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Abstract

In problems involving multivariate measurements experimental
considerations often indicate grouping of variables into subsets ordered
according to their importance. In such situations, the problems such
as comparison of two mean vectors and profile analysis may be treated
by Hotelling’s T*-test adapted along the lines of the step-wise proce-
dure of J. Roy [10], or the well known test for additional information
due to Rao [9]. In this paper we study a modification of the step-wise
procedure obtained by combining the component tests. The exact
Bahadur slopes of resulting procedures are computed and it is shown
that the procedure based upon Fisher’s combination method is asymp-
totically equivalent to Hotelling’s 7% A Monte Carlo study suggests
that even in small samples the power functions of the new method
and Hotelling’s T*-test are practically equivalent.

1. Introduction

Hotelling’s T*-test which involves all the variables symmetrically
is the most common method of testing multivariate hypotheses such
as equality of two mean vectors or similarity of the profiles of two
groups. This may not be appropriate if the variables are of unequal
importance as in many biological experiments where the measurements
are often associated with biological processes and are grouped into sub-
sets which can be ordered according to their biological significance.
A grouping of variables in two subsets occurs naturally in most inves-
tigations, the first group comprising the variables of primary interest
and the second being the group of less relevant variables obtainable
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at little additional cost. A common procedure for testing the hypoth-
esis in such situation is the step-wise procedure related to the well
known test for additional information (J. Roy [10], Rao [9]). In this
procedure the hypothesis on the means of the variables in the first
group is tested by the usual T*-test, but the hypotheses on the means
of the subsequent groups are tested by T’*tests in which the previous
groups are regarded as concomitants. An advantage of this procedure
consists in the independence of the T’ -statistics under the overall null
hypothesis which makes the control of type I error manageable. Cus-
tomarily the individual tests are conducted at suitable levels and the
overall null hypothesis is rejected if at least one of the component tests
is significant. Alternatively, one may summarize the step-wise proce-
dure by reporting the P-values of the component tests and combining
(e.g. Oosterhoff [8]) them to obtain the overall significance probability.

In Section 2 we present variations of the step-wise procedure re-
lated to several combination methods and discuss an underlying invari-
ance structure leading to a canonical form. In Section 3 the exact
slopes of these variations are obtained for computing Bahadur’s ARE’s.
In Section 4, a Monte Carlo study and its conclusions are presented.
The modified step-wise procedure based upon Fisher’s combination
method is seen to be an asymptotic equivalent of Hotelling’s 7% This
observation is supported by the simulation study.

2. Some modifications of the step-wise procedure

Let X, X;,---, X, be m independent observations on a random
vector X having a p-variate normal distribution with mean g and co-
variance matrix %, and consider the problem of testing H,: p#=0. If

X=(1/n) 2 X;, S=3(X,—X)(X,—X), then Hotelling’s test rejects H,
for large values of T?=n(n—1)X'S"'X, where under H,, (n—p)T*[p(n—
)]=(n—pmX'S"'X/p is distributed as F-variable with p and (n—p)
degrees of freedom. In case the variables have an a priori order, and
T? denote the Hotelling’s T*-statistics for the first ¢ variates, 1=1, 2,
..+, p, then the step-down procedure for MANOVA specialized to this
problem consists of p tests based upon statistics

(2.1) Fi=n—)[T}—TL]/[(n—1)+T2]

1=1,2,---, p, and rejects H, if any of the component tests is signifi-
cant. The type I error control of the procedure uses the fact that
under H,, F,; are independently distributed as F'(1, n—1) variates, i=
1’ cee, Dl

The logic of the step-down procedure extends as well to the more



TESTING SIGNIFICANCE OF A MEAN VECTOR 45

general and common situation where the variables are grouped into k
subsets and the subsets are ordered according to their importance. Let

i k
the number of variates in the ith subset be p;, ¢;=>] p,, and ¢,=> p;
i=1 i=1

