THE EQUIVALENCE BETWEEN (MODIFIED) BAYES ESTIMATOR AND MAXIMUM LIKELIHOOD ESTIMATOR FOR MARKOV PROCESSES

B. L. S. PRAKASA RAO

(Received July 31, 1978; revised Nov. 17, 1979)

1. Introduction

In an earlier paper (Cf. Prakasa Rao [6]), the author has obtained the speed of convergence of Bernstein-von Mises approximation for Markov processes improving over the Bernstein-von Mises theorem for Markov processes proved in Borwanker, Kallianpur and Prakasa Rao [1] and generalizing the results of Strasser [7] and Hipp and Michel [4] in the independent identically distributed case.

Suppose $\{\theta_n\}$ is a sequence of maximum likelihood estimators and $\{\beta_n\}$ a sequence of Bayes estimators for a sufficiently regular prior distribution and smooth loss function. It was shown in Borwanker, Kallianpur and Prakasa Rao [1] that $n^{1/2}(\theta_n - \beta_n) \rightarrow 0$ a.s. under some regularity conditions. We shall now prove that $n(\beta_n - \theta_n)$ is bounded in probability over compact subsets of the parameter space. This result generalizes recent results of Strasser [8] to the Markov case. The present result implies that the (i) Berry-Esseen type bound for $\{\theta_n\}$, proved in Prakasa Rao [5], holds for $\{\beta_n\}$, (ii) $\{\beta_n\}$ is approximately median unbiased of order $n^{-1/2}$ and (iii) $\{\beta_n\}$ is asymptotically efficient of order $n^{-1/2}$. The proof is based on a result concerning rate of convergence of Bernsteinvon Mises approximation. The rate obtained is the same as the rate obtained in Prakasa Rao [6] for a less general case and the result is an extension of a theorem of Strasser [8] even in the independent and identically distributed case. Since most of the proofs are similar to those in Strasser [8] and Prakasa Rao [5], we do not give them in detail.

2. Preliminaries

Consider a measurable space $(\mathcal{X}, \mathcal{A})$ and for each $\theta \in H$, let P_{θ} be a probability measure on $(\mathcal{X}, \mathcal{A})$. Suppose that H is an open interval contained in R. Let \overline{H} denote the closure of H in \overline{R} and \mathcal{B} be the

 σ -field of Borel sets of H. Assume that, for every $\theta \in H$, $\{X_n, n \ge 1\}$ is a Markov process taking values in the space $(\mathcal{X}, \mathcal{A}, P_{\theta})$ with stationary transition measures $p_{\theta}(\xi, A) = P_{\theta}(X_{n+1} \in A \mid X_n = \xi)$. We assume that for each $\theta \in H$, $p_{\theta}(\xi, A)$ is a measurable function of ξ for fixed A and a probability measure on A for fixed ξ . Such a set of transition measures along with an initial probability measure give rise to a Markov process by Doob [2].

A family of $\mathcal{A} \times \mathcal{A}$ -measurable functions $f_{\theta}: \mathcal{X} \times \mathcal{X} \to \overline{R}, \ \theta \in \overline{H}$ is said to be a family of *contrast functions* for $\{P_{\theta}, \ \theta \in H\}$ if $E_{\theta}(f_{\tau})$ exists for all $\theta \in H$ and $\tau \in \overline{H}$ and if

$$\mathrm{E}_{\theta}(f_{\theta}) < \mathrm{E}_{\theta}(f_{\tau})$$

for all $\theta \in H$, $\tau \in \overline{H}$, $\theta \neq \tau$. Let (x_1, \dots, x_{n+1}) be an observation on the process. Any \mathcal{A}^{n+1} -measurable function $\theta_n : \mathcal{X}^{n+1} \to \overline{H}$ depending only on x_1, \dots, x_{n+1} is called an estimator. A minimum contrast estimator (MCE) is an estimator $\theta_n(\mathcal{X}^{n+1}) \subset \overline{H}$ and

$$\sum_{i=1}^{n} f_{\theta_n}(x_i, x_{i+1}) = \inf_{\theta \in \bar{H}} \sum_{i=1}^{n} f_{\theta}(x_i, x_{i+1}).$$

MCE's for Markov processes were studied by Prakasa Rao [5] and Gänssler [3]. Prakasa Rao [5] studied the rate of convergence of distributions of these estimators by obtaining Berry-Esseen type bound and Gänssler [3] studied measurability, consistency, and asymptotic normality of these estimators.

