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Abstract

A class of spectral windows depending on one parameter is presented
and shown to include many of the common windows. The mean square
rate of convergence of the associated spectral density estimators are
calculated in terms of this parameter for spectral densities which are
locally Lipschitz continuous. The class is shown to include certain data
tapers and data windows corresponding to missing observations. This is
true also for the kernels of (C—a) summability which provide means for
estimating the spectral density when the covariance function is periodic.

1. Introduction

The problem of estimating the spectral density of a stationary
stochastic process has a number of different solutions corresponding to
different “spectral windows.” Windows for use in such estimation have
been proposed by many investigators, in particular Bartlett [2], Black-
man-Tukey (see [1]), and Parzen [8]. To this array we should like to add
one more, which, however, can be used sometimes when the others
cannot. This new window enables one to estimate the spectrum even
when the process has a periodic component. Thus the necessity for
first removing such components is avoided.

This estimator as well as most others used in spectral density esti-
mation is based on “delta sequences” i.e., sequences of functions that
converge to the “delta function.” Such sequences were used by Walter
and Blum [11] to study probability density estimation. We shall study
a one parameter class of such sequences which includes the common
windows. The mean square rate of convergence of the associated esti-
mator is found in terms of this parameter for a Lipschitz continuous
spectral density. The rate obtained is O(n~%*3**) for a class of spectral
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densities for which Farrell* has shown the best possible rate to be
O(n~%%),

The problem of estimation when certain observations are missing
has been studied by Jones [6] and Brillinger [3] among others. We
shall show that under certain conditions on the missing observations,
a delta-sequence of this class is obtained and hence rates of conver-
gence of the estimators found. The same is true for data tapers of
standard types.

Finally, the kernels of (C—a) summability are shown to belong to
this class. In this case, however, stronger results can be obtained.
The estimators converge to the spectral density at isolated points of
Lipschitz continuity even when it is a generalized function, and the
mean square rate can be found.

2. Notation and terminology

Let {X(t), t=0, +1, +2,---} be a discrete parameter stationary
random process with zero mean and finite second moments. Its co-
variance function, C,, is given by

C.=E(X@t)X(t+k)), k=0, %1, £2,...,

while its spectral density, f(2), is given by the finite Fourier transform
of C,,

f(2)=~21— 31 G
T k=—o

This series may not converge pointwise but always will converge weakly
(f,,—» f weakly<= S f,,gb——»S f¢ for periodic C* functions).

We assume that the process has been observed from times 1 to
N. We denote by Z,(2) the random variable given by the finite Fourier
transform

1 N

— —iat _
(1) ZN('I)— m EX(t)e rSA<ln
and by Hy(2) the function
(2) Hy()=—ie S1e#  _p<i<n
o ¥2rzN i=1 - )

We also use the same notation for their periodic extensions to R!.
Then the expected value of [Z,y(2)] is given by

* Farrell, R. H. (1979). Asymptotic lower bounds for the risk of estimators of the
value of a spectral density function, to appear.
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(3) E|Zu()P= " |HG-0)lf @)

where f(4) is the spectral density and | H3(1)|=Fy(2) is the Fejér kernel
of Fourier series theory (see Koopmans [7], p. 259). Hence we have
that (among other things), at each point 1 of continuity of f,

E|Zy()f—f(2)

and therefore that I,(2)=|Zy()]}, the so-called periodogram is an asymp-
totically unbiased estimator of f(1). It may also be given by the ex-
pression

) D T
IN(/I):T S Ce i where

T k=-N+1
(4)
1 N=lxl
— > X(+|kDX(®)  |kI<N
N =2

A

Ck':
0 N<k|.

This periodogram unfortunately, has variance which does not approach
zero as N—oo. The problem is rectified by introducing another se-
quence of functions Wy(2), the spectral window. The set of its Fourier
coefficients {wy(k)}, are called a lag window;

(5) W,,(z)=zi S wake .
7T k=—M+1

The estimator associated with W, is then given by

(6) f)lN('z)z(WM * Iy)(4) -

By controlling the relative growth of M and N, the variance can
be made to approach 0. Thus the estimator (6) can be made into a
mean square consistent estimator. This is a well known theory and
can be found in more detail in the books by Anderson [1], Grenander-
Rosenblatt [5], and Koopmans [7].

