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1. Introduction

In an earlier paper (Cf. Prakasa Rao [6]), the author has obtained
the speed of convergence of Bernstein-von Mises approximation for
Markov processes improving over the Bernstein-von Mises theorem for
Markov processes proved in Borwanker, Kallianpur and Prakasa Rao [1]
and generalizing the results of Strasser [7] and Hipp and Michel [4] in
the independent identically distributed case.

Suppose {0,} is a sequence of maximum likelihood estimators and {8,}
a sequence of Bayes estimators for a sufficiently regular prior distribu-
tion and smooth loss function. It was shown in Borwanker, Kallianpur
and Prakasa Rao [1] that n'*(4,—8,)—0 a.s. under some regularity con-
ditions. We shall now prove that w(8,—0,) is bounded in probability
over compact subsets of the parameter space. This result generalizes
recent results of Strasser [8] to the Markov case. The present result
implies that the (i) Berry-Esseen type bound for {6,}, proved in Prakasa
Rao [5], holds for {8,}, (ii) {8.} is approximately median unbiased of
order »~'% and (iii) {8,} is asymptotically efficient of order n~*?. The
proof is based on a result concerning rate of convergence of Bernstein-
von Mises approximation. The rate obtained is the same as the rate
obtained in Prakasa Rao [6] for a less general case and the result is
an extension of a theorem of Strasser [8] even in the independent and
identically distributed case. Since most of the proofs are similar to
those in Strasser [8] and Prakasa Rao [5], we do not give them in
detail.

2. Preliminaries

Consider a measurable space (2, f) and for each 6¢ H, let P, be
a probability measure on (¥, .{). Suppose that H is an open interval

contained in R. Let H denote the closure of H in R and B be the
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o-field of Borel sets of H. Assume that, for every 6¢ H, {X,, n=1}
is a Markov process taking values in the space (X, A, P,) with sta-
tionary transition measures p/(¢§, A)=Py)(X,.1€ A|X,=¢). We assume
that for each 6 € H, p(&, A) is a measurable function of & for fixed A
and a probability measure on . for fixed . Such a set of transition
measures along with an initial probability measure give rise to a Markov
process by Doob [2].

A family of _4x i-measurable functions f,: XXX —R, ¢ H is
said to be a family of contrast functions for {P,, 6 € H} if E,(f.) exists

for all ¢ H and r ¢ H and if
E, (f0)<E,(f)

for all §e H, re H, 6#r. Let (x;, -+, «,.;) be an observation on the

process. Any JJ"‘-measurable function 6,: %"*'— H depending only
on x,,-+-, &, is called an estimator. A minimum contrast estimator

(MCE) is an estimator 6,(%"*)c H and
> fo (%, @ )=1Inf 33 fi(x;, :41)
i=1 deH i=1

MCE’s for Markov processes were studied by Prakasa Rao [5] and
Gianssler [3]. Prakasa Rao [5] studied the rate of convergence of dis-
tributions of these estimators by obtaining Berry-Esseen type bound
and Ginssler [3] studied measurability, consistency, and asymptotic nor-
mality of these estimators.

Unless otherwise stated, we shall assume that the process {X,, n
=1} satisfies Doeblin’s condition (D), as given in Doob [2], for every
¢ e H. This implies in particular that there exist positive constants
rs=1 and p,<1 and a stationary probability distribution p,(-) such that,
for every ¢ H,

|D52(&, E)—pE)| =705

for all measurable sets E, for all £e¢ X and for every m=1. Here
p§(+,+) denotes the m-step transition function. We shall suppose that
the initial distribution is the stationary distribution of the process un-
der consideration. Then the process {X,, n=1} will be a stationary
Markov process for each 6 € H. Let P, denote the measure on (X, A~)
determined by p(-,-) and »,(-).

Let 2 be a prior distribution on (H, B). For those xe X" for
which it is possible, define the probability measure

1, exp (=33 ioi, 20) ) 2do)

SH exp (‘?3:1 S, wi+1))l(da) P

Ry, x(B)=
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Under the regularity conditions stated at the end of the paper, it can
be shown that for every compact KC H

sup P(M;)=0(n"")
feK
where
M= {x € gt sup exp [—é S, xi+1)] < 00} .
3 i=1

(Here M denotes complement of M,). Clearly R, x(B) is well defined
for xe M,, n=1. Let L(-,-) be a loss function satisfying the condi-
tions given in Section 6.

