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MULTIVARIATE DIGAMMA DISTRIBUTION
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Summary

Digamma distributions are extended to multivariate distributions
and their properties are examined. The distributions are closely re-
lated to multivariate logarithmic series distributions and will be useful
when observed frequency data have too long tail to be fitted by a
multivariate logarithmic series distribution.

1. The univariate digamma and other distributions

In a previous paper (Sibuya [4]) the author introduced and studied
a digamma distribution defined by

T — e _ 1 (@)s
1.1 Pr[X=x]=q(x; a, 7)= ,
- F == e = =) Hat .
where
x=1,2,-+; >0, a>—1 (a#0), a+71>0, (¢),=a(a+1)-:-(a+x—1),

and ¢(2)=d log I'(2)/dz is the digamma or the psi function.

The distribution (1.1) will be referred to as DGa (e, v). In this paper
we extend DGa (a, ) to a multivariate distribution.

The digamma distribution is closely related to the logarithmic
series distribution LSr (4) defined by

(1.2) Pr[X=ux;0]=06°/(—log(1—06))x, x=1,2,--+; 0<0<1.

In fact, if @ and y of DGa (e, y) increase indefinitely keeping e/(a+7)
=60 constant, then the limit distribution is LSr(4). Conversely, if the
parameter 6 of LSr(4) is a random variable with the density

(1.3) C(a, r)(—log 1—-0))6='1—0y"",  0<06<1,

which we shall call an end accented beta distribution, then the com-
pounded distribution is DGa (a, 7). Digamma distributions can be used
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when logarithmic series distributions cannot be fitted to data since the
tail of observed frequencies is very long.

Our multivariate digamma distribution will be eclosely related to
a multivariate logarithmic series distribution, defined by

1.4 P X: ;0 =ﬂ!___. & ﬁ,
a4 riX=x;6] —log (1—96) ;Ul z,!
where
X:(Xl! ] Xk)r x:(xly ] xk)s x:i xizly 2) ] xi:‘Or 1! 21 °t Y
i=1

0=(01’ ""0k)l 02% ., 0<0i: 0<0<1.
i=1

We shall denote the distribution (1.4) by MLSr(@). See Patil and
Bildikar [3] and Chatfield, et al. [1] concerning MLSr (8).

Throughout the paper a vector with k¥ components is denoted by a
corresponding bold-face letter, like x=(x,, @,, ---, ), and the sum of

k
the components by a light-face letter without subscript, like =3 ;.
i=1

The digamma distribution is also closely related to the inverse
Polya-Eggenberger distribution (or the general Waring, the negative
binomial beta, or the type B3 generalized hypergeometric distribution
(Sibuya and Shimizu [5]), F'(a, 8; a+8-+7), defined by

. _Te+nl@+y)  (@48).

1.5 Pr(X=x;¢ 8 7]= y

(1.5) X = b R B T () (@t Bt rea!
x':oy 17 2: tey a1.817'>0-

If the distribution (1.5) is zero truncated, and further if g tends to
zero, then the limit distribution is DGa (a, 7).

Therefore, our multivariate digamma distribution will be closely
related to the multivariate inverse Pdlya-Eggenberger distribution, de-
fined by

(1.6) PriX=x;a B rl=p(x; a, B, 7)

_L+I'B+y) B x) 17 (@, %)
I'(@+B+1I() (et+B+7r, @) =1 @l

’

where
€,=0,1,2, --+; £=1,2, --+; a,>0; and (8, z) is Appell’s symbol,
ie., (B, )=(B).=p(B+1)--(B+2—1).

See Janardan and Patil [2] and Sibuya and Shimizu [5] concerning the
distribution. In the latter paper the distribution (1.6) was referred to
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as F(a; 8; a+8+7).
With the digamma distribution DGa (e, y) a trigamma distribution
was introduced. It was defined by

1. Pr[X =x]=q(x; ) =—— ,
(1.7) r [X =z]=q(x; 7) G w6,

where
x=1,2, ---; >0, and ¢'(z)=d¢(z)/dz is the trigamma function.

