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1. Introduction and summary

In the previous paper [8], we gave the solution to the functional
equation

(1) Hw)=|" Haw+yM6w) ,

where G(x) is a function of bounded variation with the total variation
less than or equal to 1. The solution was applied to some character-
ization problems of the stable and the exponential distributions. In
the present paper we shall consider the extended equation

(2) He)=" H+9)d60) + ()

where S(x) is an “error term” and is supposed to be small in some
sense. In Section 2 we shall derive the boundedness of H(x) assuming
some additional conditions on H(x) and G(x). In Section 3 we give a
necessary and sufficient condition that a bounded function H(x) satisfies
the equation (2). Explicit formulae for H(x) will be given in Section
4. As an application of these results we shall show in Section 5 the
stability of some characterizations of the exponential distribution as
given by Ferguson [1], Rossberg [7], Ramachandran [6], and others [3],
[4], [5], and [8].

2. Boundedness of H(x)

Throughout this section we assume that G(x) is a distribution func-
tion on the interval [0, o) with

(3) 1<S:e“dG(x)<oo . for some 3>0
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and that H(z) is a positive, right continuous function defined for x>z,
> —oo and such that for some positive constant 2

(4) H@x+y)se'H(x), x=x, y=0.

Under these assumptions it was proved in the previous paper [8] that
the following theorem holds.

THEOREM A. If H(x) satisfies the imequality
(5) Hoz| Ha+yd6w), =z,

then it is bounded.
In this section we shall extend Theorem A and prove

THEOREM 1. If H and G satisfy the assumptions stated above, then
the inequality

(6) H(x)gﬂj H@+y)dG(y)—Ce=Hz), w22

implies the boundedness of H(x), where C, and ¢ are positive constants.

Theorem 1 is easily obtained from Theorem A if G(z) is concentrated
on the interval [e, o), where >0. In fact by letting x,>0 sufficiently
large we can make

AECl(l—5--a__Cle—c(zl+a))-1>O .
Put
Hy(x)=H(x)+ Ae~*"H(x) .

Then for x=max {z,, 2,}

(7) S: Hy(z+y)dG(y)= S:’ H(z+y)dG(y)+ Ae~ S: e~ H(zx +y)dG(y)

é H(x) {1 + Cle—lr+ Ae—t(z-l-a)(l + Cle—cx)}
< H(x)

and the desired result follows from Theorem A. We now proceed to
the general case. Let G*"(x) be the m-fold convolution of G(x) and let
R,(x) be the real function defined by

(8) H)= H@+9)d6*@)+ R @) HE) -

Then R,(x) satisfies, by (6)
(9) R(x)=—Ce ™, r=x*=max {0, 2,} .
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LEMMA 1. For any positive integer m and m, the relation
(10) Rm+n(W)H(x)=Rm(x)H(w)+S: R (z+y)Hx+y)dG*"(y) , 2%
and the inequality
-1

(11) R (x)=—C; 3 (1+Cy)re ™, r=a*

n
k=0

hold. If the condition (9) is replaced by

12) |Ry(x)|=Cie™*, r=zx*,
then we have
(13) |Rn(x)|gc,§ (A+C)e, wzu*.

ProOF. We shall prove Lemma 1 by mathematical induction on m.
Substituting x+%' for « in (8) and integrating with respect to dG(%’)
we obtain

(14) |, He+1d6w)=| He+uder )
+| Bue+)H@+9)6w) -

But by (8) the left-hand side and the first term of the right are equal to
H(x)— R(x)H(x) and H(x)— R, ,,(x)H(x), respectively, so that (14) becomes
(15  R@H@)=R@HE@)+| Ra+y)Ha+1)d6) .

Thus (10) is true for m=1 and arbitrary n. Suppose it holds true for
some m=1 and arbitrary =, then it also holds for m+1 and %#. In
fact we have from (10)

[, Rusn(o+ ) H+3)dGw)
=" Rue+ 9 H@+9I60)+ || R+ He+)ic (@) .