A (modified) Bayes estimator relative to prior 2 and loss function

L(-,-) is an JI"*-measurable function 8,: 2**'— H such that

SH L(8.(x), 0)R, {do)=inf SH L(6, 0)Rn,x(do) .

for xe M,, n=1.

3. The Bernstein-von Mises approximation
For every compact KCH, let M,,e A", n=1, 6 € K such that
3.1) sup Py(M;:)=0(n""%) .
fe

Lemma 4.1 of Prakasa Rao [5] implies that, we can assume 6,(x)e H
if xe M, , where 6, is the MCE. Let

a(0)=[E,(f>(X,, X)), 6eH.

Note that f® is defined by the regularity condition (iv) of Section 6.
For every Borel set Be B, let

. o—0(x
By(x,0)={o ¢ R: T(a)—fﬁleB} . xeM,
and

z,f(x):a(o)% ?3 FOul wo)—1,  x€M,,.
Further, assumption (xi) in Section 6 implies that

[, 1t dt<oo,  k=0,1,2,3.
R

Define the signed measures
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0.B)=| 0 ( 25)1/2 edt, Bed®

for k=0,1,2 and 3. Let

Tislo)= [ "o n oeH,

Wi(x, s)={o € R: |o—06,(x)|=(se(6))"*(log n)"n"""}

and
A.(x, 0)=(2ra(0))"*n'"* exp {— é Sy, )+ é Sty wi+l)}

for s>0, xe M,,, n=1, 6 H. 1In the following, cx denotes a generic
constant depending on compact set K not necessarily the same through-
out the discussion.

THEOREM 38.1. Assume that regularity conditions (i)-(xi) stated in
Section 6 are satisfied. Then, for every compact KC H there exist sets
M, , € A, n=l, 0 ¢ K satisfying (3.1) such that x € M, , implies

(3.2) sup

a —_—
Be £B| SBn(x, HNH J(T7,x(0)) Ry, x(do) — Oy(B)

+-§-Z:(x)[¢o<3)+¢z(3>1 <cen i

where cx>0 depends on the compact set K only.

ProOF. Let KCH be compact and let M,,e A", n=1, ¢ K
satisfy (3.1). Lemma 5.1 implies that we can assume that

Wix, sx)c H for xe M,,.

It can now be shown by method similar to that given in Proposition 1
of Strasser [8] that

[
S By Wi, sx) * (L e A%, o)do

= SB,, J(t) exp {—izz‘(zrg(x)—F 7]"(x’ 0’ t))} %e—ﬂﬂdt .
- S B, P {—%Z(Z:(x-)ﬂ,.(x, 9, t))} Oy(dt)

where
B,={teR: teB, t!:<sglogn},

and
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I, 0, V)| Scxltin™  if teB,, xeM,,,

where c¢z>0 depends on the compact set K only. Applying the in-
equality

le*—1+a|<Z el

for
tz
and using Lemma 5.7, we obtain that

} S B.(x, 0)nWe(x, sx) J(T'r,x(0))An(x, o)do

{5, 1= @)+, 0, 1) |oudt)| S cnr®
for x € M, , and uniformly in Be $B. Since

2
sup ’ S i 7)n(x, 0, t)¢o(dt)! é Cx’n_l/z S ltlalwo(dt)l
Beg! B 2 R

for x € M, ,, it follows that

sup J(T} x(0)A(x, o)do

BedB

SBn(xr 0)nW71(x’ SK)

—¢O(Bn)+é-z:(x)mz(3n) < cxn

for xe M,,. Applying the assumption (xi) of Section 6 we obtain that
sup |0(B)—0,(B,)|Scn™V?, k=0,1,2
B

and hence
]
®3) glel%‘ SB,,(x, HNWix,sx) J(T7,x(0))A.(x, 0)do
—O(B)+ L Z(x)0(B)| S oxn~t
for xe M, ,.