=p, 1=1,--., k. The random vector X and the parameters of its dis-
tribution may then be partitioned as
X, H Ty Ty Xy

x=| %], p=f| and = Zy Iy Fu
Xk f;k z"kl z.'kz c z"kk
Then
(2.2) EXi| X, Xi)=0;+BuX+BuXo+ - - +8; 121Xy

where X, , denotes the first principal minor containing the first q,_,
rows and g¢;_; columns of ¥, Bi=(BuBu - Bii-)=(FuZu---2:i) T,
and 0,=p,— Bupi—Batts— -+ - — Biioiftioy. 1t may be noted that H,: =0

k
is equivalent to the conjunction of H,;:8.,=0, i.e., H=N H,. Now,
i=1

H,;, which may be referred to as the hypothesis concerning the “addi-
tional information” provided by the ith subset, can be tested using

(2.3) Fi=(n—q)IT;—T;_J{[(n—1)+T;,_]In} .

If H,,=r§ H,, is true then the F’s are independently distributed as F-
i=1

variables with (p;, n—q;) d.f. The step-wise procedure, in this case
consists of k tests with critical regions F,=F(p;, n—q,; a;), where F(p;,,
n—q;; a;) denotes the (1—a;) 100th percentile of the F(p,, n—q;) variate,

k
1=1,-.-, k, and rejects H, at level a=1—T[ (1—a,) if at least one of
i=1

the tests is significant.

An alternative to comparing F, with F(p;,, n—q;; ) and label-
ling it as significant or insignificant is to report the P-value, P,=
Pr (F(p;, n—q,)=F;| H,) associated with it as the summary of the test
of Hy,. In addition to avoiding the problem of having to select the
levels of the component tests, this approach permits an assessment of
the overall significance of the data by combining the P-values, because
under H, the P-values are independently uniformly distributed. A com-
bination statistic is usually a simple function ¢(P,---, P,) of the P-
values with a simple null distribution (Oosterhoff [8]). In the sequel
we investigate two such statistics ¢,=—23log P, and ¢,=min P;,

where large values of ¢, and small values of ¢, indicate significance.
Under H,, ¢5 is distributed as y* with 2k degrees of freedom and the



46 GOVIND S. MUDHOLKAR AND PERLA SUBBAIAH

distribution of ¢, is given by Pr(¢,=c|H)=1—(1—c)*. A summary
of the modified step-down procedure consists of the k P-values together
with P-value of the combination statistie.

Now we present an invariance reduction of the problem leading to
a canonical form which permits investigation of the properties of the
modified step-down procedures. It is well known that Hotelling’s T
is a maximal invariant under the group G of nonsingular transforma-
tion of the p variables, and is UMP invariant for testing the hypoth-
esis Hy: p=0 vs. H;: u#0. The power of the T’-test involves only the
noncentrality parameter g/¥~'g. If all the variables can be arranged
in a strictly decreasing order of importance, it is known that the step-
down statistics F,, i=1,.--,p given in (2.1) are maximal invariants
under the group of lower triangular transformation of the p variables
(Subbaiah and Mudholkar [11]). In the following theorem this invari-
ance reduction is extended to the case of block-structure.

THEOREM 2.1. Let S be the group of monsingular lower block tri-
angular matrices L=(L,;), where L,; is of order p,Xp; and L,;=0 for
1<4, 7=1,2,---, k. Then the problem of testing H,: =0 vs. H,: u#0
is invariant under transformation X—LX, S— LSL', and the step-
down statistics F; defined in (2.3) are maximal invariants.

Proor. The invariance of Fy, F,,--., F, follows trivially from the
invariance of 77, 1=1,2,---, k. The maximal invariant character of
the step-down statistics can be established by a straight forward ex-
tension of the proof of Theorem 1 in Subbaiah and Mudholkar [11].

THEOREM 2.2. The power function of any test of H, vs. H, invari-
ant under <, depends upon parameters d,=%in,, 1=1,---,k, where n=
Blu=(n,,---, 9y and B is a lower block triangular matrixz such that
2=BB.