The trigamma distribution of (1.7), denoted by TGa (7), is a limit dis-
tribution of DGa (a, y) when « tends to zero. The multivariate exten-
sion of this distribution will be also discussed.

2. Multivariate digamma distributions
DEFINITION. A k-variate digamma distribution is defined by

(2.1) Pr[X=x]=q(x; @, 7)
= 1 (x_l)‘ X (ai! wi)
Pa+r)—¢(r) (a+7, @) =1 x!

b

where
2,=0,1,2,.-+; 2=1,2,..+; a>0; and 7>0.

This will be referred to as MDGa (a, y). Remark that the ranges of
@;’s are restricted to positive values.

Distribution of sums, and the conditional distribution givenm sum.
Since,

lewe) @@ 50 z=1,2,3, ...
Z-l‘iz.ri=1 wi! w! y i ) y My Iy
the distribution of the sum of components, X=3} X;, follows a uni-
variate digamma distribution, DGa (e, y). The conditional distribution
of X, given X =, is a singular multivariate negative hypergeometric

(e xi)/(a, r) _ T —a,-/ —a
(2.2) ;D; x;! x! _._.;l;[;< x; > < x >’
where
2,=0,1,2,.++; 2=1,2,---; and «;>0.

Let {J,, -+, J;} be a partition of {1,2, ---,k}, that is JJUJ,U---
uJ,={1,2,---,k} and J;NnJ,=¢, i#j. Put
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2 Xi=X*, Xx,=xf and X a;=cf.
iEJj iEJl iEJj

Since

(2, x) _ (af, )
zi=w 1€J; x,-! w!

the simultaneous distribution of (X*, .., X;*) is a [-variate digamma
distribution, MDGa (af, - - -, af; 7), that is
1 (x—1)! - (aF, x¥)
dla+7)—¢(r) (a+7r,x) 5=t x¥!

’

where
l k
2¥=0,1,2,..-; and z=>zf=>2,=1,2, ...
j=1 i=1

Conditional distributions. Assume that X,,,=wu,.,, ---, Xi=u, are
given. The distribution of (X, X,, ---, X;) under this condition is
(w**+a2*—1)! ﬁ (@, @) _, (w**—1)! (w**, z¥) Lo (s, @)
(at+7, u¥*+a%) =t g, (47, u**) (atr+ur*, o*) =1 !

where u**:_é %, and x*:ﬁ x;, and the second expression assumes
u**gl. i=l+1 =1

If w**=1, then this is a multivariate Pdélya-Eggenberger distribu-
tion, F(ay, ---, a; w**; a+r+u**). If w**=0, then this is a multi-

variate digamma distribution MDGa (al, e, ay; ﬁ a;+ 7’)- That is,
t=1l+1

(2.3) Pr(X,, ---, X)=(x + -, xz)|Xz+1=uz+1» coey, Xe=u4)
I'(a+ ) (@** +7+u*¥*) (w**, x*) L (g, )

T(@**+ ) (a+r+u**) (a+r+u**, o*) =t x!
2,=0,1,2, -.-, if u¥*=1,
=+
1 (e*-1)! L (o, x)
Hat+r)—¢(r) (a+7y,a%) = x! '
z,=0,1,2, ..., x*=1,2, ..., if u**=0,

where

a¥*¥*= ﬁ‘, =a;.
i=l+1
In particular, the conditional distribution of X,, given all the
values of the other variables X,=u; (j+1), is an inverse Pélya-Eggen-
berger distribution F'(e;, u}; a+7r+wu}), where u}=3 u,, provided that
J*i
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u¥>0, and is a digamma distribution DGa (a;, >3 @;+7), provided that
jxi
u¥=0.

Marginal distributions. We get the marginal distribution of (X,
X, --+, X)) from the above discussion by assuming now X,=z,,---,
X,=x, be fixed and adding up the probabilities. The resulting prob-
abilities are

(2'4) Pr [(Xl! XZr ] Xl)_(xl’ Loy =° 2y xl)]

1 (x* 1)’ (aiv Xy )
T Plat)—¢) @7 oM =1 g

’

where

1
2,=0,1,2, ---, and 2*= > 2,>1 is assumed.

i=1
These are l-variate digamma probabilities with the parameters (a;, a,,
-+, a;; v) multiplied by
1
Pr[ 3 X>0] =+~ g)/@la+n—¢()<1 .