According to the uniform cover theorem, for every >0 satisfying
K'CH there exists ex>0 such that |c—d¢’|<eg implies |p(c)— p(o’)| < cx -
le—d'| for every o€ K. We can also assume that W)(x, sx) is con-
tained in an e-neighbourhood of # for every x€ M,, and 6 € K. Then
it follows that x ¢ M, , implies that
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-4 5’3‘_33! SB,.(x, 8N Wi, sx)

=20 |5 o o oy T Thal@) A, 0)do

<exd0.00) |y, | 1I(Th 0D A, 0)lo—0,(0)do .

J(T'5,x(0))Aulx, 0)p(0)do

Using an argument similar to the one given earlier, it can be shown
that

(3.6) ) [J(T5,2(0))| A%, 0)|0—0:(x) | do

SW,f(x, Sk

<cgn? S ItJ(t) ] e~ 2=t

(t2<sx log n}

for x € M, , since we may assume that there exists a constant 0<3,<1
such that

Zrtp(x)_nn(xr g, t)g—ax>—°° if *<sglogn

and xe€ M,,. Under the assumption (xi) of Section 6, it follows that
S |tJ(£)| exp (—-;—tz(l—ax)>dt<oo .
R

Hence the term in the R.H.S. of (3.5) is O(n~"?) uniformly for 6¢ K.
(3.3), (3.4) and (3.5) together show that, for all xe M, ,,

(3.6) J(T7,x(0))An(x, 0)p(0)do

su
B G%‘ SBn(xv 0)“ W:(xr sK)

— p(B(x)) [(DO(B) — _%_ Z(x)0( B)] | < oon1

since one can assume that
P(OX))Scx<oco  for xeM,,

by conditions assumed and Lemma 4.1 of Prakasa Rao [56]. In view of
(3.6), arguments similar to those in Strasser [8] show that

@.7) e | S B.(x,0)nH

—m.,<B)+-§~Z:(x)[¢o(B)+<02(B)1 <cen

J (T, x(0))Rn, x(do)

as was to be proved.

Remarks. Observe that Theorem 3.1 is not only a generalization
of Theorem 1 of Strasser [8] to the Markov case but it is also an im-
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provement even in the i.i.d. case over Theorem 1 of Strasser [8] in
that we have considered a general function J(f) instead of |t[*. This
result generalizes Theorem 3.1 of Borwanker, Kallianpur and Prakasa
Rao [1]. Clearly assumption (xi) of Section 6 is satisfied when J(t)=
|t|* and we obtain Strasser’s theorem in the Markov case as a special
result. This theorem is also a generalization of result in Prakasa Rao

[6].

4. Bounds for the difference between MCE and Bayes estimator

We shall prove the following theorem giving a bound for the dif-
ference between MCE and Bayes estimator. The proof is only sketched
as it is similar to Theorem 2 of Strasser [8].

THEOREM 4.1. Assume that regularity conditions (i)-(xvi) are satis-
fied and that 2 possesses second absolute moments on H. Then for every
compact KC H there exist sets M,,€ A", n=1, 8¢ K satisfying (3.1)
such that x € M, , implies

(4.1) |B8u(x) —0(x)| = Cgm™!
where Cx>0 is a constant depending only on K.

PROOF. In view of the assumptions, it can be shown that there
exist sets M, , satisfying (3.1) such that x ¢ M, , implies that

“2) |, Liol6a(), 0)Rn,x(do) =0

and

@8) ||, L0, IRmstdo) =, Lul0.(0), B, s(da)| SCxn

W3(x, sx)
for some constant Cx>0 depending on the compact K by Lemma 5.5.
Define T x(s) as before for ¢ € Wi(x, sx) and let F} . be the probability
measure on {t€ R: t*<sglogn} induced by R,x and T x. Using the
fact

L1i(0.(x), 0,(x))=0

and Lemma 5.6, it can be now shown that

(4.4) y Li(0.(x), o)Ry,x(do)

‘ Swfe(x, Sk

— a(0) Lus(0,(), 0,(x)yn " g tFS (dt)

{t?<sx log n}

<Cyn-! S $F2, (dt)

{t2<sx log n}
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for all xe M,, by using Taylor’s expansion and arguments given in
Proposition 2 of Strasser [8]. Theorem 3.1 implies that

(4.5) lg{mx ogn) tF,‘:,x(dt)‘ <Cpn!
and
(4.6) | S s tog my PR #0) | <Cpn1"

for all x e M,, by taking J(t)=t-and J(t)=t*. (4.3)-(4.6) show that

@) [, Lut6.x), )R x(do)