We shall be interested mainly in the rate of mean square conver-
gence of these estimators for a certain class of windows. This class
generalizes most of the standard windows and includes as well the
(C—ea) summability kernels. It is given by

DEFINITION 1. Let {3,} be a delta sequence of bounded functions
on (—r, #) such that

(i) S_ 3,=1
@) | 1eal=00)
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(iii) there exist 0<B=1, D;,>0 such that
BaO|=Dym[(L+mPHtf)  —a<lti<nr; m=1,2,---.

Then {8,} is said to be of class I',. Let a=sup {B](iii) holds}; then {3,}
is said to be of type a.

It should be observed that (i) if p,<p, then I'; DI, ; (ii) if {d.} is
of type a then it is in class I, for each f<a, but is not in class I,
necessarily.

Remark (i). A delta sequence is one that satisfies Sam¢—>¢(0) for

each C= function ¢ with compact support in (—=, x). Those of type a
are examples of quasi-positive kernels (see Zygmund [12], I, p. 86) or
approximate identities.

PROPOSITION 1. Let w(v) be a mon-negative, concave function in
C'[0, 1] decreasing from 1 to 0; let {Wy} be given by (5) where wy(k)=
w(k|[M); then {Wy} 1is a delta sequence in class I'y and hence of type 1.

Remark (ii). A number of common windows satisfy the hypothesis
of this proposition. This includes the window of Bartlett (w(v)=1—v)
and Tukey (w(v)=1—2a+2a cos zv) but not of Parzen (w(v)=1-—7%) and

_ (1—602+6°, 0=v<1/2
(w(v)_{z(l_v)s’ 1/2<v§1}>' (See Koopmans [7], p. 279.) How-
ever, they can be shown also to be in Class 7} by a similar argument.

Proor. Clearly gk Wx=1 since w(0)=1. Moreover we have, by
summation by parts, that (using the notation dw(k/M)=w(k/M)—
w((k+1)/M))

0 3 k)
aWy(2)= 9 +k§w 71 cos k2

=’g Aw<_1"‘l.>pk(z)+w(1)1),,(z)

=5 Azw(_lif{_)(kﬂ)m(z)+Aw(MT‘1->MFy-I(Z) :

Here D, is the Dirichlet kernel and F, is the Fejér kernel given in

equation (3) which may also be written

_ sin®*((k+1)/2)2 7t
Fia= 2(k+1) sin? (2/2) = 2(k+1)2

Since w(2) was conecave, 4iw=<0, whence it follows that
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WIS (|5 () |+ (120}
=5 a3 wla— 3] [+ awl1-5)} -

Since w was assumed to be in ([0, 1], d,w(x)=w(x)—w(x+h)=0("),
and hence we have

(7) W (DS 1| SCMI(L+ 1)
for |2|=1/M, C constant.
To show that (ii) holds for |1|<1/M as well, we observe that

[ Wallo S35 0( ) =~ Mwll

which combined with (7) gives us the condition for f=1.

Remark (iii). The symbol || f|[, denotes the usual L? norm of the
function f on some finite interval with respect to Lebesgue measure:

7= (] 170Pad)"” 15p<oo, Ifl.=sup|f@]. Usually the interval

will be [—=, n] but when there is no danger of confusion may be other
intervals.

LEMMA 1. Let {3,} be a delta sequence in class I';, 0<B<1, let {g,}
be a uniformly bounded family of functions on (—=r,n) which satisfies
for some (a, b)C(—r, ), y>0, D>0 the inequality

l9:(2)—g.(¥)|=Dl2—y|+0n™),  »,ye(ab).
Let [c, d]C(a, b); then
(3 * 9:) (@) — gu(®) =0(n ")+ O(m %)
uniformly on [c, d] as n, m— oo,

ProOOF. Let »=min (b—d, c—a) and let m~'<5; then we have

10n 9@ =)= || 0u(—O)aulz+0)—g. ()t

-y —m—1 m=1 .
=[]

For x € [c, d] the middle integral satisfies

Sm_l
—m~1

+ +

N

{7, (= I(DItI+0m )t
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< D,mDm~*+0(n"") S 10..(t)|dé
=O0(m™)+0(n"7)
since |8,(¢8)|<D,m/(1+m?*'t*). The second integral from the right satis-

fies

=\ (= 0I(De+0mat

< S _, D,Dt/(EmA)dt+0(n™)
=0(m?)+0(m"log m)+0(n7) .