Using (10) again we obtain the desired result:
Basnss@ H@) = Ba @ H@)+ | Ruw+) Ha+9)dG*()

The inequality (11) is clear if n=1. If it is true for some positive =,
then from (10) with m=1, we have for x=z*



4 RYOICHI SHIMIZU

Boyi(2)=Ri(a)+ H@) ™ | Ru(o+9) o +4)d6()
2—Ce*—C S (L+CeH@)* | H+9)d6w)
2 {C+C S L+C)(U-R@)e
Z—Ci 31 (1+Cye.

The inequality (13) can be obtained similarly. Q.E.D.

Now let ¢=min {2, ¢} and let & be a positive number such that 2=
¢*>3/2. Then by the law of large numbers we can find a positive
integer p for which €*G*7(§)<1/2. Then there is a positive number A
such that

(16) C=C,S (1+C) e i<et—1—e*G*r(g)<1 .
k=0
This means that
(17) c=ed*G*7(&)+(1+Cye <1
and that
(18) A=CS (1+Cy<e.
k=0

LEMMA 2. The condition (9) implies
(19) R, (x)=—Ce ™, r=zx**=max {0, z,, 4}, n=1,2,-..,

where C, 1s a positive constant which may depend on C,, 2, ¢ and G(x),
but not on n. Also (12) implies

(20) |Rn(x)|§coe—w ’ xgx**y n:]-) 27 crt .
PrROOF. We shall first prove by mathematical induction that
(21) Rmxl(x)g —Ame_w xgx**’ m= 1y 2, Tty

where
A=A, mz_l ct<Zei(l—c)t.
k=0

For m=1, (21) follows from (11) and the definition (18) of A;. Suppose
(21) holds for m=1. Then from (10)

oo
0

B i10p(%) H(w) = R () H(x) + S R, (x+y)H(x+y)dG**(y)
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>— AeH(z)— A, S“ e~ H(z+y)dG**(y) .
0

But as
S: e~V H(z+4)dG**(y)
<H@ | e-1d6ro)+ | e Hw+1)i6* )
SH@){e"*G*?(§)+e*(1— Ry(x))} =cH(x) ,
we have

Rpinp(@)= —(A1+cA,)e = — A, 077 .

Thus we have proved (21). Let n be a positive integer which is not a
multiple of p. If n<p, then (11) and (18) yield

(22) R (x)=—Ae ™+, r=x**
If n>p, then there exist positive integers k and ! such that
n=kp+1, 1=<ip.
It follows from (10)
R\(#)=Rupui(0) = Ria)+ Ho)* | Ruylo+9) Ha+9)dG*'()
2 —e"{A+A(-R(x))} =2 — {A+ A1+ A)}e™.
Thus for all cases (19) holds with

C.,-_—e“{l+ﬁ(l+e“)} .

The implication (12)—(20) is obtained similarly. Q.E.D.

PrROOF OF THEOREM 1. Let C; be any positive number greater than
C, and let ¢’ and 7 be positive numbers such that

C;=zC+e"C;  and  e"(14-C)<e"/2.
We can find a positive integer n such that
e GF () <2 .
For x=x**, put
Hy(x)=H(x)+C;H(x)e™* .
Then,
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|, Hi@+)i* @)= Ho+9ie+@)+Ce | e Ha+1)a6ww) |

But as
and
|7 e +vage)
= 5 e H(w+y)G* )+ S e~V H(z +y)dG*"(y)
e G (p)H(x)+ e~ {1— R, (x)} H(x) <¢"H(z) ,
it follows that

23 |” Hia+9)d6*"()S Hw)+Cem*H(z)+¢"Ce*Hm) S Hilw)

and the desired result follows from Theorem A. Q.E.D.

3. Solution of the equation with an error term

In this section we assume that H(x) is a real, bounded and right
continuous function defined for x=x,. For k=1 and 2, let G.(x) be
monotone non-decreasing functions with the set 2, of points of increase,
i.e., uef, means G, (u+d)>G,(u—d) for any d>0. We assume that
G(x)=G(x)+Gyx) is a distribution function on [0, o) not degenerate
at ©=0. Let S)(z) be a real function such that

(24) |Sy(x)|=Ce, T=x ,
where ¢ and C are positive constants. Put
(25) czgwe“”dG(x) (0<e<l).
]
We shall prove
THEOREM 2. If H(x) satisfies the functional equation
(26) H@)=q | Ha+)d(G() ~ Giw) +Six)

where 1=q>0, then for all x=x, and u>0
27) |H(x+u)— H(x)|<Ce™*", if e

and
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(28) |H(x+u)+ Hz)|<Ce™, f uec
where
C=2C/(1—cq) .

