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Abstract

We shall consider the asymptotic properties of predictors with
estimated coefficients for IMA processes and how to determine the or-
der of predictors to minimize the error of prediction. For this purpose,
the effect of the initial values on predictors is also considered.

1. Introduction

The Box-Jenkins ARIMA (p,d,q) model [6] for a nonstationary
process is considered to be very useful to analyze many time series.
However seemingly their definition involves some ambiguities. Recently
Huzii has given a theoretical definition of ARIMA processes for predic-
tion and estimation, still holding Box-Jenkins’ essential idea, and con-
sidered their properties*.

In this paper, we shall consider the asymptotic properties of the
error of prediction for an ARIMA process, especially, an IMA process,
according to Huzii’s definition, when the true coefficients of predictors
are replaced by some consistent estimates. Several authors discussed
the properties of a predictor with estimated coefficients in view of the
asymptotic error when it is adopted for the prediction of another process
having the same statistical structure as that of the process employed
for estimation, but being independent of this one. (Cf. Bhansali [4],
Bloomfield [5], Box and Jenkins [6], Grenander and Rosenblatt [7], Yama-
moto [15].)

However we shall treat the case that estimators are constructed
by using past realizations of the process itself whose future value is
desired to be predicted. Further we shall consider how to determine
the order of a predictor to minimize the error of prediction. For this
purpose, we shall also discuss the effect of the initial values of the
process on predictors.

* Unpublished paper. Huzii, M. (1979): “On an ARIMA process and estimations of
parameters for prediction,” Res. Rep. on Inf. Science, Ser. B-65.
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Our main results are as follows. Firstly the initial values do not
influence on predictors up to the order T-Y* where T is the number
of observations. Next, if we neglect the initial values, we should
increase the order k of the predictor so that lTim T(m?x |h,[*)=0 to min-

imize the error of prediction where h; is the characteristic root of MA
processes.

2. Definition of IMA processes

In this section, we shall outline the definition of Integrated Moving
Average processes (hereafter abbreviated as IMA processes). Let «,,
t being integer, be a real-valued stochastic process for t=—d+1, where
d is a non-negative integer. We shall denote the Borel field generated
by {z.; m=t=m} by B;xx). Let z, t=1, be a real-valued Bz, ,(x)-
measurable stochastic process. For a B, ,(x)-measurable random vari-
able z, we shall express, for simplicity, the conditional expectation E (z/
T_grts T_ginr*r ) a8 E(2). And for a B=,,,(x)-measurable set M, we

also express the conditional probability P (M/x_s.1, ©_4.3,° - -, %) @S P (M).

DEFINITION 1. We shall call z, a weakly stationary process if Ez?
<, E2,=0, and Ezz=R,_, for any t, s=1.

DEFINITION 2. A stochastic process x, defined for t=—d+1, is
called an integrated weakly stationary process of order d for t=t,, ¢,
being a positive integer, if y,=F%:, is a weakly stationary process for
t=t, where Vo,=x,—x,_, with Ve, =r{¥* ‘z,).

In general, an integrated weakly stationary process x, is expressed as
d-1
X,= 20 mjt!+det ’
iz

for t= —d+1, where y,=F%, and m, is a $°,,,(x)-measurable function.
Further Sy, is defined by

t

S §y17 t>0,
Yi=1
0, t<0,

with S%,=S(S*"'y,).

Next let u, and w, be real-valued stochastic processes. We shall
denote the Hilbert space generated by {u,; t,<t<t)} by L!{u;t,t,}
and the projection of w, on L*{u;t,, t;} by P.e.. £yt Ws -

Let us put y,=F%, for t=1 and assume Ey,=0. Then let a, be
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the white noise process of y, with respect to E, so that Ea?=0? and
Ly;1,t}=L%a;1,t} holds for any ¢t.

DEFINITION 3. We shall call ¥, a Moving Average (MA) process
of order ¢ if y, can be expressed as

q
yc=at__21 g;a,_; ,
j=

with constants 6,, 1<j=<q for t=q+1 where 0(z)=1—§q‘_, 6;27=0 has
j=1

the roots outside the unit dise.