The last integral satisfies
| |= || Dit-m=42]g.ll.dt+0(n-")=0(m™")+0(n) .

The first two integrals are treated in exactly the same way, and since
B<1, the conclusion follows.

COROLLARY. Let g be a bounded function which satisfies a Lipschitz
condition on (a, b), and let [c,d]C(a, b); then

(% * 9) () —g(x)=0(m™")

uniformly on [c,d] as m— oo.

3. Mean square convergence for spectral windows of type a

Estimators based on spectral windows of this kind are mean square
consistent for spectral densities which are bounded and locally Lipschitz
continuous. Their mean square rate can be calculated in terms of the
parameter «. Lipschitz continuity means only that the slope of the
spectral density be bounded, which is always satisfied for smooth spectral
densities, but may be considerably weaker, particularly if the continuity
is only local.

From a practical point of view, the hypothesis of Lipschitz con-
tinuity can always be assumed valid except when the process has a
periodic component. It includes all but the most pathological cases and
is much weaker than the common hypothesis that the process be linear.
In that case the C, are O(r'*)) for some 0<r<1, and hence f, the
spectral density is in C=. Even if the C, satisfy only the condition
S kC,|<oo, f will be smooth and hence Lipschitz continuous. This is
the minimal condition imposed in one common approach (Anderson [1],
p. 532).

Of course the data cannot be used to determine whether the spec-
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tral density is Lipschitz continuous. However, sometimes it is clear
that a periodic component underlies the data. This would happen for
example in the case of monthly temperature data in which there is
bound to be an annual periodic component. In such cases the hypoth-
esis is not valid and the procedure of Section 5 is more appropriate.

THEOREM 1. Let f,,,,,:W,,* I, where {Wy}, the spectral window, 1is
a delta sequence in class I, of type a and Iy is the periodogram. Let
f, the spectral demsity of a stationary Gaussian process with mean 0 be
bounded and satisfy a uwmiform Lipschitz condition on (a,b). Then the
mean square error for M=[NY!+] s

(8) E [fuv()— f(F =O(N~#/420)
uniformly for i€ lc, d]C(a,bd).

Remark (i). The value of a is the supremum of all possible g’s.
Hence the mean square error approaches O(N~/4*2) a5 B approaches

a. For some delta sequences, in particular those in I}, the supremum
is attained and hence the mean square error is Q(IN —«/¢+2),

Remark (ii). The reason for choosing M=[NV"**] is that is bal-
ances the mean square error due to the variance with that due to the
bias. The former will be shown to be O(M/N) while that due to the
square of the bias will approach O(M~*). These two expressions will
be equal and hence their sum minimized when M/N=M"*,

PrROOF. The variance of fyy is given by the expression (see Jones
[6], p. 390)

(9) var [fn@l=|" | 14G—0, 1= f@)F()dads
where A(, 1) =Axu(d, /1)=S: Hy(i—8) Ha(a—8)W(s)ds.

We may also express it as a product of series, which can then be
used to show that

|\ 146, widrdu=00N) .

Hence the variance of fw is O(M/N) since f e L>. To estimate the
bias term (E f,,m— f)? we first break it up into two parts,

(10) Efuy—f=WysFyx f—f=Wuyx Fyx f—Fy* f)+(Fy* f—f) .

The last term is the difference between the Cesaro means of the
Fourier series of f and f. The rate of convergence of such a differ-
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ence is (N tlog N) for functions satisfying a Lipschitz condition of
order 1. (See Zygmund [12], I, p. 91.) The convolution F x f satisfies
the same Lipschitz condition as f, uniformly in N, except for an O(N)
term, since

(11) |(Fx * f)(x+8)—(Fy x f)(2)|

=1| Rolferorn—rferola

=\ s
—O(N-Y)+ S” 00) .

This is uniform for x € [a+7, b—7] where y is any positive number such
that y<(b—a)/2. Now we can use the fact that {W,} is a delta se-
quence in class I, to show that

Wy s (Fy x f)—(Fy x f)=0(N")+O(M~*)

by using Lemma 1 with gy=Fy % f. This enables us to deduce that
(10) is dominated by terms of the form O(M~#)4+O(N'log N) and that
hence the mean square rate will be dominated by

O(MN~)+[O(M~#)+O(N~'log N)J*.
By taking M=[NV"**], (8) follows for [c, d]=[a+7, b—7].