Let r be an arbitrary positive number and let f(x) be the continu-
ously differentiable density function of a distribution concentrated on
the closed interval [0, r]. Put

Ho)=| Ha+ysady, oza,.
Let u € 2, and put
K(2)=H(x+u)— H(x)
and

S@)=| (8(+u+y) S+ Sy .

Then there exists a positive constant C, which may depend on r and
f(-) and such that

(29) |H(x)— H@')|SClz—2'|, =, 2'Zn
and
(30) |K(x)|=C,, |H=)|=C, x=w.

Also we have

(31) |S(x)|=2Ce™,  x=a,.

Moreover K(x) satisfies the equation

(32) K@)=q | K@+y}d(G)~Gu)+5@)

In particular we have

(33) IK@)|=q | 1K(@+9)ld6@)+20e

It then follows by mathematical induction that the inequalities
(39 [K@ISe | IK@+Y)IdE* @) +200 +eq+ - +(ear e,

n=1, 2,---, hold.

LEMMA 3.
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(35) lim G**(yn)=0.
PROOF. Let a be a positive number such that G(a)>0. Let X,
X;, -+ be independent and identically distributed random variables with
the common distribution G and let X/ be defined by
X, if X,<a
X! =
a if X,>a.

Then X/, X/,.-- are also independent and identically distributed and
they have a positive mean and a finite variance. As 0=X/=<X,, n=

1,2,-.. with probability one, we have by the law of large numbers
0=G*"(vn)=Pr{X;+ X;+-- -+ X,=v/7}
SPri{iX/+X/+-- -+ X/=vn}—0. Q.E.D.

LEMMA 4. If a=Ilim|K(x)| then

(36) [K(z)|<a+Ce ", =, .

PrROOF. For any ¢>0, we can find an z,>x, such that |K(z)|<
a+e, for all x>x,. Now let z>x, and take = sufficiently large so that
z++47n =x,. Then

|K@)|sq || 1K@+9)|d6*"(w)+Ce~

=" K@ +9)Ide @)+ K@+yIderw)+Ce
sCGE* (v n)+(a+e)1—-G*"(vn))+Ce .
Letting n— oo
|K(z)|Sa+e+Ce .
As ¢, is arbitrary Lemma 4 follows. Q.E.D.

LEMMA 5. a=0.

PrROOF. We assume without loss of generality that
a=lim K(z)= —1lim K(z) .

If a>0, then we could find positive numbers ¢, and 8, and a positive
integer L such that

a>3€1>0 s €1>Cla>0 ’ u>6>0 and L(a—3sl)g3cl .
Let A be the closed interval [u—d, u+4] and A its complement. Put
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n=qSAdG,(x) (>0, as ue 2, and ¢>0).

Then for xz=x,,
K@)=q | K@-+9dG»)~Giw)+5@)
<q| K@+pi6w)+e| [Ke+vId6m)

+4 | 1K@+1)|dG:0)+S(@)
=7 sup K(@+y)+(1—)(a+Ce™)+2Ce

or

37) K(x)=nK(x+u,)+a(l—z)+Be =,

where u; € A, and B=(1—1%)C,+2C. In the same way we obtain
(38) K(x+u) <nK(x+u,+u;)+a(l—»)+ Be~ <=+

where u, € A. Substituting (38) into (37) we get
K(x)<n*K(x+u;+u)+a(l—7)+ Bl +y)e .

We may repeat this process to obtain

@9)  K@)=7"K@+u+- - +ud+al—y)+Bl+g+- -+

for z=w, and k=1, 2,.--, where «’s lie in the closed interval A=[u—3d,
u+d]. Now take z* (>uwx,) large enough so that

(40) Be 33 (ot 079G

By the definition of @ we can find an z;, (=2*) which satisfies

(41) a—ep"=<K(z,) .