We can find that a MA process of order ¢ is weakly stationary for
t=q+1, but not for 1=<t=q.

DEFINITION 4. We shall call 2, an IMA process of order (d,q) if
y,=V%, is a MA process of order q.

Thus an IMA process of order (d,q) is an integrated weakly sta-
tionary process for t=q+1.

3. Prediction of IMA processes (d=g=1)

In this section, we shall consider the asymptotic properties of the
error of the prediction when the coefficients of predictors are replaced
by their estimates. Hereafter all the processes are always assumed to
be Gaussian. To make the idea of the proofs clear, we shall at first
consider the case d=¢g=1. In the next section, we show that for any
d and ¢ the corresponding results still hold. Thus by the previous defi-
nition z, is expressed as

t
r,=m+> Y, t=1,
=1

where y,=a,—0a,_,, t=2, with |6|<1, while y, and m are independently
distributed.

Let us consider the prediction of z,,, given the observations {z,,
Zy,--+, r}. Because x;,,=%;+¥Yr, and L*{x; 1, T}=L*=,, ¥, -, Yr},
this problem reduces to the prediction of .., based on {z,, ¥, -+, ¥r}.

k T
Let 3 B.¥rs1-: and 3 @, r27,,_; be the projection of y,,; on L*{y; T+
i=1 i=1

1—k,T} and L*{z, ¥, -, Y} respectively where z,=2, and z,=y,, 1=

2. Further let &/, and éifk be generic symbols for estimators of e,
and 8;; respectively. For simplicity, hereafter the superscript T' of
estimators is suppressed.
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As soon as we try to construct predictors with some estimated
coefficients, two problems naturally arise. First, can we neglect the
information contained in z,? If we can, the problem reduces to an
ordinary prediction of the stationary process y,. Seemingly Box and
Jenkins [6] adopted this method. Intuitively, it seems natural because

it is practically difficult to get good estimators of m?, Eyy, and E?
needed for &, .
Next, even if we agree to neglect 2;,, we have to determine the

kA
order k of the predictor >} 8;¥r41-; to minimize the error of the pre-
i=1

diction. If %k is large, the number of coefficients which must be esti-
mated is also large and, consequently, the error of estimation may
accumulate. On the other hand, the small order k¥ may also lead to
a wrong predictor. Hence we have to select £ so as to balance these
difficulties as T— oo.

To make the comparison easy, we formulate errors as follows,

2
(1) E {yT+1 E 0 127 41— i}

~ 2
=E {yul—% Bi,rYrsi- i} +E {Z (ai,T_.Bi,T)zT+1—i+;BT,Tm} )

(2) 1?/T+1 Z.BtkyT+l }2

=Bk {yrn—g BirYri1- } {é (Bi,T'_ﬁi,T—l)yT+l—i}2
+E {,é (Aéi,k_.gi,k)yT+l ot g_l (B Bi,T—l)yT-H—i}z ,

where @; , and [}i,k are made of z;, 1=<i<T, and y,;, 2=1<T, respec-
tively. In principle the choice of estimators are arbitrary. However,

to make the discussion manageable we restrict a;,, éi,,, to some type
given explicitly later. As the first term, which is the theoretical error
and will be discussed later, is in common in (1) and (2), we have only
to compare other terms. The second terms of (1) and (2) represent
the influence of x, on the predictors stated above. While the third

k A
one of (2) implies the error which occurs when 3B, ,¥r.i-. is used as
i=1

a predictor. From now on we consider asymptotic distributions and
variances of these terms. First let us take the third one of (2), the
most laborious part.

Of course, there are many estimators of ,@,-,k. But in this paper
we construct ,é,-,,c by using p, which is an estimator of o=E y,ym/ﬁ] Y.
Because we usually obtain B,, solving P=AB where A=(p._;), P=
(0, 0,+++,0), and B="(Byx, Boxs""» Bex). For MA processes of first
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order B;, and 0 are continuous functions of p. Thus, if we set p,=
= TZ‘: yty,“/(T—Z)}/ié y?/(T—l)} as an estimator of p, 5T=0(ﬁr) and
.éi,k=l3¢,k(i)r) are consistent estimators of # and B, respectively. Now
we shall prepare a few lemmata for later use.

