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1. Introduction

Let X; and X, be independently and identically distributed non-
degenerate random variables such that a,X,+a,X, has the same distri-
bution as X, where a, and a, are fixed real numbers which satisfy 0<
la,], |a;|]<1 and ai+ai=1. In [3], [4] Linnik showed that X, is then
normally distributed with mean zero. This characterization problem
leads to the functional equation

(1) H(x)=aiH(z+A)+aH(x+4,), 22,

where A; and A; are positive numbers and H is a non-negative func-
tion such that

(2) e *“H(x) is non-increasing for some 1>0.

Ramachandran and Rao [5], [6] and Shimizu [7] extended Linnik’s result
and were led to the functional equation

(3) H@)=3 pHE+4), o2z,

which was solved under (2) and the following conditions

(4) inf 4,>0,
15i<e0
(5) Sp=l;  p20, vizl
and
(6) 1<$ p; exp (3A;)< o0 for some 4>0.

The methods of proof in [5], [6] and [7] were essentially adaptions of
Linnik’s original proof and were long and difficult. In [1] Davies and
Shimizu gave an elementary and, in the finite case, simple solution of
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(3) and were able to improve slightly on the results of Ramachandran
and Rao. The functional equation (8) was further generalized by Shi-
mizu [8] who considered the integral equation

(7) He)=|  Ha+y)6dy)

where G is a function with total variation of at most 1 and H is non-
negative. Shimizu’s solution was obtained under even less restrictive
conditions with (2) being replaced by

(8) sup H(z+y)=Cn)H(x)<oo
for all x=x, where »>0 and lim C(y)=1.
' 710

The condition (4) was dropped entirely. It is worth noting that (7) is
similar to the integral equation

(9) He)=|"_H@—y)G(dy)

where G is a distribution function. This functional equation is of some
importance in renewal theory. In [2] Feller shows that if G is not
concentrated on a lattice then any bounded continuous solution of (9)
is given by H(x)=constant whilst if G is concentrated on a lattice of
span p then any bounded solution of (9) satisfies H(x+p)=H(x) for all
x. Shimizu’s solution of (7) is similar to the solution of (9) given by
Feller once the boundedness of H has been established. In fact the
most difficult part of Shimizu’s paper is concerned with precisely this
aspect of the problem, his proof being based on an idea used in [1]
which in its turn constituted the most difficult part of that paper.
Here we give a short and simple proof of the boundedness of any non-
negative solution of (7) which satisfies

(10) there exists an >0 and a K>0 such that
sup Hx+y)<KH(x) for all z=2,,
0=sy<y

this condition being less restrictive than (8).

2. Statement and proof of Theorem 1

THEOREM 1. Let G be a distribution function on (0, o) and H a
finite mon-negative measurable function defined for all x=x, which satis-
fies the functional inequality

(1) Hwz| Ha+y6@y), voza,.
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If
(12) S:ﬂ H(u)du < oo Jor all x=x,
then

S; exp (—Au)H(u)du < oo
Sfor all 2>0.

PROOF. As S(o )G(dy)zl there exists for each 2>0 a K=K(1) such
that ’

(13) Lo, EXP (WG Z1
From (11) and Fubini’s theorem we obtain
S” exp (—w)H(u)dw
%o
gg <S exp (-—-2u)H(u+y)du>G(dy)
(0, K) ED)

= S(U’K) exp (Zy)( S::y exp (— iu)Hi (u)du> G(dy)

which implies

S(o,x) exp (M(SZ exp (—ﬂu)H(u)du)G(dy)— S exp (— iu)H(w)dw

< S«),x) exp (2y)<g:°+v exp (— 2u)H(u)du> Gdy)=A, <o

0

by (12). This together with (13) yields

I, . exp )| exp (—aw H@du )G = 4
,K) z
and if »>0 is such that G(K)—G(»)>0 we obtain

g”” exp (— i) Hw)du < A, < oo

for all x==x,. This implies

Zog+(n+1)y
S exp (—22u)H(u)du < A; exp (— Ann)

.to+‘nq

for all =0 and hence
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Sw exp (—2iu)H(u)du

=3 Sx0+(n+l)7

exp (—2iu)H(u)du < A, Z._o} exp (—ign)<oo .

n=0 Jzg+ny

As 2>0 was arbitrary this completes the proof of the theorem.