Inequalities (39) and (41) yield

(42) a—en S K(x,+u+ - - +u)+Bemi(pT i o b 57F)

Adding both sides of (42) for k=1, 2,---, L, we arrive at a contradiction:

L L
L(af"‘sl)ég (a—eg]""‘)ég K@ +u+ - - - +u)+Cy

L 7T —_—
=1§a {H(z+w+ - - - F e +u)— H@y +u+ - - - +Hu,)}

+ H(z,+ug+ -+ - +ug +u)— Hz +u) +C
<(L—1)3C,+3C,< L{a—2s) .

We conclude that a=0. Q.E.D.
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PrROOF OF THEOREM 2. Lemmas 4 and 5 yield
@3 K@|=|| (He+u+y-Ha+o)lfdy|sCe, 22,

As r is arbitrary and as H(x) is right continuous (27) follows from
(43). In order to derive (28) define the bounded function K(x) by K(x)

=H(z+u)+H(x). We can use the similar argument as above. Q.E.D.

4. Explicit formulae for H(x)

Results of the preceding section make it possible to obtain the ex-
plicit formulae for H(x).

LEMMA 6. Let ue2,U%2,, and u>0, then there exists a periodic
Sumnction 4,(x) such that

4.(x) if ue
(44) dw+u)= |
—4(x) ifue
for all real x and that
(45) [H@x)— 4 (x)|=Ce™, 22,
where C,=Cy(l—e )1,

PROOF. Suppose u € 2,. Then it follows from Theorem 2 that
(46) |H(x+lu)—H(x)1§00§ g g 1=1,2,---

In particular lim H(x+lu) exists for all x=x, and the inequality (45) is
l—o0

satisfied by the periodic function defined by
47) Au(w)=llim H(x+1u) .

When u € £, the inequality (46) holds true for =2, 4,--- only, which
easily follows from (28) of Theorem 2. The conditions (44) and (45) are
satisfied in this case by

(48) 4,(@)=lim H(w-+2l) . Q.E.D.

In what follows we distinguish three cases.
Case 1. £2,U %, is not contained in K(p)={lp|l=0,1,---} for any p>0.
In other cases there exists a unique p>0 such that 2,U%, is con-
tained in K(p) but not in K(o') for any p’'>p.
Case 2. Either 2, is empty, or £, is not disjoint from L(p)={(2l4+1)p|
1=0,1,...}, or £, is not disjoint from K(2p).
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Case 3. Either 2, is empty, or £, is contained in K(2p) and £, is in

L(p).
Now we can state our main theorem.

THEOREM 3. Suppose the assumptions stated at the beginming of the
preceding section are satisfied. If H(x) is a solution of (26), then it can
be put in the form

(49) H(x)=A4(x)+ A(x)e™*", T=2,,

where A(x) s a bounded function and 4(x) is a periodic function speci-

fied as follows :

Case 1. 4d(x)=4 is a constant. 4=0 if 2,#¢.

Case 2. d(x) 1is a periodic function with period p. A4(x)=0 if 2,#¢.

Case 3. d(x) is a periodic function with period 20 and 4(x+p)=—4(x),

for all x.

For all cases 4(x)=0 if ¢<1, and A(x) is bounded by

C
c

(50) A@)|s =

Proor. We can reduce the problem to the case G,(0)=Gy(0)=0.
In particular if G,(0)>0 we can rewrite the equation (26) to obtain a
similar equation with G,(0)=0 and ¢<1. We may assume therefore
0¢L2,UfL, in the cases 2 and 3. Apart from the inequality (50) the
assertions for these cases are direct consequences of Lemma 6. Con-
sider the case 1. There exist as least two positive numbers » and v,
say, in £,U &, such that the ratio u/v is an irrational number. Then
we have from Theorem 2

|H(x)—4,(2)|=Ce and |H(z)—4,(2)|=Ce™,
where 4’s are periodic functions. It follows that
(51) 4(z)=4,(2)+C(z)e™*"

where C(z) is a bounded function. Let m be a positive integer and
substitute x+2mu in (51). Noting that 4,(x) has period 2u we obtain

