for any design using replicated samples. Method (ii) is
appropriate for simple random sampling without replacement. Here
the technique developed by Quenouille [6] and applied by Shukla [9] is
used for making the estimator unbiased.

Method (i). Suppose the sample is in the form of n independent inter-
penetrating subsamples. Let Y, X, be unbiased estimators of Y and
X based on ith subsample and cor(Yi, Xi)>0, 1=1,.---,n. Consider

the following two product estimators of Y, with Z}:L-—X’i and Z=
L—-X:

e (5 9 )
(5.2) V= V.Z/nZ .

As in Murthy [3], it can be shown that B( Yz)=an( Y, and hence that
Vi=(n f’l—Yz)/(n—l) is unbiased for Y. The conditions for Y; to be more
precise than Y, are similar to those given in Murthy and Nanjamma [2].

Method (ii). In the case of simple random sampling of n=2m units
without replacement, the sample may be split at random into two sub-

samples of m units each. Let Y, X be the population totals and I:',-,
Xi, 1=1, 2, be simple expansion estimators of Y and X based on the
subsamples and Y, X those based on the entire sample. Take Z:
L—X,, i=1,2; Z=L—X, Z=L—X. Here o is the same as cor (y, x)
and k reduces to pC,/C, where C,, C, are the population c¢v’s of y and
z. Thus guessing k for choosing L is fairly easy especially when C,,
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C, are of comparable magnitudes. A scatter diagram for at least a
part of current data may help in this regard. Consider the product
estimators

Y,=Y.Z/Z, i=1,2; Y,=YZ|Z

based on the two subsamples and the entire sample respectively. Then
as in Shukla [9], it can be shown that an unbiased estimator of Y is

(5.3) Vi=@N—n)Y,/[N—(N—n)(¥,+1,)/2N .
An expression for variance of ¥, is
(.4)  V(Y)=Y[Vi+0(0—2k) Vig+ (1 — 20%) (262 Vi — 20V +6° V)]

where §=X/(L—X) as earlier and w=—(N—n)/2N. In this expression
for variance the terms arising from subsampling have been retained
only upto second order moments. This is expected to be satisfactory
since the subsampling fraction is as large as 1/2. An estimate of
V(fﬁ) is obtained by replacing Y by ¥ and V.; by v,;=(1/n—1/N) zi‘i(Y‘
P X,—z)/(n—1)y'%’ in (5.4), where %, ¥ denote the sample means

and i‘. denotes summation over the units in the sample.

§=1

6. Use of multiauxiliary information

Frequently information on several x-variates may be used; for in-
stance utilizing census data to adjust current estimates. In this con-
text an extension of the method of Sections 2 and 4 is as follows: Let

Y, X’, be unbiased estimators of the parameters Y, X,, based on any
sampling design; t=1,---,q¢+s. All values are real, nonnegative and

X, are known. Also let cor(l;’, X,)>0 for t=1,---,¢q and cor(Y, f(,)<

0 for t=q¢+1,-.-,q+s. Then Z:L,-{—&,X’, is unbiased for Z,=L,+48.X,
for each t. Take 8,=—1 for t=1,-.-,q and 8,=1 for t=q+1,---, g+s.
An estimator of Y is

A A Qts A
(6.1) Y,=Y > W.2/2
where W=(W,..., W,,,), qﬁW,:l, is a vector of weights. Then

(6.2 B(T)=Y( S wave-swove)
g+1 1

and the mse, upto second order moments, is
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(6.3) MY)=Y*S W.W.du=Y"WDW'
t,u=1

where the elements of the matrix D are given by
dzu =Vy+8.0, Vl(lt) +8.0.V§P+08.8,0.0,VEY

with 6,=X,/(L,+4,X,), t,u=1,---,q+s. Here V{ stands for V;; given
in (1.8) with (X—X) replaced by X,—X,, X by X, and V{=E(X,—
XL)(X'u—Xu)/X,Xu. As shown in Rao and Mudholkar [7] the matrix D
is positive definite if the (¢q+s-+1)X(g+s+1) matrix of the cv’s of
Y and Z is positive definite.

Theoretically the L, can be determined to minimize M( Yp). But
a practicable alternative is to choose L, such that d, is controlled.
Thus, as a rule of thumb, L, may be 3.5X, if k,=V V|V is positive
but moderate, while L, may be 1.5X, when k, is negative but moderate.
Other choices can be made as discussed in Sections 3 and 4. In any
case a scatter diagram of y against each xz-variate values in the sample
may be helpful.