Unless otherwise stated, we shall assume that the process $\{X_n, n \ge 1\}$ satisfies Doeblin's condition (D_0) , as given in Doob [2], for every $\theta \in H$. This implies in particular that there exist positive constants $r_{\theta} \ge 1$ and $\rho_{\theta} < 1$ and a stationary probability distribution $p_{\theta}(\cdot)$ such that, for every $\theta \in H$,

$$|p_{\theta}^{(n)}(\xi,E)-p_{\theta}(E)| \leq r_{\theta}\rho_{\theta}^{n}$$

for all measurable sets E, for all $\xi \in \mathcal{X}$ and for every $n \geq 1$. Here $p_{\theta}^{(n)}(\cdot,\cdot)$ denotes the n-step transition function. We shall suppose that the initial distribution is the stationary distribution of the process under consideration. Then the process $\{X_n, n \geq 1\}$ will be a stationary Markov process for each $\theta \in H$. Let P_{θ} denote the measure on $(\mathcal{X}^{\infty}, \mathcal{A}^{\infty})$ determined by $p_{\theta}(\cdot,\cdot)$ and $p_{\theta}(\cdot)$.

Let λ be a prior distribution on (H, \mathcal{B}) . For those $\mathbf{x} \in \mathcal{X}^{n+1}$ for which it is possible, define the probability measure

$$R_{n,x}(B) = \frac{\int_{B} \exp\left(-\sum_{i=1}^{n} f_{\sigma}(x_{i}, x_{i+1})\right) \lambda(d\sigma)}{\int_{B} \exp\left(-\sum_{i=1}^{n} f_{\sigma}(x_{i}, x_{i+1})\right) \lambda(d\sigma)}, \quad B \in \mathcal{B}.$$

Under the regularity conditions stated at the end of the paper, it can be shown that for every compact $K \subset H$

$$\sup_{\theta \in K} P_{\theta}(M_n^c) = O(n^{-1})$$

where

$$M_n = \left\{ \boldsymbol{x} \in \mathcal{X}^{n+1} : \sup_{\theta \in H} \exp \left[-\sum_{i=1}^n f_{\theta}(x_i, x_{i+1}) \right] < \infty \right\}.$$

(Here M_n^c denotes complement of M_n). Clearly $R_{n,x}(B)$ is well defined for $x \in M_n$, $n \ge 1$. Let $L(\cdot, \cdot)$ be a loss function satisfying the conditions given in Section 6.

A (modified) Bayes estimator relative to prior λ and loss function $L(\cdot,\cdot)$ is an \mathcal{A}^{n+1} -measurable function $\beta_n: \mathcal{X}^{n+1} \to \bar{H}$ such that

$$\int_{H} L(\beta_{n}(\mathbf{x}), \sigma) R_{n, \mathbf{x}}(d\sigma) = \inf_{\theta \in \bar{H}} \int_{H} L(\theta, \sigma) R_{n, \mathbf{x}}(d\sigma) .$$

for $x \in M_n$, $n \ge 1$.

3. The Bernstein-von Mises approximation

For every compact $K \subset H$, let $M_{n,\theta} \in \mathcal{A}^{n+1}$, $n \ge 1$, $\theta \in K$ such that

(3.1)
$$\sup_{\theta \in K} P_{\theta}(M_{n,\theta}^{c}) = O(n^{-1/2}).$$

Lemma 4.1 of Prakasa Rao [5] implies that, we can assume $\theta_n(x) \in H$ if $x \in M_{n,\theta}$ where θ_n is the MCE. Let

$$\alpha(\theta) = [E_{\theta}(f_{\theta}^{(2)}(X_1, X_2))]^{-1}, \quad \theta \in H.$$

Note that $f_{\ell}^{(2)}$ is defined by the regularity condition (iv) of Section 6. For every Borel set $B \in \mathcal{B}$, let

$$B_n(\boldsymbol{x}, \theta) = \left\{ \sigma \in R : \frac{\sigma - \theta_n(\boldsymbol{x})}{\sigma(\theta)^{1/2}} \in B \right\}, \quad \boldsymbol{x} \in M_{n,\theta}$$

and

$$Z_n^{\theta}(x) = \alpha(\theta) \frac{1}{n} \sum_{i=1}^n f_{\theta_n(x)}^{(2)}(x_i, x_{i+1}) - 1, \quad x \in M_{n,\theta}.$$

Further, assumption (xi) in Section 6 implies that

$$\int_{\mathbb{R}} |t|^k |J(t)| e^{-t^2/2} dt < \infty$$
 , $k = 0, 1, 2, 3$.