PROOF. The theorem follows from Theorem 2.1, replacing X by )7
and S by ¥, and noting that 8/’s are maximal invariants in the para-
metric space under the induced group of transformations (Lehmann [5]).

3. Bahadur ARE’s of the modified step-down procedures

Let T, be a statistic used for testing a null hypothesis H,: 8 € 8,
vs. an alternative H,: 6 € 6,, where large values of T, indicate signifi-
cance. Also let F,(t)=Pr(T,<t|6) for all ¢ H),, —oco<t<oo. Then
the rate of decrease to zero of the P-value L,(t,)=Pr(T,.=t,|H,), eval-
uated at ¢,=T,, as n increases is taken as a measure of efficiency of
the test. The following Definition 3.1 and Theorem 3.2 summarize the
concept of exact slope and a useful method for its computation.
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DEFINITION 3.1. The exact slope ¢(f) of {T,} is given by

3.1) —_;.c(o)=1im n-tlog L, ,

providing that the (a.s.) limit exists.

THEOREM 3.1 (Bahadur [1], p. 27). Suppose that
(3.2) lim n " T,=b(d) , a.s.

n—0

Sfor each 0 € 6,, where —oo<b(f)<co, and that
(3.3) limntlog [1—F,(v¥n t)|=—f(),

n—oo

for each t in an open interval I, where f is a continuous function on
I, and {b(6): 6 H}YCI. Then (3.1) holds with c(0)=2f(b(6)) for each
0eb,.

Now consider the problem of testing the multivariate hypothesis
Hy: p=0 vs. H;: p+#0 described in Section 2. The following theorem
gives the exact slope of the T:test for this problem. The result of
this theorem was earlier noted by Gleser ([4], p. 167) with an obser-
vation that its “ verification is difficult and lengthy ”.

THEOREM 3.2. The exact slope of Hotelling’s T* test is given by
k
3.4) ca=log (1+§1 1;:7;,.> :
PrOOF. If we denote T,=[(n—pmX'S-'X/p]"*, then T.vn -
(#’E"ﬂ/p)‘”=<§‘4 vévf/p>l/2, and lim n~'log [1—F,(v n t)]=lim n~'log [Pr
i=1 n—oco n—00

(nX'S' X = nptt/(n—p)]=(—1/2) log (1+pt?) (follows from Bahadur ([1],
p. 13)). Hence the theorem.

Now we obtain the exact slopes of the modified step-down proce-
dure based upon Fisher’s and Tippett’s methods.

LEMMA 3.1. The exact slope of the ith component test is given by

(3.5) c(8)=log <1+__’7L_) .
14> 937,

PROOF. The theorem follows easily by noting that for T,=+vFi(n),

lim n~2T, = {p{r),/[(l +g 1)§77j>pi} } v , a.s.

n—oo
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and

lim n'log [1—F(v 1 t)]

n—0

=lim n~!'log Pr (F;=nt?)

n—oo

=lim n~!log Pr[ X(p:) = n'p, ]
noveo r(n—q)  (n—q)

= —% log (1+t'p;)

(follows from Bahadur ([1], p. 13, equation 5.7)).

THEOREM 3.3. The exact slopes c¢r, ¢y of Fisher’s [3] method and
Tippett’s [12] method of combining the step-down P;s are given by

k k
er=2 c;=log <l+§ 772%)
¢y =max ¢;=max log [1-!——?:5"7—‘-—} .
i
1+5 75,

ProOOF. This theorem follows from the results due to Littell and
Folks ([6], pp. 803-804).

A comparison of Theorem 3.3 and Theorem 3.5 shows that the
modified step-down procedure based upon Fisher’s method of combina-
tion of tests is an asymptotic equivalent of Hotelling’s 72 in the sense
of Bahadur ARE. On the other hand, in this sense the modified step-
down procedure based upon Tippett’s combination method is in general
less effective and never more effective than the T*-test.