Remark (iii). Most of the standard examples of windows are in
class I, as we have seen, and hence this theorem does not distinguish
between them. The mean square error in this case will be O(N-%3).

Remark (iv). Farrell* has shown the best possible rate to be
O(n~%/%+Y) for spectral densities in C*. For k=1, the spectral density
satisfies a Lipschitz condition of order 1, and hence the rate we obtained
cannot be improved markedly for the class 7. Even if higher order
derivatives are hypothesized, the usual spectral windows have as their
best rate O(n~**). (See Anderson [1], Section 9.3.4.) The only excep-
tion is the truncated (Dirichlet kernel), which however, because of
other difficulties, is rarely used.

Remark (v). The kernel of (C—a) summability is given by

M

AZF(D)(+1)
W =Ki() ==

* See page 66.
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where A;:(""n'a). It may also be written as (Zygmund [12], I, p. 77)

e M Aﬁf—lvleiv‘h’ N ( _M)a i
KM(Z)—”Z}M——_—AZI ~V=Z_M 1 17 e,

It is in class I} for =1 and in I;,_; for 1/2<a<1. The EBW (equiv-

alent band width, see Koopmans [7], p. 277) is given approximately by

2rc/M where, in this case,

2
2a+1 "’

1
c=2 So 1—v)dv=

whence the EBW is n(2«+1)/M. That is, by choosing « sufficiently
large, the equivalent band width may be arbitrarily wide, or by choos-
ing it small it may be made to approach that of the truncated window.
This sequence has other properties which we shall exploit later.
In part these properties arise because of the inequality (see Zygmund
[12], II, p. 60).
CI
1a+lMu—r ’
1/M<|A|Ex, 0<a=r+1, C' constant.

Example 3.1. Let C, be given by
Co=1, Cuu=(—1)*/(2lk|+1), Cu=0, k=x1, £2,...

(12) ID"Kg(3)|=

Then the spectral density is given by
C+231Cpcoska=r+1 on |2|<z/2.
k=1

Hence it satisfies a Lipschitz condition on this interval but the series
>1|C| is not convergent.

Example 3.2. Let C, be given by
C=1, C=(—1)/|kl, k==%1, £2,...
Then the spectral density is

Cu—l—ZIé Ci.coski=In(e/(v 2 cos 2/2)) |A<=x.

Hence it satisfies a Lipschitz condition on (—=/2, =/2) but is not bounded.
Hence Theorem 1 does not apply but the theory in Section 5 does.

Example 3.3. Let C, be given by
C.=1+0(k|™® k=0, +1, +2,...,



74 GILBERT G. WALTER
then the spectral density is a generalized function

._2 e”“+2 O(k™) cos ka=3()+g(2) ,  |A|<=,
where g is a smooth function. The sum of 4 and g satisfy a modifica-
tion of the Lipschitz condition to be defined in Section 5, for 2+0.

4. Data windows

Rather than assigning to each data value X(f) an equal weight in
the expression (5), it is sometimes desirable (or necessary) to weight them
unequally. We suppose in this section that a sequence {b,} of weights
is used. Jones [6] studied the estimators of the type we consider here
and simulated a process with missing observations. Brillinger [3] esti-
mated the mean and its distribution when the sampling times were
events of a point process. We use the approach of Jones and denote
by By(2) the normalized Fourier transform of these weights,

N

e—tlt
V27r b g ‘
which will play the same role as Hy(4) does in the unweighted case.

Then corresponding to equation (3) we have the substitute Jy(2) for
the periodogram whose expected value is

(13) By(2)=

EL@=1|" |Bya-wlfwidw.

As in equation (4) Jy may also be given by

N-1 A

(14) N(1)~— d,emv
21 k==N+1
where
1 N—|k|
~ E b, X(t+ k)b, X(t) for |k|<N
dAk: fz“’" bz
0 N<k.

If we introduce a spectral window as well we have as the estimator

of f
(15) j'mv(l) =(WyxJx)(A) .

In order for this estimator to be asymptotically unbiased, |By(2)[*
must be a delta sequence as well as W,. We shall show that, under
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certain conditions on the data window {b,}, it belongs to a class I,.