LEMMA 1. Let 0(z)=ﬁ (1—h;2) be the characteristic polynomial of

Jj=1
a MA process of order q where h; are distinct each other and located
inside the wnit disc. And let its reciprocal be 67'(z)= jé M,/(1—h,2).
=1
Then B;. 18 expressed as
Bix=Bi—71ix

”.Uhe’re Btz"éMjh];, Ti,kzéAj,kh,ii_i_jéBj,kh;i) and Aj,k’ Bj,k are the
j=1 i=1 -1
solutions of

q+i

q+i q .
0=Z ( lpl—ih.Li>Aj,k+j§ <l§pl—ih1—'l>Bj,k ’ 1§z§q y

j=1 \ i=

g, (M k—2q—1+1+i
._1< g Pas1-ilf™™ z)A./,lc

J

2¢+1—1 ) .
+> ( by qu_th-(k—zq—HHn)BLk 1<i<gq,

j=1 i=1

i
_121 pq+j—i.8k+j =

with pi:E ytyt+i/E Y.

Proor. If we define w,=et——}g‘_, 0;e_j, t=0, 1, £2,..., where ¢,
j=1

is an orthogonal sequence with mean zero and variance ¢, then w,, ¢
=0, +1,---, and y,, t=q+1, have the same correlation structure with

respect to E and E respectively. So

M

-,
Il
-

Bwri1-i=Prrw; —, 7/ Wr41

M

Il
-

uBi,kwT+1—i=PL2(w; T4+1-%7)Wri1 »
1

where B,.=0 for i>k. As f‘, YixWra1—; 18 orthogonal to w,,,_,, 151k,
i=1
2q .
(3) jgopq-jrq-l-i-j,kzo , 1<i<k,

where 7,,=0, 1<0, and 7,,=8;, i>k. The characteristic equation of
2

3) quq_,-z’=0 has the roots h, and hj'. Hence for k=2¢q+1 B, is
j=0
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expressed as asserted. These solutions also satisfy (3) even if k<2q
+1. Thus the proof is completed.

Remark 1. Mentz [9] gave the inverse matrix of A=(p;_;) in a
similar way as Lemma 1.

Hereafter it is assumed that k is a function of T such that 0k
<T-—1 and limk=oo. And it should be remarked that the limit in

T —oo

probability or law, which appear in the results, is taken with respect
to P.

LEMMA 2. If y, is a MA process of first order, then the following
three sums converge to zero in probability as T— oo,

(1) 2 Gi—0Wres,
(i) T 3 @3 =0y,
(i) T4 310 =0y,
where 0, is the estimator of 6 with |6|<1 defined previously.
PrOOF. (i) A Taylor expansion gives
31 Of—0Wrs1oc=(0r—0) 2} BiFYrice

Then we obtain, for any ¢>0,

kA .
Pl|S @r—0wrad>¢f

A k AL
<P {ldr—01<0, |3 04— 0Wro-

> el +P (16,01 20)
N koo~ A
<P {10T—01<5, §, 'blﬁi,rl"llyr+1_¢|>€/3} +P {|6,—0|=0}
<(0/) Elysl 23 101+0)~'+P {1, —0] =0} .
Taking ¢ small enough and then letting T— oo, we can show that the
right-hand side of the inequality can be made as small as desired.
(ii) A Taylor expansion also gives

k A A k ~
T1/2 E (012'k—i+2—02k_i+2)yT+1—i= Tl/Z(ﬂT_a) 2 (2]0—'1:-{- 2)0112;’6T_i+1y1'+1—i .
i=1 i=1

The theorem (ii) in Section 6a.2 of Rao [11], p. 387, combined with
the theorem of Anderson and Walker [2] show that the asymptotic

distribution of T‘/Z(éT—ﬁ) is normal. So it is sufficient to show



INTEGRATED MOVING AVERAGE PROCESSES 87
k ~
p_lim 1"2 (2k"‘i+2)03’,‘1’_i+1y1'+1_i=0 .
T—ow i=1
k ~
The absolute value of >} (2k—i+2)0% *'y,,,_; is dominated by
i=1

- ko~
(2k+1)(mtax 2 gl 16,21 Y rs1-il

which is shown to go to zero in probability in a similar way as (i).
(iii) We omit the proof because it is almost the same as that of (ii).