Next, applying the generalized Cauchy inequality (see Olkin [5]),

the W, optimum in the sense of minimizing M(Y,,) for given D are
provided by W,,=eD '/eD'¢’ where e=(1,---,1). Substituting W, in
(6.3), Mo.(Y,)=Y%eD'¢'. However, in surveys W,, can rarely be com-
puted and used since the matrix D is usually unknown. Theoretically
W, will all be equal (=1/¢+s) if and only if the column sums of D are
equal. A hypothetical example of this occurs when the population cv’s

of the Z, are all equal, Y is equally correlated with all Z, and all pairs

of two different estimators Z, have the same correlation. Usually the
W, are selected from experience and theoretical considerations. In small
scale surveys of specialized scope it may be feasible to estimate W,,
from the sample itself.

7. Empirical performance of Y,

For purposes of illustration, simple random sampling without re-
placement is assumed throughout this section and Y, X denote the
population totals. The following four populations are considered.

Table 7.1 Values of y and x Population 3. Data on number of work-

for population 1 ers (x,), fixed capital (x,) and output (y)
v 1 2 4 5 6 8 9 for 80 factories in a certain region ([4],
p. 228).

x | 6 5 7 2 4 10 8
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Table 7.2 Values of y, x, and x: for population 2

Y 12 22 38 1518 31 15 20 10 25 11 17 12 22 14 26 8 16 13 19

Ty 14 25 37 18 20 30 15 21 12 28 14 19 12 23 16 28 9 15 15 20

T2 30 25 9 30 28 12 30 24 36 28 30 30 31 25 31 25 35 25 30 28

Population 4. Data on cultivated area (y) and area under wheat (zx,,
x,) during two different years for 34 villages in a certain region ([4],
p. 399, Table 10.6).

For populations 2, 3 and 4, three subcases are studied: using =z,
alone, z, alone, and «,, x, as auxiliary variates. These are respectively
denoted by 2a, 2b, 2c etc. In the case of population 1, all possible
samples of n»=3 units were listed and the biases and mse’s were com-
puted from first principles to avoid any approximations, while in 2a
the exact expressions for bias and mse were used. In the remaining
cases computations were made only upto second order moments. The

rules of thumb in Table 4.1 were applied for choosing L for Y,,, while
L was taken to be (1+1/k)X or —(1+1/k)X as the case may be, for
Y. When information on , and @, was utilized, ¥, was compared
with the generalized multivariate estimator discussed in [7], with
weights W,=W,=1/2. The results are summarized in Table 7.3. For
simple random sampling without replacement the relative bias of the
suggested estimator ¥, reduces to B(Y,)/Y=—((N—n)/Nn)dS,/YX, where
S, is the population covariance between y and z, and Y, X are popu-
lation means. Hence

Table 7.3 Efficiency and relative bias of different estimators

Estimator
T k Ratio (product)
ation 5 atio (product & 4
¥ estimator e Yy

(1) (2) (3) (4) (5) (6)

1 0.57 100 94 (10) 115 ( 9) 121 ( 6)
2a 1.11 100 2433 (1) 4253 (16) 4253 (16)
2b —0.50 100 100 ( 3) 109 (1) 109 ( 1)
2c 1.11, —0.50 100 218 ( 2) 315 (1) 798 (1)
3a 0.35 100 32 (58) 729 (13) 837 (11)
3b 0.44 100 65 (33) 1088 (10) 1197 (11)
3c 0.35, 0.44 100 45 (46) 246 (11) 1052 (11)
4a 0.75 100 376 (13) 565 (31) 577 (29)
4b 0.71 100 318 (16) 514 (32) 549 (29)

4c 0.75, 0.71 100 365 (15) 570 (32) 590 (29)
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[Nn/(N—n)]-|B(Y,)||Y=6S,/YX ,

where the right side expression is seen to be independent of the sam-
ple size n. To have this practical convenience, values of 100[Nn/(N—
n)]-|Bias|/Y are reported in Table 7.3 within parentheses.

The value of k ranges from —0.50 to 1.11 in Table 7.3. Here sub-
stantial gain in efficiency is seen when f’,, is used instead of the tradi-
tional estimators, in most of the cases. Also 17',, compares quite well
with the ideal case of Y. Thus the illustrations indicate that (i) the
use of Y, is desirable in practice, and (ii) the rules of thumb for choos-
ing L work well. If an unbiased estimator is preferred then the tech-
niques outlined in Section 5 may be employed.
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