THEOREM 2. Let {b,}, 0=b,<1 be a sequence whose variation satisfies
(i) VN=é|Ab,,|=0(NW), 0<d<1, N=1,2,---,

and whose I norm satisfies
(i) [ﬁ bf]_uz:O(N“”), 0<d<esl, N=1,2,-..;

then IBN(l)lz— where By is given by (13) is a delta sequence in class I,_;.

Proor. Consider the sum
S b= {510 VIR By(d) -
By the Abel summation formula it equals
5 PR+ PR

where P,()=3¢™. Since |P,()|<x|2|", 220 it follows that

< TSV o) +1) =F- (Vy+1
=Tay (8 M = g ()

Hence by using (i) and (ii) of the hypothesis, we find that for 22N!**
=1,

-1k
k

(16) |ByQ)Ps =+ IDll N—*<D,NJ(1+4 2N'*+%) ,

We can also obtain the inequality

(17) IBy()P<[3bJ/2r 5 bzg-é—"-

directly. The two may be combined into the form of condition (ii) of
Definition 1 by using (16) for A2N'***>=1 and (17) for the opposite in-
equality. Conditions (i) and (ii) follow from the integration of the
Fourier series of |By(4)} termwise.

Remark (i). The effect of omitting terms, i.e., having some of
the b,=0 while the others are equal to 1, is to change 8 and . If the
number of zeros of {b,} are relatively sparse, say O(N’) for d<1/2 and
for t<N while the other values of b, are 1 then

N

Va=0(N?) and Sbi=N—-N°.

Hence the |By(2)* is in class I7_,.
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Remark (ii). The theorem can also be used to compare various
data tapers. Indeed let {b,} be given by b,=b(t/N) where b(v) is a
function with values in [0, 1] which is monotone on [0, 1/2) and on (1/2,
1]. Then the total variation V,<2 while the I norm will be greater
than CN'% for some constant C. Hence all tapers will be such that
|By(2)F is a delta sequence of class 7). They will differ only in the
constant C and may be compared by it.

The estimator (15) shares may of the properties of the one con-
sidered in Theorem 1. Indeed, essentially the same arguments presented
there may be modified slightly to prove

THEOREM 3. Let {b,]} be a data window satisfying the hypothesis of
Theorem 2; let {Wy} be a spectral window and let f(2) be the spectral
density satisfying the hypothesis of Theorem 1; let fyx be givenm by (15).
Then the mean square error for M=[N“"**] is given by

E [fA'MN(Z)—f(l)]2=0(N"”/“+2"))-l—O(N_Z('"")) ,
uniformly on [c, d]C(a, b).

The modifications needed in the argument of Theorem 1 are those
involving the variance estimation given by equation (9) and the bias
given by (10). We revise the definition of A(%, p) to correspond to the
estimator (15) as

43 =\" BuG—8)Bua—o)Wils)ds .
Then the L’ norm of A satisfies
N N
S S |AG, p)diadp= 3] 3 bt (5 )

(

2

[IA
d
&

)T S wiS(SH) T Walis N

t

1

The modifications needed in (10) are clear. By using Lemma 1 twice
we first conclude that

IBNI2 * f__f_:O(N(&—z))
and then that
Wi * | By % f—|Byl ¥ f=O(N“~*)+O(M?) .

Thus the mean square error is dominated by terms of the form O(MN~)
+O(N* =)+ O(M~%). By taking M=[N*'*?], the conclusion follows.

Remark (iii). Again M is chosen as it is to balance the mean square
error of the two terms O(MN~) and O(M~*). The other term O(N-%*:-%)
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being independent of M will not influence its choice.

Remark (iv). If {Wy} is in class I}, the best possible error rate
is O(N~*#) and this will be obtained only if ¢=35/2.

5. Spectral densities which are generalized functions

We now turn our attention to the case in which the spectral den-
sity is no longer a function satisfying a uniform Lipschitz condition.
Instead we assume only that the time series X(f) be stationary and
hence that its covariance sequence be bounded. Since this sequence
constitutes C,, the coefficients of the spectral density, it need not even
be continuous since

1 S Cem=51)
27 k=Te

(18)
does not converge pointwise. It does however converge weakly (see
Section 2) to a generalized derivative of F(1), the spectral distribution
function, in which sense we interpret f(2). (See L. Schwartz [10].)

Such objects may be locally continuous even though the series (18)
doesn’t converge. If C, is periodic, then f will be a “delta-function”
locally. It is these two types of behavior we are most interested in
and which we shall try to isolate.