(562) 4x)=4,(x+2mu)+C(x+2mu)e~**e™*" .
It follows that
4,(x)=lim 4,(x+2mu) ,
which implies that 4,(x) has period 2v. But as w/v is irrational this is

possible only if 4,(x) is a constant. If we £;, then we have 4=con-
stant=4,(x)=4,(x+w)=—4,(x)=—4, and we conclude that 4=0. Sup-
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pose ¢g<1. We have from (24) and (25)
|H@)|sq || |Ha+9)ld6w)+Ce,
or more generally
(3 |H@)|<q || H@+)ld6H @)+ Cl+egt- - +(eay e,

for n=1,2,--.. As H is bounded the first term of the right-hand side
of (53) goes to 0 as » tends to infinity while the second term is bounded
by (C/(1—cq))e~*. The inequality (50) is easily obtained by substituting
the expression (49) in (26). Q.E.D.

COROLLARY. Let H(x) be a mon-negative and right continuous func-
tion satisfying the condition (4) and let G(x) be a distribution function
satisfying (3). Let ¢ be given by (25). If H(x) is a solution to the
Sunctional equation

(54) H(x)= S: H(x+y)dG(y)+ R(x)H(z) , r=zx,=0,

where R(x) is a real function such that |R(x)|<Re *<((1—c)/4)e™**, then
H(x) can be put in the form

(55) H@)=4+A@)e™, =0,
where 4 is a non-negative constant and A(x) is bounded by
(56) A@|s2—Riinf H@)|,  20.

Proor. If H(x;)=0 for some z,>0 then H(x)=0 for all x=x, by
the condition (4) so that H(zx) is bounded. If Hi(x) is positive then the
boundedness follows from Theorem 1. We can then apply Theorem 3
to conclude the H{x) can be put in the form (55). Substituting this
expression in (55) we obtain

Ax)e™ =€ S: Az +y)e dG(y)+ R(x)(4+ A@)e™) ,  220.

It follows that

|A()|Sc sup| A@)|+ Rod + 1;“ sup|A(#)], =20
or
4
(57) sup |A(z)|= 30— R4 .
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On the other hand we have

_4
3(1—c¢)

The inequality (56) follows from this and (57). Q.E.D.

| H(z) = 4—sup {A(:c)lg<1— R.))Ag%z! .

5. Stability of some characterizations of the exponential distribution

Among the continuous distributions on the half interval (0, o),
the exponential distribution F(z)=1—e™* (x=0) has some interesting
characteristic properties. Following characterization theorems are
known. In Theorems B and C, X, , denotes the kth smallest observa-
tion in a sample X, X,, -, X, of size » from a distribution F such
that F'(0)=0.

THEOREM B (Ferguson [1]). Let F be a continuous distribution with
a finite mean. If for some k (1<k<m), the conditional expectation of
the variable X, ,—X,,. given X,,=x remains constant a.s., then the
distribution F' is exponential.

THEOREM C (Rossberg [7]). If for some k (1<k<n) the variable
Xii1,n—Xin has the same distribution as the smallest of Y;, Y, -+, Y4,
a sample of size n—k from F, then F is expomential.

THEOREM D (Ramachandran [6]-Huang [3]-Shimizu [8]. For related
theorems see also [4], [5]). Let X and Y be independent nonm-negative
random variables such that

(58) Pr{Y=0} <C=Pr{X>Y}<1,

and that the distribution G, of Y 1is mon-lattice. If for all x=0 the
relation

(59) Pr{X>Y+2|X>Y}=Pr{X>x}
holds then the distribution F of X 1is exponential.

In this section we are concerned with generalizing these theorems
to the cases where the assumptions are not fully satisfied to obtain so-
called stability theorems. We measure the distance between two dis-
tributions F, and F; on the half interval (0, o) by

O(Fy, Fy: 7)=sup|F\(z)—Fy@)|e”,

where 7 is a positive constant.
In what follows we write E,(x) to mean the exponential distribu-
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tion function:

j 0 if £<0
E(x)=
(1—e*  if 220
and we assume that the real function R(x) is such that
(60) |R(x)|SRe ", for x>0,

where R, and ¢ are positive constants. We shall prove the following
stability theorems corresponding to Theorems B, C and D.