LEMMA 3. Let y, be a MA process of order q, then E {Tg—: Bi—
Bi,T_l)yT“_i}z 18 at most of the same order as (mjax[hj|)2k where B,,=0,
1>k.

PrOOF. Let us introduce the process w, defined by ’wt:e,—zq‘, 0ie—jy
j=1

t=0, +1,---, where ¢, is an orthogonal sequence with mean zero and
variance ¢ with respect to E. Then

E {ig_: (.Bi,k—.gi,r—l)yT+1-t}2
=E {jz;f (Bi,k_ﬁi,T—l)w-i}z

Il

EDSICRTINVIN S S TCR

2

) 2 oo
=E {E Ti,kw—t} —E {gl Tt,r—lw—i}
=O(m}‘slx |h;[*)—O(max |0 .
J
The last equality is obtained by using Lemma 1.

Remark 2. Let w, be the process defined in the proof of Lemma
3. If we define p,=E |wy— P2y, W, then

=E {3 (s—pudw_| =E {3 v} =O(max h, ) .

This is the explicit version for MA processes of order ¢ of a general
result given by Grenander and Szego [8], p. 189.

Using the preceding lemmata, we have the asymptotic distribution
of the third term in (2) multiplied by TV
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THEOREM 1. (i) The limit distribution as T— oo of

k A -1
TV El Bixr—Bit)Yrs1-+ T lgl Bix—Bi,r-)Yr+1-1

18 the same as the distribution of WX+Y if lim T6*(#£0)< oo, WX if

lim T6*=0 where W, X, and Y are random variables having the normal

T -

distributions which are limit distributions of T pr,—p), —0' i‘, L.
T— i=1
Yri1os, and TV g}l (Bi,x—Bir—1)Yr+1-: Tespectively. Here 6 means df/dp.
() EWX+Yr=EW:EX+EY=
PROOF. With B, defined in Lemma 1, we obtain
k A
(4) T Z-;l (Bix—Bi)Yr+1-:
koA ) koo
=T LZ=1 07 =0 11— T § (Fox—7i6)Yr+1-4 -
For ¢=1, using Lemma 1 and the relation p=—#/(1+6%, we have
i k:(02k+i+2_02k—i+2)/(1_02k+2) .
So Lemma 2 asserts that the second term of the right-hand side of (4)

converges to zero in probability as T—oco. While in a similar way as
in Lemma 2, the first term of (4) can be expressed as

ko oa ) N ko
T ;1 0 =0y py1oi=—T"Y0,—6) gl W0 Y0, (1)
k s
=—T"(pr—p)0 1=21 10"y 7 41-i10,(1)

where o0,(1) stands for a term which converges to zero in probability
as T—oco. Hence we have only to consider the asymptotic distribution
of

k T-1
—T"*(pr—p)d’ E W0 Y1+ T E Bix—Bi,r-)Yr 41— -
First we put
T-1 T-1
Ve=Vip+Vor=T"" { E Y Y (T—2)—p E v:/(T— 1)} ’

k
Xe=Xir+Xpr=—-0 g W Y1 s

T-1
Y, =Y+ Y, =T" E Bix—Bir-)Yrs1-i »
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where
V =Tl/2 Tr—1-2 T__2 _ Tr—-1-1 . T_l
1T E YYerr/( )—p E yi/( )
l
Xir=~—0 E W Yriimi