Hence, the marginal distribution of (X, X;, ---, X;) is a ‘ modified’ I-
variate digamma distribution, with probabilities

(2.5) Pri(X, Xs -+, X)=(0,0, -:-, 0)]
=(g(a+71)—¢le*+)/(pla—7)—¢(7)
and (2.4) for gxizL

As a special case, the marginal distribution of X, is a ‘ modified’
digamma distribution

(la+r)—gla+r)(Pla+7r)—¢(r), =0
(2‘6) Pr [X"=mi]= 1 (ai’ wi) ’ xi=1, 2, .
Platr)—o(r) vlait7r, ©)

Moments. Moments of a digamma distribution is obtained as fol-

lows. Under the condition 2 X,=u, the factorial moments are given by

E Xi=a;] '['[ 2l (dn xi) / (a, x)

Zz;=zi= x!

E [ﬂ X9
i=1

ﬁ(ai, n) oY ("‘*“""“ T — ?‘)/(a, x)

n=e (21! x!

_ x(r) k
(d, T) U (ai’ 'ri) ’
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where
k
r=>7r;.
i=1

The sum i X, follows a digamma distribution as seen above and its
i=1

moments are known :

(1] — (r—=1)! (o, 1)
E[XT]= ,
(] Hat+7)—¢(r) (r—1)"

provided that y>». Hence, unconditionally,

TS sz k Xi(ri) — 1 (’r—l)' L2 ).
s -+, 7) =B ] X6 Hat D=9 =D 4@

For example,

1 a;
Pla+r)—¢(r) r—1

E [X.]=p(1; §)=

a;
—_‘F._" ,
a

where
#=E[3 X,
and
V [X]=p(1; z‘)[1+-‘$§—#a; 9],
Cov 3, X 282 Lt
— §—p
Cor[X,, X;]= ,
orl 2 V(A+G—Da Y —p)(A+(r—1)a;)s—p)
where

§=ea/(r—2) .

Shape. To see that a multivariate digamma is unimodal check

p(xl, ctcy xi+17 ey, Xy @,y T)z X ai—l-x,- <1
p(xl! ey Xy oy Ty @, ‘r) a+T+w x,;+1

if (x;+1)/x>(e;—1)/(a+7). For any x there is at least one 7 such that
this inequality is satisfied since (x;+1)/x>z,/2, a;/a>(e;—1)/(e+7) and
union of the regions such that z,/rx=e/a (i=1,2, ---, k) covers the
whole sample space. Therefore, there is at least one direction in which
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k
p(x; @, v) decreases. The mode is at x such that >} z,=2,=1 and a,=
i=1

max (a;, - -+, @;). The maximum probability is equal to (¢(a+7)—¢(r)) e,/
(e+7).

3. Geneses

Model 1. If we truncate 0 of a multivariate inverse Polya-Eggen-
berger distribution (1.6), and further if the parameter g tends to zero,
then we get a multivariate digamma distribution :

(3.1) 1}1{} o(x; &, B, 1)/(1—p(0; a, B, 7))=0a(x; &, 1) .

The convergence is uniform in x.
This is easily proved since the probabilities p(x; a, 8, ¥) can be ex-

pressed as a product of the distribution of :V‘_,Xi, F(a, 8; a+8+7), and

k
the conditional distribution of (X, X, ---, X)), given > X, a singular
i=1

multivariate negative hypergeometric distribution :

o T@ENTG+) (@ )Biw) (anw) [ (@)
82 pxia b n=petDUED e O e [P

The conditional distribution is unchanged by the truncation and the
limit process, and the problem reduces to the univariate case.

One difference from the univariate case is that the negative value
of @ and «,’s are not allowed even the point 0 is truncated. This is

because the conditional distribution of X, given {2_;Xi=00, is restricted
only to a singular negative hypergeometric distribution. See Sibuya
and Shimizu [5].