If F(2) has an ordinary derivative y at 2=2, we shall say that the
generalized function f given by (18) has a value y at 1,. We shall also
generalize the concept of Lipschitz condition. If f is an ordinary func-
tion in some neighborhood of 1, then f is Lipschitz-Ho6lder continuous
at 2, if there is a number g between 0 and 1 such that f(2)—f(2)=
O|a—4|". Clearly if f is Lipschitz continuous at 2, it satisfies this con-
dition for all 0<p=<1. If f is merely a generalized function with a
value at 2, the analogous condition would be

F(2)

a9 (A—24)

—r=0—2f, 0<p<l.

LEMMA 2. Let f have a value v at 2, € (—=, n) satisfying (19) for
some 0<p<l. Then for each a>1

Kz * f)(2)—r=0(n"*)
where K is the kernel of (C—a) summability and f=min (a—1, p).

The proof is straightforward. We may suppose 1<a=<2, and ob-
tain, by integration by parts,
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(20) K« f)—r= " Ki—2lr@)—ridz

=% S‘_ DK;:(2—)[F () —(A—2)r]dA

+KiGo—n)|| f-2mr].
The integrated term is O(n™!) since K7 is in class I} and hence obeys
the inequality
|K:(t)|<Dmn't*  for 1/n<t, D, constant.

The other term in (20) may be written as 2/r times the integral

@) | a-2DK-DF@G—D—naa={""+ {4 [

b
29-1/n +1/n

provided %, € (0, ). The middle integral satisfies

Slu+l/n

lo—l/n

=[" nownar=om)

since 7p(2)=F(2+2)/2—r=0(2}) by (19) and since (Zygmund [12], II, p.
60) |DK:(t)|<Cn®. The other integrals satisfy, e.g.,

Szo—l/n
0

by (12) and (19).

<om= [ il 2dA= 00+ O

THEOREM 4. Let X(t) be a stationary Gaussian process with 0 mean ;
let 2, be a point where the spectral density f(1) is a generalized function
satisfying (19). Then for a such that 1<a<2, the estimator

Fun()=(K % L) (3)
satisfies, for M=[NV®**+®] B=min (a—1, p)
E [fun(20) =71 =O(N /%) .
If f(Q)=ad(A—2,)+g(2) where g is continuous in a meighborhood of 2,
and a>0, then

A M
E =22 o).
[faen( 1)]—7r(1+a) +9(2)
Moreover 4= f,,’,N(ll)((a—}-l)/(M +a+1)) is an asymptotic unbiased esti-
mator for the stremgth a of the periodicity at 2,. Its bias is O(M|N).

The proof involves a number of straightforward modifications to
the proof of Theorem 1. The function A(%, p¢) used in calculation of
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the var fyx (9) can be used to obtain a bound on the latter. It is found
by integration by parts and Schwarz’s inequality to be

(22) var [fuv(D)]=2rCoANn—2, 1— )+ F|l;

A l’
=, ] .
04 ( )L

The first term may be shown to be O(M-2N-%) while the second, by
using a calculation similar to that following (9), may be seen to be
O(M:N™Y).

The bias term may be estimated by means of Lemma 2, and the
decomposition used previously to be

(23) E fux()— f(2)=O(M*N~"log N)+O(M~?)

where f=min (e—1, z). By choosing M appropriately the first conclu-
sion follows. The second conclusion is straightforward. The third con-
clusion is a consequence of the result in Zygmund [12], II, p. 63.

Example 5.1. Let F(A)=2*cos 1/i4+sgn A)+2 in some neighborhood
of 0. Then f()=F’'())=22cos1/2+2]2|+sin1/2+1, 2#0 and F(2)/2—1
as 1—0. Hence f has value 1 at 0 and |F(2)/A—1|<2|4| so that the
hypothesis of Theorem 4 is satisfied at 0 for g=1. Yet f(2) is not
even continuous at 0.

Remark. For another approach to the estimation of the density
in the presence of periodic components see Priestly [9]. His approach
assumes that the process is of the form

X(t)=A cos (At +¢)+ Y(?)

where Y(t) is a linear process. This implies that f(1) is, except for
the delta function at 4, a C= function, and hence is a much more
restrictive hypothesis. Moreover the presence of the delta function at
A, must be inferred from another estimator since his estimator is in-
dependent of A.
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