1
Y, =T fg Bix—Bir-)Yr+1-1 -

Further ! is assumed to go to infinity with the same order as 77, 0<

0<1. As T*(pr—p)=V;[{S 4T} and p—lim % 9i(T-1)=Ey:,
t=2 —00 $=2

it is sufficient to show that (V,, Xy, Yr) converge to (E#W, X,Y)

jointly in law as T—oo. (Cf. Billingsley [3], Chapter 1, Corollary
1, p. 31.) Here Y is shown to be identically zero if lim T6*=0 by

T —oo

Lemma 8. The preceding assertion is immediately seen if we show
that V,,, X;r and Y,, converge to zero in probability as T—oco. As
¥, is a Gaussian MA process of first order, V,; and (X7, Y;;) are in-
dependently distributed. Thus, if we show that V,,, X;; and Y,, go
to zero in probability as T— oo, noting that V; and (X;, Y,) converge
to E4W and (X,Y) in law respectively as T— oo, we can conclude

that (Vip, Xir, Yir) converge to (Ey:W, X, Y) jointly in law as T—oo
and the assertion follows. (Cf. Billingsley [3], Chapter 1, Theorem 3.2,
p. 21.) From now, we shall consider EV%, EXZ%, and EY2. Using
a well known formula for higher order moments of Gaussian random
variables, we have E V% =0(/T). Next, as y, is a MA process of first
order, we have E X2%=0(%") and EY2L=0(T6*). Clearly all these
amounts go to zero as T'— oo,

(ii) We find, through the proof of (i), that Wand (X, Y) can be taken
to be independent. Then the proof is immediate since E W=0.

Next, we shall consider the second terms of (1) and (2). These
terms represent the influence of z, on the predictors. Let w,=(Ey*+
m?)/Ey: and wlzf}yzyl/E y:, t=2. And let o;, =0, 1, be a measurable
function of (x, ¥:,+++,¥r). We shall assume that @, converges to a
random variable o} in probability as T— oo, where ) satisfies w,—w[?-
(14p6)7'>0 almost everywhere. In fact, we see that w,—w}(1+08)"'>0.
Since a;, is the function of p, w,, and o,, as is seen from the next
proposition, it will be natural to set &, r=a; (07, @, ®;)). Then we have
the following result.

PropPOSITION 1. Each of the following expressions converges to
zero in probability as T— oo.
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o Zy a T-1 .
(5) TV LE=1 (@i, 7 =B, )27 11-1+ Br,rm— ¢2=1 (ﬂi,T—l—.Bi,T—l)yT+1—i} ’

(6) TV é Bir—Bir-1)Yr+1-i -

PrOOF. From the definition of «;,, we have

o 1 p 0.0 0\fay,r
0 p 1 p---0 0 Qs
01100 0.1 olffarsr
0 00 0:---0 w/\arr

Using the modified method of Anderson [1], p. 187, we obtain

( - ) a; =P#T—1,r—1ﬂr—i,T-l/(wo—wlﬂl,r_1)+ﬂi,r-1 ’ 1=i=T-1,

Qr 7= _PFT—I,T—I/((DD—'(UIFI,T—I) ’
where p;,r_1=Ar_0°+B;_0~* and A;_,, Br_, are the solutions of the
following equation,

o,=(0+p0)Ar_1+0 '+ p0"*)B;r_, ,
0:(paT—z_l_oT—l)AT_l_{_(p0~(r—2)+0-(T—1))BT_l .

B..r is immediately obtained if w, is replaced by w,=E y?/ﬁ Y, t=2, in
(7). Putting A, ,=w,A7_(p), Br_i=w,B7_(p), we see that (5) is equal
to

pr Ty 1, p(@y—@ypty, 1)~

-1 A A
X [61 2 145 -iBr)dt+ Br- e Yy —a

— 0Ty s, r—(@y— @iy, 1)

T-1
X (01 35 (A0 + By )0 VWers— |+ TV,

Now we shall show that all terms converge to zero in probability
as T—oo. As for the first one, by noting that g,_;r_, is equal to o,
multiplied by the term of order 67, the assumption asserts that p—
lim o, T" %7 _4,r_1=0 and p—;im Oy— &y, r1=wj— o} (1+p0)~'. Moreover,

T —co

using Lemma 2.(i), we have

-1 R R
p—lim >3 {A%_(pr)07 — A7 _1(p)0°+ By _1(p)r07* — By _1(0)0™}Yr1-:=0 .