<Cign!

for all xe M,,. We can assume that 8,(x)e H if xe M,, and in this
case, relation (4.2) implies that

48) 0= Lul0.(x), 0)Rax(do)+(8.0)— 0.2 | LuBu(), 0B x(do)

where Lé,,(x)—ﬂn(x)lg[,B,,(x)—ﬁn(x)[. Arguments in Strasser [7] imply
that

“9) ], Zalbu@), )R xdo)| 2 ex

for suitable x>0, for all xe M,,, ¢ K, n=1. (4.7), (4.8) and (4.9)
prove the assertion.

Remarks. The result obtained above is an improvement over Theo-
rem 4.1 in Borwanker, Kallianpur and Prakasa Rao [1] where in it was
shown that n'*(8,(x)—0,(x))—0 a.s. when 4, is an MLE. Since the con-
ditions assumed imply a Berry-Esseen type bound for the normal ap-
proximation of MCE 6,, as was shown in Prakasa Rao [5], the theorem
implies that Berry-Esseen bound holds for normal approximation of Bayes
estimate B, for smooth loss functions and priors. It also follows that
B. is approximate median unbiased of order n~Y? and it is asymptoti-
cally efficient of order n~'2.

5. Some lemmas

We assume that regularity conditions stated in Section 6 are satis-
fied.

_ LEmMA 5.1. Let s>0 and KCH be compact. Choose e>0 such that
K'cH where K‘={s€c R: |0—0|<e, 0 € K}. Then there exist sets M, , ¢
A, n=1, 0 € K such that
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(5.0 sup P(M;,)=0(n""?)
and
(6.1) Wix,s)cK* if xeM,,.

Proor. Lemma 4.1 of Prakasa Rao [5] implies that there exist
sets M, ,e A", n=1, 6 ¢ K such that

(5.2) xeM,,=|0,—0|<e/2

and
su}() P(M:)=0(mn""?) .
fe
Relation (5.2) together with assumption (v) and the definition of W/(x, s)
imply (5.1).
LEMMA 5.2. For every compact KC H, there exist sets M,,e A",
n=1, 0 ¢ K satisfying (5.0) such that x € M,, implies that

], TN Rl do) = | TTA o)) R )| SCon,

Wi, sx
Jor some constant Cx>0 depending on compact K.

_ PrROOF. Lemma 5.1 implies that 6,(x) € K* for x in M,,, ¢£>0 and
K'CcH. By the assumptions made above there exists y>0 such that

[J@)|=Z 7|t for sufficiently large |t| (say) for [t]>9,.
Note that for all ¢ K

n¥2g—0,] - ni%|a—6] _ nM*|0,—0| ; :
nl> — r 1> Cr(n?0—n"%e)=n""Cx(3—e¢
0" = (O aoy® = Oxl ) =(3=¢)

provided |¢—6|=8 for sufficiently small ¢ by Lemma 4.1 of Prakasa Rao
[5]. Hence

|J(Tr =)= 7|T7 (o)

for large » whenever |¢—6|=8, 6 € K. Therefore

SW,‘f(x, sx)° IJ( T’z: x(0))| Rn,x(da)

=7 S [l0—8]28]1n Wi, sx)¢ | T'%,x(0) PR, x(do)

* S llo—01<alnWis,s e 17 (Thox(O)| Bonx(d)

=7 S[la——elga] | T5,x(0) [P R, x(do)
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[
+S Wi, sepnlio—oi<a | (Th=(oD B x(de) .
The first term is bounded by Cxn”?exp (—zxn) for suitable choice
of =084, Cx and 7x>0. The second term is bounded by

(56.3) ¥ sup {|J(T7,x(0))| : |0—0|<3}Ru,x(do) .

S Wi, sx

Continuity of J and condition (xi) (e) of Section 6 imply that the
integrand is of the order n??, uniformly in € K by Lemma 4.1 of
Prakasa Rao [5]. Hence the term in (5.3) is bounded by

Cin?? Ry, x(W(x, 8¢)°) .
An analogue of Theorem 3 of Strasser [7] completes the proof.