THEOREM 4. Let F be continuous and strictly monotone in the in-
terval (0, b), where

a=inf {x| F(x)>0}=0 and b=sup {z|F(x)<1} .
If for some 1<k<m there exists a positive constant A such that
(61) E(Xii1,n— Xin| Xin=2)=2"'(1—R(%)) , a.s.,
where R(x) satisfies (60) with
€d

—k
62 R,< n . . 0<a<1,
(62) "=41+(n—k)d) A+te =0<
then
(63) O(F,E,: V)<8, X=i(n—k).

THEOREM 5. Let F be a non-lattice distribution such that F(0)=0.
Suppose for some 1<k<n the relation

(64) Pri{Xii,n—Xpn >} =(1—F(2)*(1-R(z)), 220
holds. Let 2 be the unique solution of

(B oo

and put

e= ( Z' > Sm e~ =B+ BTk ()

0

Then for any 0=548<1,

(65) O(F, E,: )<3
provided that
(66) IR < (n—k)(1—c)d

4(1+(n—k))
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THEOREM 6. Suppose the assumptions of Theorem D are satisfied.
If there exists a real function R(x) satisfying the condition (60) such
that

(67) Pr{X>Y+x|X>Y}=Pr{X>2}1—R(x)), «=0,
then we have
(68) O(F,E;: =8, 0=0<1
whenever R, <((1—c)/4)3, where 2 and ¢ are given by
S” ¢#dGy(z)=C=Pr {X>Y} and c=C- S‘” e-0+5dGy(z) .
0 ]

PrROOF OF THEOREM 4. The continuous version of the conditional
expectation E (X, .| X;.=x) is given by

SRticn

and we have from the condition (61)

[ (R0 g Ra), e

In view of the continuity and monotonicity of F we have for 0<x<b
(69) 1" - Fat+y)y-dy=0-F@)-+1-R@) .

But if 2=b then the both sides of (69) are equal to 0 and we conclude
that it holds in fact for all x=0. On introducing the non-negative
function H(x)=(1—F(x))"*¢* and the distribution dG(x)=21¢"*dx, we
obtain from (69) the functional equation (54). The assumptions of the
corollary to Theorem 3 are satisfied with ¢c=4/(24+¢). Thus we can write
F(x)=1—(4+ A(x)e ")/ »"®¢=**  where 2'=2/(n—k), 4 is a constant and
A(x) satisfies the inequality (56). But as inf H(x)< H(0)=1=4+ A(0),
we have
F(x)=E,(x)+ B(x)e *",
where
B(x)=1—(4+ A(x)e~=)V/@-®
and
| B(x)|=|1—(1+ A(z)e™— A(0))/""|

2 sup A(x) 4R,
o (n—k)(1—2 sup A(x)) = (n—k)(l—c-—4Ro) =d. Q.E.D.
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ProoOr OF THEOREM 5. We have

oo

Pr (Xpvin= Xun>2} = Pr (Xiusa>0+y| Xow=9}d Pr (X, <y)

P (Forararny

_ ( ;g) g:" A—F(z+y) *dF*@y) .

Put H(x)=(1—F(z))"*"®~ and let G(x) be the distribution defined by
dG(x)=(Z)e“"‘”‘”dF"(x). Then the equation (64) becomes (54) and all

the conditions of the corollary to Theorem 3 are satisfied. The rest of
the proof is the same as the preceding theorem. Q.E.D.

PrOOF OF THEOREM 6. The condition (66) of the theorem is equiv-
alent to

S: (I=F(z+9))dG(y)=C1—-F(z))(1—R(x)) , 2=0.

Writing H(x)=(1—F(x))¢* and dG(x)=C"'e*dG,(x) this becomes (54).
The rest of the proof is the same as the proofs of the preceding two
theorems. We omit the detail. Q.E.D.
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