Define the signed measures

$$arPhi_{{\scriptscriptstyle k}}\!(B)\!=\!\int_{{\scriptscriptstyle B}}t^{{\scriptscriptstyle k}}\!J(t)rac{1}{(2\pi)^{1/2}}e^{-t^2/2}\!dt$$
 , $B\in\mathscr{B}$

for k=0, 1, 2 and 3. Let

$$T_{n,\,m{x}}^{\,m{\sigma}}\!\left(\sigma
ight)\!=\!\left\{\!rac{\sigma\!-\! heta_{n}\!\left(m{x}
ight)}{lpha\!\left(m{ heta}
ight)^{\!1/2}}
ight\}\!n^{\scriptscriptstyle 1/2}\,,\qquad\sigma\in H\,,$$

$$W_n^{\theta}(\mathbf{x}, s) = \{ \sigma \in R : |\sigma - \theta_n(\mathbf{x})| \leq (s\alpha(\theta))^{1/2} (\log n)^{1/2} n^{-1/2} \}$$

and

$$A_n(\mathbf{x}, \sigma) = (2\pi\alpha(\theta))^{-1/2} n^{1/2} \exp\left\{-\sum_{i=1}^n f_o(x_i, x_{i+1}) + \sum_{i=1}^n f_{\theta_n(\mathbf{x})}(x_i, x_{i+1})\right\}$$

for s>0, $x \in M_{n,\theta}$, $n \ge 1$, $\theta \in H$. In the following, c_K denotes a generic constant depending on compact set K not necessarily the same throughout the discussion.

THEOREM 3.1. Assume that regularity conditions (i)-(xi) stated in Section 6 are satisfied. Then, for every compact $K \subset H$ there exist sets $M_{n,\theta} \in \mathcal{A}^{n+1}$, $n \geq 1$, $\theta \in K$ satisfying (3.1) such that $\mathbf{x} \in M_{n,\theta}$ implies

(3.2)
$$\sup_{B \in \mathcal{B}} \left| \int_{B_n(\boldsymbol{x}, \theta) \cap H} J(T_{n, \boldsymbol{x}}^{\theta}(\sigma)) R_{n, \boldsymbol{x}}(d\sigma) - \boldsymbol{\Phi}_0(B) + \frac{1}{2} Z_n^{\theta}(\boldsymbol{x}) [\boldsymbol{\Phi}_0(B) + \boldsymbol{\Phi}_2(B)] \right| \leq c_K n^{-1/2}$$

where $c_{\kappa} > 0$ depends on the compact set K only.

PROOF. Let $K \subset H$ be compact and let $M_{n,\theta} \in \mathcal{A}^{n+1}$, $n \geq 1$, $\theta \in K$ satisfy (3.1). Lemma 5.1 implies that we can assume that

$$W_n^{\theta}(\boldsymbol{x}, s_K) \subset H$$
 for $\boldsymbol{x} \in M_{n,\theta}$.

It can now be shown by method similar to that given in Proposition 1 of Strasser [8] that

$$\begin{split} & \int_{B_n(\boldsymbol{x},\,\theta)\,\cap\,W_n^{\theta}(\boldsymbol{x},\,s_K)} J(T_{n,\,\boldsymbol{x}}^{\theta}(\sigma)) A_n(\boldsymbol{x},\,\sigma) d\sigma \\ & = \int_{B_n} J(t) \,\exp\,\left\{-\frac{t^2}{2} (Z_n^{\theta}(\boldsymbol{x}) + \eta_n(\boldsymbol{x},\,\theta,\,t))\right\} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt \\ & = \int_{B_n} \exp\,\left\{-\frac{t^2}{2} (Z_n^{\theta}(\boldsymbol{x}) + \eta_n(\boldsymbol{x},\,\theta,\,t))\right\} \boldsymbol{\varPhi}_0(dt) \end{split}$$

where

$$B_n = \{t \in R \colon t \in B, t^2 \leq s_K \log n\}$$
,

and

$$|\eta_n(\boldsymbol{x}, \theta, t)| \leq c_K |t| n^{-1/2}$$
 if $t \in B_n$, $\boldsymbol{x} \in M_{n,\theta}$,

where $c_{\kappa} > 0$ depends on the compact set K only. Applying the inequality

$$|e^{-\alpha}-1+\alpha| \leq \alpha^2 e^{|\alpha|}$$

for

$$\alpha = \frac{t^2}{2} (Z_n^{\theta}(\boldsymbol{x}) + \eta_n(\boldsymbol{x}, \theta, t))$$

and using Lemma 5.7, we obtain that

$$\begin{split} \left| \int_{B_n(\boldsymbol{x},\,\theta)\,\cap\,W_n^{\theta}(\boldsymbol{x},\,s_K)} J(T_{n,\,\boldsymbol{x}}^{\theta}(\sigma)) A_n(\boldsymbol{x},\,\sigma) d\sigma \right. \\ \left. \left. - \int_{B_n} \left[1 - \frac{t^2}{2} (Z_n^{\theta}(\boldsymbol{x}) + \eta_n(\boldsymbol{x},\,\theta,\,t)) \right] \varPhi_0(dt) \right| \leq c_K n^{-1/2} \end{split}$$