T'—oo =1

Then the first term converges to zero in probability as T—oco. The
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other terms also converge to zero in probability because 8;.r and py_y 7_,
go to zero exponentially as T— co. The first half of the proof is now
finished.

Next, (6) is equal to

T-1
PTUZFT—L r—1(@s— oy p_1)™! ( E Lo, r-1Yir1— y1> ’

which clearly converges to zero in probability when T—oco, as was
proved.

Remark 3. Using Proposition 1, we find that
. T . -1
p—lTlgi (yT+1—~§1 .Bi,TyT+l—i> =p—-11}£!3° <yr+1— g{ ﬁi,T—lyT+1—i> .

Accordingly the asymptotic variance of the first term in (1) and (2) is
one-step ahead prediction error of an ordinary MA process given all
the present and past observations.

The last two results give the answers for the two problems men-
tioned at the beginning of this section. First it follows from Proposi-
tion 1 that x, does not influence on the predictor up to the order of
T-2, Thus it seems useless to make much efforts to estimate w; if our
main purpose is to predict future values. Next, if we neglect z,, not-
ing Theorem 1, we should increase k as T—oo so that lim T6*=0 in

T —o

order to minimize the error of prediction.

To end this section, we shall comment on the choice of estimators
.BAM- Though Whittle [14] indicated that p, employed here is much less
efficient than the maximum likelihood estimator, we can also obtain
the result corresponding to Theorem 1 even if the improved estimator
proposed by Walker [13] is used. Further with the more improved
estimator of Mentz [10] having the same asymptotic variance as that
of the maximum likelihood estimator, we can see that the same result
still holds. So we shall omit the detail.

4. Prediction of IMA processes (General case)

In this section, we shall show that the results obtained in the pre-
vious section can be extended to general IMA processes of order (d, q).

a
As xT+1=l§ (—1)"‘<?>wr+1_;+yr+1 and L2{x; 1, T} -:Lz{xu sy Xay Yavrs

-++,¥yr}, the prediction of x.,,, given {x,, ;,---, 7} reduces to that of
Yry based on {xy,---, %4, Yo, -, Yr}. Hereafter we assume g>d.

T
For g=d, the results are given in a similar way. Let > e; r27,;_; and
i=1
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éauéﬂl_t be the projection of y,,., on L*{z;1,T} and L*{Z;1,T} re-
;;ectively where z,=z,, z,=2,—Ez,, 1<i<d and z,=%=y,, d+1=<i<
T. On the other hand, é BiYrs1-i» 1=1=<T—q, have the same defini-
tion as in Section 3. -

If &, and B,,, are the functions of z;,, 1=<¢<7T and ¥;, q+1=i<T
respectively, we have the following equations corresponding to (1), (2)

T 2
E {yT-H - iZ_l a;, TzT+1-i}

T 2 (T 2
=E {yrﬂ—i;l ai,TzT+1—i} +E {E (ai,TzT+1—i_8t,TzT+1—i)} ,

- PN 2
E {yz’+1—i=21 .Bi,sz+1—i}
- T _ T _ 2
=E yz'+x—1§l 0y 72741~ i} {§ (,, TzT+1—i—ﬁt,T-qu+1—i)}
~ k A T—q 2
+E {33 G Boroct 3 Bur—Bur-Jraice -

In order to generalize the results in Section 3, we shall show that
M, and h;, which are the functions of p;, satisfy the assumption of
the theorem (ii) in Section 6a.2 of Rao [11], p. 387 and that the partial
derivatives of B, with respect to p;,, 1<j=<gq, exist.