4. Power functions of the modified step-down procedure based upon
a simulation study

In this section we summarize a simulation experiment conducted
in order to understand the moderate-size sample behavior of the modi-
fied step-wise methods in relation to Hotelling’s T%. In this experi-
ment we study the special case p,=p,=-.--=p,=1. Our objective is
to obtain a relatively detailed profile of the power function when p=2,
and an indication of its general behavior in certain directions when
p=3, 4.

In view of the invariance structure in the problem we take with-
out any loss of generality ¥ =1, in which case the power functions of
the modified step-down procedures as well as that of Hotelling’s T*-
test depend only upon the noncentrality parameters 7=, i=1,2,---, p.
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For the case p=2, the power functions of the methods are estimated
over the entire plane (g, y;), whereas for p=3,4, the estimates are
obtained for certain directions only, namely, the equiangular line g =
t=-+-=p, and along a coordinate axis i.e., for alternatives (g, 0,- - -, 0).

Monte Carlo experiment. The standard normal deviates are gener-
ated on the IBM 360/365 computer at the University of Rochester us-
ing “ McGill University random number package” based upon the tech-
nique of Marsaglia [7] for generating standard normal deviates. A
random observation from a p-variate normal population N,(g, I,) is ob-
tained by drawing p random observations from a standard univariate
normal population and adding g, g, - -, g, to them respectively. When
p=2, the deviates are generated for the values of x,=0.0(0.1)1.6 and
#:=0.0(0.1)1.9. When p=3, 4, they are obtained for (g, g,---,p) and
(,0,--+,0), for p=0.0(0.1)1.0.

For each of the parameter values 3000 samples of size n=20 are
obtained, and are then used to estimate the power functions of various
tests of H,: g=0. Specifically, for each of the samples we compute
Hotelling’s T? statistic ¢» and ¢, the statistics for the modified step-
down procedures related to Fisher’s and Tippett’s combination methods.
The IMSL routine MDFD is used for obtaining the P-values needed in
the computation of ¢,, ¢». The values of the statistics for each sam-
ple are compared with the corresponding critical constants for a=.01,
.05 and .10. The power of a procedure with a given g and e is esti-
mated by the proportion » of times H, is rejected in the 3000 trials;
the s.e. of the estimate being (p(1—9)/3000)2<.009. The exact power
of Hotelling’s T*® is also computed using the FORTRAN routine by
Bargmann and Ghosh [2] for computing the e.d.f. of noncentral F dis-
tribution.

Results. A selection of the results of the simulation study is given
in Tables 1 through 5. Tables 1, 2, 3 contain a relatively detailed pro-
file of the power functions for p=2. In Tables 4, 5 we give the em-
pirical power functions of the three tests and the exact power of the

Table 1 Exact power function of Hotelling’s T2 test procedure

a=.05, p=2
1.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.2 .995 .996 .996 .999 1.00 1.00 1.00 1.00
1.0 .965 .966 .970 .989 998  1.00 1.00 1.00
0.8 .845 .851 .867 .943 .990 .998  1.00 1.00
0.5 .436 .451 .495 .742 .943 .989 .999 1.00
#2 o 0.2 .105 .118 .165 .495 .867 .970 .996 1.00
0.1 .063 .076 .119 .451 .851 .966 .99  1.00
0.0 .050 .063 .105 .436 .845 .965 995 1.00
0.0 0.1 0.2 0.5 0.8 1.0 1.2 1.5

m
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Table 2 Power function of Fisher’s combination of the step-down tests
estimated from the Monte Carlo experiment*

a=.05 p=2
1.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.2 994 993 .995 1.00 1.00 1.00 1.00 1.00
1.0 954 960 .966 .988 .999 1.00 1.00 1.00
0.8 824 838 .848 .947 991 .999 1.00 1.00
0.5 416 441 .467 .764 945 989 .998 1.00
H2 0.2 .100 L1112 .168 .510 .864 .965 .996 1.00
0.1 .064 .087 .115 .422 .838 .964 .995 1.00
0.0 .050 .063 .116 .434 .842 .963 .997 1.00
0.0 0.1 0.2 0.5 0.8 1.0 1.2 1.5
31

* Each estimate is based upon 3000 trials.