for $x \in M_{n,\theta}$ and uniformly in $B \in \mathcal{B}$. Since

$$\sup_{B \in \mathcal{B}} \left| \int_{B_n} \frac{t^2}{2} \eta_n(\boldsymbol{x}, \, \theta, \, t) \boldsymbol{\Phi}_0(dt) \right| \leq c_K n^{-1/2} \int_{R} |t|^3 |\boldsymbol{\Phi}_0(dt)|$$

for $x \in M_{n,\theta}$, it follows that

$$\sup_{B \in \mathcal{B}} \left| \int_{B_n(\boldsymbol{x}, \, \theta) \, \cap \, W_n^{\theta}(\boldsymbol{x}, \, s_K)} J(T_{n, \, \boldsymbol{x}}^{\theta}(\sigma)) A_n(\boldsymbol{x}, \, \sigma) d\sigma \right. \\ \left. - \varPhi_0(B_n) + \frac{1}{2} Z_n^{\theta}(\boldsymbol{x}) \varPhi_2(B_n) \right| \leq c_K n^{-1/2}$$

for $x \in M_{n,\theta}$. Applying the assumption (xi) of Section 6 we obtain that

$$\sup_{D} |\Phi_{k}(B) - \Phi_{k}(B_{n})| \leq c_{k} n^{-1/2}, \qquad k = 0, 1, 2$$

and hence

(3.3)
$$\sup_{B \in \mathcal{B}} \left| \int_{B_n(\mathbf{x}, \theta) \cap W_n^{\theta}(\mathbf{x}, s_K)} J(T_{n, \mathbf{x}}^{\theta}(\sigma)) A_n(\mathbf{x}, \sigma) d\sigma - \Phi_0(B) + \frac{1}{2} Z_n^{\theta}(\mathbf{x}) \Phi_2(B) \right| \leq c_K n^{-1/2}$$

for $x \in M_{n,\theta}$.

According to the uniform cover theorem, for every $\varepsilon > 0$ satisfying $\overline{K}' \subset H$ there exists $e_K > 0$ such that $|\sigma - \sigma'| < e_K$ implies $|p(\sigma) - p(\sigma')| \le c_K \cdot |\sigma - \sigma'|$ for every $\sigma \in K'$. We can also assume that $W_n^{\theta}(x, s_K)$ is contained in an ε -neighbourhood of θ for every $x \in M_{n,\theta}$ and $\theta \in K$. Then it follows that $x \in M_{n,\theta}$ implies that

$$(3.4) \qquad \sup_{B \in \mathcal{B}} \left| \int_{B_{n}(\mathbf{x}, \theta) \cap W_{n}^{\theta}(\mathbf{x}, s_{K})} J(T_{n, \mathbf{x}}^{\theta}(\sigma)) A_{n}(\mathbf{x}, \sigma) p(\sigma) d\sigma \right.$$

$$\left. - p(\theta_{n}(\mathbf{x})) \int_{B_{n}(\mathbf{x}, \theta) \cap W_{n}^{\theta}(\mathbf{x}, s_{K})} J(T_{n, \mathbf{x}}^{\theta}(\sigma)) A_{n}(\mathbf{x}, \sigma) d\sigma \right|$$

$$\leq c_{K} p(\theta_{n}(\mathbf{x})) \int_{W_{n}^{\theta}(\mathbf{x}, s_{K})} |J(T_{n, \mathbf{x}}^{\theta}(\sigma))| A_{n}(\mathbf{x}, \sigma) |\sigma - \theta_{n}(\mathbf{x})| d\sigma.$$

Using an argument similar to the one given earlier, it can be shown that

$$(3.5) \qquad \int_{W_n^{\theta}(\boldsymbol{x}, s_K)} |J(T_{n, \boldsymbol{x}}^{\theta}(\sigma))| A_n(\boldsymbol{x}, \sigma) |\sigma - \theta_n(\boldsymbol{x})| d\sigma$$

$$\leq c_K n^{-1/2} \int_{\{t^2 \leq s_K \log n\}} |tJ(t)| e^{-t^2/2(1-s_K)} dt$$

for $x \in M_{n,\theta}$ since we may assume that there exists a constant $0 < \delta_K < 1$ such that

$$Z_n^{\theta}(\mathbf{x}) - \eta_n(\mathbf{x}, \theta, t) \ge -\delta_K > -\infty$$
 if $t^2 \le s_K \log n$

and $x \in M_{n,\theta}$. Under the assumption (xi) of Section 6, it follows that

$$\int_{R} |tJ(t)| \exp\left(-\frac{1}{2}t^{2}(1-\delta_{K})\right) dt < \infty.$$