LEMMA 4. Let us use the same notations and assumptions as in
Lemma 1. Then M; and h;, accordingly also B;, are totally differenti-

able functions of (py, p;,-**, p,) Where p,-:Ey,ym/E Yy, t=q+1.

Proor. First we show that h, is totally differentiable. For this
purpose it suffices to show that the Jacobian d(p)/o(h) of (o1,: -, p,)
with respect to (h,- -, h,) never vanishes. If this assertion is true, h;
is a C'-class function of (o,---, p,), and hence is totally differentiable.
Let us introduce the following polynomial

Uw) =143 pw' +w =3 02=V@),  z=wtw.

Then the roots of V(z)=0 are z,=h,+h;!, 1<t=<q. As 9(p)/o(h)=03(p)/
d(v) X 0(v)/o(2) X o(=)[o(h), let us show that 9(p)/d(v), 2(v)/d(z) and 3(2)/a(h)
never vanish. First there is the relation between p; and v»; that v,=
éc“p, where ¢;; are the constants with ¢;=1 (see Rose [12]). Thus
we have 9(p)/o(v)=1. Next since h;#h; for any ¢, 7 with i#7, it fol-
lows that {z;} are also distinct each other. Then it can be easily seen
that 9(v)/d(z)=const. T] (2,—2;) never vanishes. Finally, as |k;|<1 for
i<Jj
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any j, o(z)/o(h)= ﬂ (1—~R;? is non-zero.
On the other hand about M,, we have the identity Z‘,M T[(l—-

nﬁj

hz)=1. Hence M, is totally differentiable with respect to (h,---, h,)
and also with respect to (o,:--, p,), by noting 9(p)/o(h)#0. We have
finished the proof.

Now if we set bi::{:%: ytym/(T—i-—q)}/L%Iy%/(T—q)} and ﬁi,k=

Bix(D1y+ +, p,), the general results corresponding to Theorem 1 and Prop-
osition 1 are given. We state them without proofs because they can
be obtained essentially in the same way by using the lemmata in Seec-
tion 3.

k

TuEOREM 2. (i) The limit distribution as T— oo of TW{g (Bor—

q

B, k)+T§ (Bie—Bir-o)tYrs1-: 18 the same as the distribution of ZWiXi
+Y if hm T(max]hjl)z" (#0)< o, }_]WiX, i 11m T(maxlh )*=0, where

W, Xi, and Y are random vamables having the 'no'rmal distributions
k
which are the limit distributions of T p,—p;), X 0B;[0p:XYri1-; and
T—q . Jj=1
T2 2:}1 (Bix—Bir-)Yrs1_i Tespectively.

Gi) B {é W,.Xi+Y}2=é S EWW,EX.X,+EY
i=1 3

i=1 j=1

PROPOSITION 2. Define the following quantities and matrices; o,
=Eziz,/I:]yf where at least one of 1<1<q or 1<j=<q holds, A,(p)=
(p[i—j])7 1§1‘7 j§T"_Qv Alz(w):(wT+l-—{,q+l—j)! 1§’L§T—q, 1—§]§q; Azl(w)
=TAp(w), Ap(w)=(w;,), 1=1, j=q.

Assume that ,; is a function of (x,, 2;, -+, %4, Yar1,- -+, Yr) such
that p—lim &,,=w}; where o}, is a random variable and Ay(¢')— Ay(e’)

T -
- AfY(p)Ap(e') is positive definite almost everywhere. Further let define
a,r=a; (01, Pg» @;:). Then each of the following expressions con-
verges to zero in probability as T— oo.

T T—q .
TI/Z{ZI (@, 727 41-i— 83, 127 41-1) — z} (ﬁi,T—q_.Bi,T—q)yT+1—i} ’
1= 1=

T
T g (0i, 27 41-i—Bi, 7 —qYr+1-1) -

Thus we can extend the assertions in the previous section to gen-
eral IMA processes of order (d,q). First the initial values do not in-
fluence on the predictor up to the order of T-'.. Next, if we neglect
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the initial values, we should increase k as T— oo so that lim T'(max |k,|)*
T —oo J

=0 to minimize the error of prediction.
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