Table 3 Power function of Tippett’s combination of the step-down tests
estimated from the Monte Carlo experiment*

a=.05, p=2
1.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.2 .997 .996 .993 .997 .998 1.00 1.00 1.00
1.0 .966 .969 .964 .969 .990 .998 1.00 1.00
0.8 .848 .849 .850 .890 .970 .993 .999 1.00
0.5 .441 .446 .453 .674 .916 .981 .998 1.00
H2 0.2 .101 .114 .139 474 .884 .969 .997 1.00
0.1 .063 .078 .109 .435 .856 .974 .997 1.00
0.0 .052 .060 .106 .457 .869 .975 .998 1.00
0.0 0.1 0.2 0.5 0.8 1.0 1.2 1.5
i3

* Each estimate is based upon 3000 trials.

Table 4 Power functions of 7T'2-test and modified step-down tests¥

a=.05, p=3
Configu- #
. Tests
ration 0.0 0.1 0.2 0.4 06 0.8 1.0
P Fisher .050 .079 .195 .645 .953 ,998 1.00
P Tippett .046 .082 .174 .496 .844 .982 .999
P T? .049 .078 .192 .629 .948 .998 1.00
T2-exact ,050 .080 .186 .631 .948 .998 1.00
Fisher .052 .059 .095 .239 .510 .763 .917
B Tippett .048 .056 .090 .254 .559 .828 .958
0 T .050 .058 .001 .234 .510 .772 .926
0 Trexact  .050 .060 .091 .238 .498 .768 .931

* Each estimate is based upon 3000 trials.

T* test for p=3, 4, and a=.05 corresponding to the two configurations
in the parametric space, viz., the equiangular configuration (g, g,-- -, #)
and the extreme configuration (g, 0,---,0). The results of the study
seem generally supportive of the conclusions drawn from Theorems 3.3
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Table 5 Power functions of 72-test and modified step-down tests*

a=.05 p=4
i3

Configu-
" Tests

ration 0.0 0.1 0.2 04 0.6 08 1.0
P Fisher .045 .086 .201 .735 .979 1.00 1.00
i Tippett .047 .084 .164 .508 .837 .982 .999
© T2 .046 .085 .197 .712 .973 .999 1.00
# T-exact .050 .082 .202 .695 .9731.00 1.00
“ Fisher .053 .064 .096 .209 .436 .694 .880
0 Tippett .048 .060 .084 .229 .513 .779 .945
0 T2 .055 .061 .090 .203 .427 .696 .885
0 T2-exact ,050 .058 .082 .202 .428 .695 .888

* Each estimate is based upon 3000 trials.

and 3.5. Specifically, (1) the power functions of the T*test and the
modified step-wise test based on Fisher’s method appear indistinguish-
able for the cases simulated, (2) the modified test based upon Tippett’s
method seems to have an advantage over the T*-test along the coor-
dinate axis. Along the equiangular line the T’-test dominates it.

Conclusion. If there is an a priori ordering among the response
variables, then the step-down procedure is a reasonable alternative to
Hotelling’s T%-test. The results of the component tests of this alterna-
tive may be summarized in terms of their P-values instead of accept-
ing or rejecting the step-down hypotheses at predetermined levels. In
the modified step-down procedure consisting of combining these P-values
in addition to considering them individually, the problem of distribut-
ing the type I error among component tests is avoided. If Fisher’s
method is used for combining the P-values, then the analytical and the
Monte Carlo results in this paper suggest that the overall test of the
modified step-down method is as good as Hotelling’s T’ test.
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