Hence the term in the R.H.S. of (3.5) is $O(n^{-1/2})$ uniformly for $\theta \in K$. (3.3), (3.4) and (3.5) together show that, for all $\mathbf{x} \in M_{n,\theta}$,

(3.6)
$$\sup_{B \in \mathcal{B}} \left| \int_{B_{n}(\mathbf{x}, \theta) \cap W_{n}^{\theta}(\mathbf{x}, s_{K})} J(T_{n, \mathbf{x}}^{\theta}(\sigma)) A_{n}(\mathbf{x}, \sigma) p(\sigma) d\sigma - p(\theta_{n}(\mathbf{x})) \left[\Phi_{0}(B) - \frac{1}{2} Z_{n}^{\theta}(\mathbf{x}) \Phi_{2}(B) \right] \right| \leq c_{K} n^{-1/2}$$

since one can assume that

$$p(\theta_n(\mathbf{x})) \leq c_K < \infty$$
 for $\mathbf{x} \in M_{n,\theta}$

by conditions assumed and Lemma 4.1 of Prakasa Rao [5]. In view of (3.6), arguments similar to those in Strasser [8] show that

(3.7)
$$\sup_{B \in \mathcal{B}} \left| \int_{B_{n}(\mathbf{x},\theta) \cap H} J(T_{n,\mathbf{x}}^{\theta}(\sigma)) R_{n,\mathbf{x}}(d\sigma) - \boldsymbol{\Phi}_{0}(B) + \frac{1}{2} Z_{n}^{\theta}(\mathbf{x}) [\boldsymbol{\Phi}_{0}(B) + \boldsymbol{\Phi}_{2}(B)] \right| \leq c_{K} n^{-1/2}$$

as was to be proved.

Remarks. Observe that Theorem 3.1 is not only a generalization of Theorem 1 of Strasser [8] to the Markov case but it is also an im-

provement even in the i.i.d. case over Theorem 1 of Strasser [8] in that we have considered a general function J(t) instead of $|t|^k$. This result generalizes Theorem 3.1 of Borwanker, Kallianpur and Prakasa Rao [1]. Clearly assumption (xi) of Section 6 is satisfied when $J(t) \equiv |t|^k$ and we obtain Strasser's theorem in the Markov case as a special result. This theorem is also a generalization of result in Prakasa Rao [6].

4. Bounds for the difference between MCE and Bayes estimator

We shall prove the following theorem giving a bound for the difference between MCE and Bayes estimator. The proof is only sketched as it is similar to Theorem 2 of Strasser [8].

THEOREM 4.1. Assume that regularity conditions (i)-(xvi) are satisfied and that λ possesses second absolute moments on H. Then for every compact $K \subset H$ there exist sets $M_{n,s} \in \mathcal{A}^{n+1}$, $n \geq 1$, $\theta \in K$ satisfying (3.1) such that $\mathbf{x} \in M_{n,s}$ implies

$$|\beta_n(\mathbf{x}) - \theta_n(\mathbf{x})| \leq C_K n^{-1}$$

where $C_{\kappa} > 0$ is a constant depending only on K.

PROOF. In view of the assumptions, it can be shown that there exist sets $M_{n,\theta}$ satisfying (3.1) such that $x \in M_{n,\theta}$ implies that

$$(4.2) \qquad \int_{H} L_{10}(\beta_{n}(\mathbf{x}), \sigma) R_{n, \mathbf{x}}(d\sigma) = 0$$

and

$$(4.3) \quad \left| \int_{H} L_{10}(\theta_{n}(\boldsymbol{x}), \, \sigma) R_{n, \, \boldsymbol{x}}(d\sigma) - \int_{W_{n}^{\theta}(\boldsymbol{x}, \, s_{K})} L_{10}(\theta_{n}(\boldsymbol{x}), \, \sigma) R_{n, \, \boldsymbol{x}}(d\sigma) \right| \leq C_{K} n^{-1}$$

for some constant $C_{\kappa} > 0$ depending on the compact K by Lemma 5.5. Define $T_{n,\kappa}^{\sigma}(\sigma)$ as before for $\sigma \in W_n^{\sigma}(x,s_{\kappa})$ and let $F_{n,\kappa}^{\sigma}$ be the probability measure on $\{t \in R: t^2 \leq s_{\kappa} \log n\}$ induced by $R_{n,\kappa}$ and $T_{n,\kappa}^{\sigma}$. Using the fact