LEMMA 5.3. For every compact KCH there exist sets M,,e A",
nz=1, 0 € K satisfying (5.0) such that x € M, , implies that

(5.4) J(T7,x(0)) Ry, x(do)

s (o o

o wite, o T The@) A%, 0)plo)do S

Au(x, 0)p(o)de

SWfZ(x, Sx)

PROOF. Lemma 5.1 implies that we can assume that W)(x, sx)C H.
Difference on the L.H.S. of (5.4) is bounded by

(6.5) |J(T'5,x(0))| Bn,x(do)+| Ry, «(Wy(x, sx))—1]

SW,‘,’(x, Sk)°

. SW,‘Z(x, Sk) |J( T"" x(O‘))]R”’ x(da‘)
R"rx(er(x, SK))

Suppose we prove that

(5.6) (1) (e oy 1T 5(0)| R (d) SCa< 0
(5.7 (i) Rnx(Wi(x, sx))2ex>0,

and

(5.8) (ii)) | Rnx(W(x, sx))—1|<Cgn™"*

for all xeM,,, 6e¢ K. Then (5.4) holds in view of Lemma 5.2 and
bound (5.5). (ii) and (iii) can be proved by proving analogues of Theo-
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rems 2 and 4 of Strasser [7] or from the results in Prakasa Rao [6].
‘We shall now prove (i). Consider

(56.9) | |J(T'5, x(0))| Ry, x(do)

SW}.’(x. Sk

= oy T8N R ) x(d)

+ SW,‘,’(x, Sx) IJ( Tﬁy;(a')) | Qn, x(do)

where Q, . is the normal distribution with mean 6,(x) and variance
n7'a(d). By an analogue of Theorem 4 of Strasser [7] or by a Theorem
of Prakasa Rao [6], it follows that the first term on the R.H.S. of (5.9)
is bounded by

Cx \ e, 5. 1T (Th2(0))|do % (10g )

= 1/2 g =172 -1/2 1/2
_CK {S“tlésuzaog n)i/2] lJ(t)la(ﬁ) n dt} n (log 'n)

<Cyn-'(log n)‘/zg |J(t)|d¢<Cx

{It|=5*(log n)'/%)

uniformly for 8 € K by assumption (xi) of Section 6. The second term
is equal to

nao)” | I (t)]e-*dt < Cr < o0

{I£|<5s"%(log n)'/2}
by assumption (xi) of Section 6. This completes the proof of Lemma
5.3.

LEMMA 5.4. For every compact KC H, there exist e >0 and ky: XX
X —R such that
(i) K'cH
(i) sup E, (ki) <oo
(i) [f2(1, ) — 520, )| Skx(R1, 2)|0—0'|
Jor all x,, 2, € X and o, 0 € K* such that |o—d'|<e.
PROOF. Similar to Lemma 3 of Strasser [8].

LEMMA 5.5. For every compact KC H, there exist sets M,,€ A",
n=1, 0 € K satisfying (5.1) such that x € M, , implies

11, 0.0, R =, L0,(3), )R x(do)| SCan™

LEMMA 5.6 For every compact KC H and every >0 with K'CH,
there exists ex >0 such that
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| Ly(e, 0)— Ly (o, )| =Cklo—d'|
Jor all g, € K* such that |o—d'|<ek.
ProoF. Similar to Lemma 3 of Strasser [8].

LEMMA 5.7. Let {6,, n=1} be a sequence of MCE. For every com-
pact KC H there exists ax, Cx>0 such that

r|

n 3 a(@)f Xy, Xow)—1| Zaxn(log n)”’} =Cen ™
i=1
Jor all 6e K, n=1.

Proof of this lemma is similar to Lemma 4.2 of Prakasa Rao [5]
and it makes use of Lemmas 4.1 and 4.3 and the Berry-Esseen bound
given in Lemmas 3.4 and 3.5 of the reference cited. We omit the
details.

6. Regularity conditions

We shall now state the regularity conditions.
(i) 6—P,is continuous in H with respect to the supremum metric
on {P,: §¢ H}.
(ii) For each pair z,, 2, in X, 8—f,(x,, %;) is continuous in H.
(iii) For every 6 ¢ H, there exists a neighbourhood W, of ¢ such that

sup E. [sup f7]<oo .