It should be recalled that a multivariate logarithmic series dis-
tribution MLSr (@) is obtained by truncating the point 0 of a negative
multinomial distribution

3.3) ————F<B+f§=]‘ xi) (

Bk
¢ 1—éoi)ﬂafi, 0<h,, 36,<1
re) sz

i=1

i=1

-and making 8— 0. Our process generating the multivariate digamma
is completely parallel with this. The fact that a multivariate inverse
Pélya-Eggenberger is obtained by compounding the negative multi-
nomial distribution by Dirichlet distribution suggests another genesis.

Model 2. If the parameter 8 of the multivariate logarithmic series
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distribution MLSr (8) is a random vector with the probability density

1

3.4
34 Cla, 7)

(—log (1—8))(1—6)* z‘. prit

where

0<0u 0<17 ai>0) T>0’ and

Cl@, =a+N )@ [ T@)Te+n),

then the compounded distribution is a multivariate digamma distribu-
tion MDGa (a, 7).
The compounder can be called an “end accented Dirichlet” dis-

k
tribution. It is easy to see that §=334, is distributed as an end ac-
i=1

cented beta distribution, that the distribution of (6,9, ---, 6./6) is a
Dirichlet distribution, and thus the normalizing factor is determined.
See Sibuya [4].

Model 3. On the other hand a multivariate logarithmic series dis-
tribution MLSr (8) is obtained from the 0-truncated Poisson distribution
as follows. Let X=(X,, ---, X;) be independent Poisson distribution
with means w=(w,, - - -, ), and consider the simultaneous distribution
when the point X'=0 is truncated :

(3.5) PriX=x]=—%"_ 7%
1—e™ i=1 g,!

z2,=0,1,2,---; x=1,2,---; @,>0.

k
If w,=wp;, where p,’s are constants such that 0<p;, 3! p,=1, and o is
i=1

a random variable with the probability density
(3.6) A—e)o e *log 1+217Y),

then the compounded distribution of X is an MLSr (8), with 6,=p,/1+2.
Combining this fact with the above discussion, we can generate
a multivariate digamma distribution MDGa (a, y) from the 0-truncated
Poisson (3.5) as follows.
Define a probability density function

1
C(a, 1)

b

3.7 Hhe;a )= Wdz

?

where

@;>0, ¢,>0, y>0 and C(a, 7) is the function introduced in (3.4).
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We define p,=w;/w, 1=1, 2, ---, k, and transform (wy, ---, w;) into (@, py,
ety pk—l)' Since
[18(w, D1, *** ) Der)fO@y, * -+, wk)”=1/")ﬂ_2 ’

k

e—a Tl- wfi k
S.HST—"“M' hao; a, 7) T] do;
—e z,! i=1

__ 1 1 S . S wtemean__ 1 pectet 1T dpdda
C@ 1) [z TENEEC
i=1

_ 1 ETa+tz) I'@I(QG)
Cla,y) = a! T(et+r+ax)’

and this is MDGa (a, 7).

Model 4. In Section 2, it is stated that the distribution of the
sum of components of an MDGa (a, y) variable X, >} X;=X, follows
a univariate digamma distribution DGa (a, 7), and the conditional dis-
tribution of X, given X =gz, is a singular multivariate negative hyper-
geometric distribution. Conversely, if the distribution of X is a sin-
gular multivariate negative hypergeometric distribution (2.2), and its
parameter z is a DGa (a, v) variable, =3 a;, then X is an MDGa (a, 7)
variable.

This is similar to the multivariate inverse Pdlya-Eggenberger dis-
tribution (1.6), which is obtained when the parameter x of a singular
multivariate negative hypergeometric distribution (2.2) is an inverse
Pélya-Eggenberger variable with probabilities (1.5), a=3] a;.

4. Limits

Case 1. A multivariate digamma distribution MDGa (a, ) is ob-
tained by compounding a multivariate logarithmic series MLSr () as
shown in Section 3. Consider the case where the compounder degener-
ates to a distribution on a point, then MLSr () is obtained as a limit
of MDGa (a, 7). Actually, let a,’s and y increase infinitely keeping 6,=
a;/(a+7), =1, ---, k constant, then MDGa (&, y) probabilities converge
to those of MLSr (8).