3. Statement and proof of Theorem 2

This section contains the much simplified proof of Lemma 2 of [1].

THEOREM 2. Let G be a distribution function on (0, o) such that

(14) 1<S exp (200)G(dx) < oo

0,00

for some 3>0 and let H be a non-negative function such that exp (—dx)-
H(x) is non-increasing for all x=x,. If H satisfies the function inequal-
ity (10) then H is bounded.

PROOF. Arguing as in the proof of Theorem 1 we have for all 2
>

S(.,m) <S:+y H(u)du>G(dy)

<] (12" oo
|

%o

A

exp (3(x,+¥)) < S:UH exp (—ou)H (u)du) G(dy)

(0, ) 0

<exp (—dx)H(x,) S ., yexp (02 +9))G(dy) = As< o0

(o,

by (14) and the fact that exp (—dx)H(x) is non-increasing. This implies

Loy (1. X2 (30) exp (20 H)du Gldy) < A

for all K>0 and hence, again as exp(—dx)H(x) is non-increasing, we
obtain

S(o © exp (dx) exp (—d(x+ K))H(z+ K)G(dy)=< A;
for all 2>x,. On choosing K such that G(XK)—G(0)>0 we obtain H(x+

K)<A,< for all x=x, and, once again as exp(—dx)H(x) is non-
increasing, we may conclude that H is bounded.
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4. Statement and proof of Theorems 3 and 4

If we combine Theorems 1 and 2 we are able to give an improved
version of Shimizu’s Theorem 1 of [8] which also has the advantage of
a simplified proof.

THEOREM 3. Let G be a distribution function defined on (0, o) and
such that

(15) 1< S(o _,&xP (207)G(dy) < o

Jor some 3>0. Then any mnon-negative measurable function H defined
on (0, o) which satisfies (10) and the integral inequality

(16) Hoz| Ha+y6dy, aza

18 bounded.

PROOF. As H is measurable Theorem 1 implies that H(x)=exp (3x)
-Sw exp (—ou)H(u)du is well defined and finite for all x=x,. Further-

more it is easily checked that H also satisfies the integral inequality
(16). As exp(—ox)H(x) is non-increasing it follows from Theorem 2
that H is bounded. Thus

17 exp (8x) Sm exp (—ou)H(u)du < A< oo

for all x=x,. We define M(a)= sup H(x). Then there exists for all a

rysz<a

sufficiently large an x(a), z,=x(a)<a—»/2 such that sup H(x)=

r STz +9/2
M(a) where 7 is as in (10). If x satisfies x,—%/2<x=<x, we have

M(a)= sup H(u)<sup H(x+y)<KH(x)
0sysy

Ty SUST)+1/2

by (10). Here we have assumed that x,<x,—7/2 but if z,<x,+%/2 for
all a it follows immediately from (10) that H is bounded. We there-
fore obtain

00> Azexp ((e—7/2)) |"  exp(—owHw)du
Zexp (0w —7/2)— ) M(@)/ K

which yields M(a)<AK exp (35/2) for all sufficiently large a. This im-
plies that H is bounded.
In certain cases which are of special interest in applications we
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are able to dispense with the condition (10).

THEOREM 4. Let G be a distribution function on (0, o) which sat-
isfies (15) and let 4, be the set of points of increase of G. Then for
any mon-negative measurable solution H of the integral equation

(18) | H@=| Ha+y)ay)

which also satisfies (12) we have
19) H(x+w)=H(x) a.e.

for each we 4.

PROOF. As in the proof of Theorem 3 H(x)=exp (3z) Sm exp (—ou)

-H(uw)du is well defined it is easily checked that H(z) satisfies (18).
Furthermore as in the proof of Theorem 3 H(x) is bounded. Theorem
2 of Shimizu [8] implies H(x+w)=H(x) for all we 4,. This yields

exp (3x) S” exp (—dw)H(w)du
—exp (A +)) S”ﬂ exp (—du)Hw)dw

—exp (3z) S” exp (—ow) H(u+w)du .

Thus Sm exp (—ou)(H(w)— H(u+w))du=0 for all x=x, and all we 4;,. On

differentiating with respect to x the result follows immediately from
Lebesgue’s theorem. Finally, in order to obtain (19) for all x it is
sufficient to assume that H satisfies some continuity condition such as
continuity from the right. It may be easily shown by means of a
counterexample that (19) does not in general hold for all .
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