$$L_{10}(\theta_n(\boldsymbol{x}), \theta_n(\boldsymbol{x})) = 0$$

and Lemma 5.6, it can be now shown that

$$\begin{aligned} (4.4) & \left| \int_{W_n^{\theta}(\boldsymbol{x}, \, s_K)} L_{10}(\theta_n(\boldsymbol{x}), \, \sigma) R_{n, \, \boldsymbol{x}}(d\sigma) \right. \\ & \left. - \alpha(\theta)^{1/2} L_{11}(\theta_n(\boldsymbol{x}), \, \theta_n(\boldsymbol{x})) n^{-1/2} \int_{\{t^2 \leq s_K \log n\}} t F_{n, \, \boldsymbol{x}}^{\theta}(dt) \right| \\ & \leq C_K n^{-1} \int_{\{t^2 \leq s_K \log n\}} t^2 F_{n, \, \boldsymbol{x}}^{\theta}(dt) \end{aligned}$$

for all $x \in M_{n,\theta}$ by using Taylor's expansion and arguments given in Proposition 2 of Strasser [8]. Theorem 3.1 implies that

$$\left| \int_{\{t^2 \le s_K \log n\}} t F_{n,\mathbf{x}}^{\theta}(dt) \right| \le C_K n^{-1}$$

and

(4.6)
$$\left| \int_{\{t^2 \le s_K \log n\}} t^2 F_{n,x}^{\theta}(dt) \right| \le C_K n^{-1/2}$$

for all $x \in M_{n,\theta}$ by taking J(t) = t and $J(t) = t^2$. (4.3)-(4.6) show that

(4.7)
$$\left| \int_{\mathbb{R}} L_{10}(\theta_n(\mathbf{x}), \sigma) R_{n, \mathbf{x}}(d\sigma) \right| \leq C_K n^{-1}$$

for all $x \in M_{n,\theta}$. We can assume that $\beta_n(x) \in H$ if $x \in M_{n,\theta}$ and in this case, relation (4.2) implies that

$$(4.8) \quad 0 = \int_{H} L_{10}(\theta_{n}(\boldsymbol{x}), \sigma) R_{n, \boldsymbol{x}}(d\sigma) + (\beta_{n}(\boldsymbol{x}) - \theta_{n}(\boldsymbol{x})) \int_{H} L_{20}(\hat{\beta}_{n}(\boldsymbol{x}), \sigma) R_{n, \boldsymbol{x}}(d\sigma)$$

where $|\hat{\beta}_n(\mathbf{x}) - \theta_n(\mathbf{x})| \leq |\beta_n(\mathbf{x}) - \theta_n(\mathbf{x})|$. Arguments in Strasser [7] imply that

$$\left| \int_{H} L_{20}(\hat{\beta}_{n}(\boldsymbol{x}), \sigma) R_{n, \boldsymbol{x}}(d\sigma) \right| \geq \varepsilon_{K}$$

for suitable $\varepsilon_K > 0$, for all $\mathbf{x} \in M_{n,\theta}$, $\theta \in K$, $n \ge 1$. (4.7), (4.8) and (4.9) prove the assertion.

Remarks. The result obtained above is an improvement over Theorem 4.1 in Borwanker, Kallianpur and Prakasa Rao [1] where in it was shown that $n^{1/2}(\beta_n(\mathbf{x})-\theta_n(\mathbf{x}))\to 0$ a.s. when θ_n is an MLE. Since the conditions assumed imply a Berry-Esseen type bound for the normal approximation of MCE θ_n , as was shown in Prakasa Rao [5], the theorem implies that Berry-Esseen bound holds for normal approximation of Bayes estimate β_n for smooth loss functions and priors. It also follows that β_n is approximate median unbiased of order $n^{-1/2}$ and it is asymptotically efficient of order $n^{-1/2}$.

5. Some lemmas

We assume that regularity conditions stated in Section 6 are satisfied.

LEMMA 5.1. Let s>0 and $K\subset H$ be compact. Choose $\varepsilon>0$ such that $\bar{K}^{\bullet}\subset H$ where $K^{\bullet}=\{\sigma\in R\colon |\sigma-\theta|<\varepsilon,\ \theta\in K\}$. Then there exist sets $M_{n,\theta}\in\mathcal{A}^{n+1},\ n\geq 1,\ \theta\in K$ such that

$$\sup_{\theta \in K} P_{\theta}(M_{n,\theta}^c) = O(n^{-1/2})$$

and

$$(5.1) W_n^{\theta}(\boldsymbol{x},s) \subset K^{\epsilon} if \boldsymbol{x} \in M_{n,\theta}.$$

PROOF. Lemma 4.1 of Prakasa Rao [5] implies that there exist sets $M_{n,\theta} \in \mathcal{A}^{n+1}$, $n \ge 1$, $\theta \in K$ such that

(5.2)
$$\mathbf{x} \in M_{n,\theta} \Rightarrow |\theta_n - \theta| < \varepsilon/2$$

and

$$\sup_{\theta \in K} P_{\theta}(M_{n,\theta}^c) = O(n^{-1/2}) .$$

Relation (5.2) together with assumption (v) and the definition of $W_n^{\theta}(x, s)$ imply (5.1).