The proof is simple, since it is known that the distribution of
S X;, DGa(e, 7), converges to LSr(f) if @ and y increase infinitely
keeping 6=a/(a+7) constant, while the conditional distribution of X,
given X1 X;=u, of (2.4) tends to a multinomial distribution

(4.1) 2! 1T piifas!
i=1
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if ;s increase indefinitely keeping a,/a=p,, t=1,2, .-+, k, constant.
If the parameter z of (4.1) is an LSr(f) variable, then X follows
MLSr (6) with 0,=0p,, i=1,2, - -+, k.

Case 2. If the parameters «;’s tend to zero, then the distribution
of 31 X;, DGa (e, r), converges to a trigamma distribution TGa (y) of
(1.7). While the conditional distribution of X, given > X,=z, de-
generates as follows provided that a;/a — p; (a; — 0).

(4.2) ;Ij; (i, ;) /M R

Dy z;=x and x,=0, j+#¢1,
x,! x!

0, otherwise.
Thus the limit distribution degenerates on all axes, and on each axis
4.3) PrX,=2]=p,Pr[X=2x], 2=1,2, --+; 1=12,---,k.

This is a p,-portion of the distribution of X, TGa (7).

This multivariate trigamma distribution will be less useful because
it is degenerated. It is, of course, obtained from a zero-truncated
multivariate inverse Pélya-Eggenberger distribution. That is, in the
limit process (3.1), if both B and s tend to zero keeping a;/a=p;,
then we get a multivariate trigamma distribution.

Another type of multivariate digamma. The limit to a multivariate
trigamma distribution raises a question, what will be the limit distri-
bution in (8.1) if @’s tend to zero while 8 remains constant. In the
univariate case @ and 8 are symmetric and there is no such a question.

Similar calculation as above shows that

(4.4) ljg} o(x; ap, B, 7)/(1—p(0; ap, B, 1))

1 (B)e ‘ _ —o. i
=1 ¢B+7)—¢(r) x(fg‘*‘r)xp” z,=2, x,=0, Jj+1,

0, otherwise.

This is also degenerated on all axes, and obtained by splitting DGa (3, 7)
into k portions with ratio p;, 1=1,2, ---, k, so we have not included
it in the family of multivariate digamma distributions. The distribu-
tion (4.4) tends to a multivariate trigamma if g also tends to zero.

5. Estimation

For the choice of estimators we need a deep study of candidate
estimates. Here we state just possible simple estimates and the ML
equation.
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Simple estimates. Since the information on a=31e; and 7 is con-
centrated in the observations of 31 X;, let m be a sample mean of
1 Xi, p be an observed relative frequency of 3 X;=1, and be p, an
observed relative frequency of 3] X;=2. As the univariate case

,c_—_<_”'}__1>/<ﬂ___?il__> and a=_2P 5_
/2 D D2 Di—2p,

are reasonable simple estimators. Further, using a sample mean m(7)
of X;, 1=1,2, ---, k, we have

a;=am(i)/m .

The ML equation. The maximum likelihood equation depends on
the way a sample is observed. Suppose we have a random sample
from a digamma population with v, relative frequencies of observations
such that 35 z,=r, r=1,2, ..., and with v, relative frequencies of ob-
servations such that z,=s, s=1,2, -.-, 1=1,2, --., k, then we get the
ML equations

_Yltn—9¢'(n) _< v, —0
pla+7)—¢(y) m=tat+r+r—1 )

’

PO 5 % g, =1,2, .-k
Platr)—¢(r) =1 ats—1

6. Concluding remark

We have seen that the multivariate extension of the digamma
distributions is quite parallel to that of the logarithmic series distribu-
tions. The digamma distribution is expected to be useful as a supple-
ment to the logarithmic series when observed frequency data have
longer tail and the logarithmic series is not adequate to be fitted.
Similarly, the multivariate digamma is expected to be useful as a sup-
plement to the multivariate logarithmic series.

IBM JAPAN
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