TeWy W,

(iv) For every pair x,, 2, € X, 0—f(x;, x;) is twice differentiable in
H and for all ¢ H and for all xe X

E, [fo(l)(Xu X;) ] Xi=2]=0

where f{® denote the ith derivative with respect to 4.
(v) For every compact KCH
(a) inf E, [f(X,, X)I'>0,

(b) inf B, [f(X:, X;)]>0.

(vi) For every compact Kc H there exists by>0 such that for all
rxeX,
(2) supE, (X, X)P| X,=2)<b

(b) %1511? E, (/X1 X)P| Xi=x)<bx.

(vii) For every 6 € H, there exists a neighbourhood U, of 6 such that
for every neighbourhood U of 4, Uc U, and every compact KC H

sup E, [inf f,]*< co.
reK oelU
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(vili) For every 6 ¢ H, there exists an open neighbourhood V, of ¢ and
an X J-measurable function k,: £ x X —R such that

sup E, [k} < o
reK

for every compact Kc H and
|5y, 22)— [P (1, )| So—rt|ko(ay, 2)

for all ¢, 7¢V,, 2, 2,6 X.
(ix) For every compact Kc H
(a) supr,<oo,
e K

(b) sup p,<1, and
(e) §gg((pa+~/2_n)/(1+~/§ﬁ))<1-

(ixy) 2 has a continuous positive density p(-) on H with respect to the
Lebesgue measure satisfying the following conditions: for every
0 € H, there exists a neighbourhood W, of # and a constant C,
=0 such that

(o) _ A 1 ’
o 1'gc,|a o|  for all o,d € W,.

(xi) Let J(-) be a real valued continuous function such that

lim sup -IJ—(Ql<oo
R 114

for some p>0.

Remark. Observe that assumption (xi) implies that

(a') Sw Itlli(t)Ie-tZ/zdt< o, k=0’ 1,2, 3’

(b) sup H th(t)e-ﬂﬂdt—S t"J(t)e“‘%lt’ <Cn-', k=0, 1,2
B B Bn

for some constant C>0 where B is a Borel set in R and B,={te B:
t*<slogn} for sufficiently large s>0,
(c) for every 0<d<1,

S_wltJ(t)lexp{—E-t(l—a)}dt< ,
(d) and for any fixed s>0
|J(t)|dt=0(n(log n)~"?) .

S {It|=s(log n)'/2)

A B X PB-measurable function L: Hx H— R is called loss function if
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L@, 0)<L(r,0) for all 6cH, rcH, 0+r.

We assume that the following regularity conditions given by Strasser
[8] are satisfied.

(xii)
(xiii)

(xiv)

(xv)

(xvi)

L: HxH—R is continuous. ~
(a) L(6, o) is extended 2-integrable in ¢ for all 6 ¢ H and has
finite 1-expectation if 6 ¢ H.

(b) For every 6 ¢ H there exists a neighbourhood U} of 6 such
that for every neighbourhood Uc U} of 6, }’n£ L(6, o) is 2-inte-
grable. )

(a) For every o¢ H, L(f, g) is twice differentiable in H. We
denote L8, 0)=(0/06)L(8, ) ; Ly(8, 6)=(3*/06*)L(8, o).

(b) For every 6 € H, L0, o) is differentiable in H. We denote
L8, 0)=(0/00) L(0, o).

Foa every compact Kc H:

() sup|Lu(8, 0)|<oo,

(b) §E£|Lzo(0r )| < oo,

(c) in}g L9, 6)>0,
@ sup | 1L, o)l (do)< o,

() sup S | L8, 0)|A(do) < oo.
(a) For every 6 ¢ H, there exists a neighbourhood W, of 6 and
a constant C,=0 such that

| Ly(a, ') — Ly(a, ¢")|= C~',|a' —d|

for all ¢, ¢, ¢ in W,. .
(b) For every 6 € H, there exists a neighbourhood W, of ¢ and
a constant 6,,;0 such that

]Lu(ﬂ', U’)_Lu(a, 0'")|§5g|0"—0',’l

for all o, ¢, ¢" in VT’,.
(c) For every 6 € H, there exists a neighbourhood V; of 6 and
a continuous function k,: H— R such that

| L0’ 0) — Lipo(6”', 0)|<k(0)|d’ —0"|

for all ¢/, ¢” in V} and all 0 € H and

Sk,(a)l(da)<oo for all 6 H.
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