LEMMA 5.2. For every compact $K \subset H$, there exist sets $M_{n,\theta} \in \mathcal{A}^{n+1}$, $n \geq 1$, $\theta \in K$ satisfying (5.0) such that $\mathbf{x} \in M_{n,\theta}$ implies that

$$\left|\int_{H} |J(T_{n,x}^{\theta}(\sigma))| R_{n,x}(d\sigma) - \int_{W_{n}^{\theta}(x,s_{K})} |J(T_{n,x}^{\theta}(\sigma))| R_{n,x}(d\sigma)\right| \leq C_{K} n^{-1/2},$$

for some constant $C_{\kappa}>0$ depending on compact K.

PROOF. Lemma 5.1 implies that $\theta_n(x) \in K^*$ for x in $M_{n,\theta}$, $\varepsilon > 0$ and $\bar{K}^* \subset H$. By the assumptions made above there exists $\gamma > 0$ such that

$$|J(t)| \le \gamma |t|^p$$
 for sufficiently large $|t|$ (say) for $|t| > \delta_0$.

Note that for all $\theta \in K$

$$\frac{n^{1/2}|\sigma\!-\!\theta_n|}{\alpha(\theta)^{1/2}}\!\ge\!\frac{n^{1/2}|\sigma\!-\!\theta|}{\alpha(\theta)^{1/2}}\!-\!\frac{n^{1/2}|\theta_n\!-\!\theta|}{\alpha(\theta)^{1/2}}\!\ge\!C_{K}(n^{1/2}\delta\!-\!n^{1/2}\varepsilon)\!=\!n^{1/2}C_{K}(\delta\!-\!\varepsilon)$$

provided $|\sigma - \theta| \ge \delta$ for sufficiently small ε by Lemma 4.1 of Prakasa Rao [5]. Hence

$$|J(T_{n,x}^{\theta}(\sigma))| \leq \gamma |T_{n,x}^{\theta}(\sigma)|^{p}$$

for large n whenever $|\sigma - \theta| \ge \delta$, $\theta \in K$. Therefore

$$\begin{split} &\int_{W_n^{\theta}(\mathbf{x}, s_K)^o} |J(T_{n, \mathbf{x}}^{\theta}(\sigma))| R_{n, \mathbf{x}}(d\sigma) \\ &\leq \gamma \int_{[|\sigma - \theta| \geq \delta] \cap W_n^{\theta}(\mathbf{x}, s_K)^o} |T_{n, \mathbf{x}}^{\theta}(\sigma)|^p R_{n, \mathbf{x}}(d\sigma) \\ &+ \int_{[|\sigma - \theta| < \delta] \cap W_n^{\theta}(\mathbf{x}, s_K)^o} |J(T_{n, \mathbf{x}}^{\theta}(\sigma))| R_{n, \mathbf{x}}(d\sigma) \\ &\leq \gamma \int_{[|\sigma - \theta| \geq \delta]} |T_{n, \mathbf{x}}^{\theta}(\sigma)|^p R_{n, \mathbf{x}}(d\sigma) \end{split}$$

$$+ \int_{W_n^{\theta}(\mathbf{x}, s_K)^{\theta} \cap [|\sigma - \theta| < \delta]} |J(T_{n, \mathbf{x}}^{\theta}(\sigma))| R_{n, \mathbf{x}}(d\sigma) .$$

The first term is bounded by $C_K n^{p/2} \exp(-\eta_K n)$ for suitable choice of $\delta = \delta_K$, C_K and $\eta_K > 0$. The second term is bounded by

(5.3)
$$\int_{W_n^{\theta}(\mathbf{x}, s_K)^c} \sup \{ |J(T_{n, \mathbf{x}}^{\theta}(\sigma))| : |\sigma - \theta| < \delta \} R_{n, \mathbf{x}}(d\sigma) .$$

Continuity of J and condition (xi) (e) of Section 6 imply that the integrand is of the order $n^{p/2}$, uniformly in $\theta \in K$ by Lemma 4.1 of Prakasa Rao [5]. Hence the term in (5.3) is bounded by

$$C_K n^{p/2} R_{n,x}(W_n^{\theta}(x,s_K)^c)$$
.

An analogue of Theorem 3 of Strasser [7] completes the proof.

LEMMA 5.3. For every compact $K \subset H$ there exist sets $M_{n,\theta} \in \mathcal{A}^{n+1}$, $n \geq 1$, $\theta \in K$ satisfying (5.0) such that $\mathbf{x} \in M_{n,\theta}$ implies that

$$(5.4) \quad \sup_{B \in \mathcal{B}} \left| \int_{B_n(\boldsymbol{x},\theta) \cap H} J(T_{n,\boldsymbol{x}}^{\theta}(\sigma)) R_{n,\boldsymbol{x}}(d\sigma) - \frac{\int_{B_n(\boldsymbol{x},\theta) \cap W_n^{\theta}(\boldsymbol{x},s_K)} J(T_{n,\boldsymbol{x}}^{\theta}(\sigma)) A_n(\boldsymbol{x},\sigma) p(\sigma) d\sigma}{\int_{W_n^{\theta}(\boldsymbol{x},s_K)} A_n(\boldsymbol{x},\sigma) p(\sigma) d\sigma} \right| \leq C_K n^{-1/2}.$$

PROOF. Lemma 5.1 implies that we can assume that $W_n^s(x, s_K) \subset H$. Difference on the L.H.S. of (5.4) is bounded by

$$(5.5) \qquad \int_{W_n^{\theta}(\boldsymbol{x},\,s_K)^o} |J(T_{n,\,\boldsymbol{x}}^{\theta}(\sigma))| R_{n,\,\boldsymbol{x}}(d\sigma) + |R_{n,\,\boldsymbol{x}}(W_n^{\theta}(\boldsymbol{x},\,s_K)) - 1| \\ \cdot \frac{\int_{W_n^{\theta}(\boldsymbol{x},\,s_K)} |J(T_{n,\,\boldsymbol{x}}^{\theta}(\sigma))| R_{n,\,\boldsymbol{x}}(d\sigma)}{R_{n,\,\boldsymbol{x}}(W_n^{\theta}(\boldsymbol{x},\,s_K))} .$$

Suppose we prove that

(5.6)
$$(i) \int_{W_n^{\theta}(\mathbf{x}, s_R)} |J(T_{n, \mathbf{x}}^{\theta}(\sigma))| R_{n, \mathbf{x}}(d\sigma) \leq C_K < \infty ,$$

(5.7) (ii)
$$R_{n,x}(W_n^{\theta}(x,s_K)) \ge \varepsilon_K > 0$$
,

and

(5.8) (iii)
$$|R_{n,x}(W_n^{\theta}(x,s_K))-1| \leq C_K n^{-1/2}$$

for all $x \in M_{n,\theta}$, $\theta \in K$. Then (5.4) holds in view of Lemma 5.2 and bound (5.5). (ii) and (iii) can be proved by proving analogues of Theo-

rems 2 and 4 of Strasser [7] or from the results in Prakasa Rao [6]. We shall now prove (i). Consider

$$(5.9) \qquad \int_{W_{n}^{\theta}(\mathbf{x}, s_{K})} |J(T_{n, \mathbf{x}}^{\theta}(\sigma))| R_{n, \mathbf{x}}(d\sigma)$$

$$\leq \int_{W_{n}^{\theta}(\mathbf{x}, s_{K})} |J(T_{n, \mathbf{x}}^{\theta}(\sigma))| |R_{n, \mathbf{x}}(d\sigma) - Q_{n, \mathbf{x}}(d\sigma)|$$

$$+ \int_{W_{n}^{\theta}(\mathbf{x}, s_{K})} |J(T_{n, \mathbf{x}}^{\theta}(\sigma))| Q_{n, \mathbf{x}}(d\sigma)$$

where $Q_{n,x}$ is the normal distribution with mean $\theta_n(x)$ and variance $n^{-1}\alpha(\theta)$. By an analogue of Theorem 4 of Strasser [7] or by a Theorem of Prakasa Rao [6], it follows that the first term on the R.H.S. of (5.9) is bounded by

$$egin{aligned} C_{\scriptscriptstyle{K}} \int_{W_n^{ heta}(m{x},\, s_{\scriptscriptstyle{K}})} |J(T_{n,\,m{x}}^{ heta}(\sigma))| d\sigma \ n^{-1/2} (\log n)^{1/2} \ &= C_{\scriptscriptstyle{K}} \left\{ \int_{[|t| \le s^{1/2} (\log n)^{1/2}]} |J(t)| lpha(heta)^{1/2} n^{-1/2} dt
ight\} n^{-1/2} (\log n)^{1/2} \ &\le C_{\scriptscriptstyle{K}} n^{-1} (\log n)^{1/2} \int_{\{|t| \le s^{1/2} (\log n)^{1/2}\}} |J(t)| dt \le C_{\scriptscriptstyle{K}} \end{aligned}$$

uniformly for $\theta \in K$ by assumption (xi) of Section 6. The second term is equal to

$$n^{-1/2} lpha(heta)^{1/2} \int_{\{|t| \le s^{1/2} (\log n)^{1/2}\}} |J(t)| e^{-t^2/2} dt \le C_K < \infty$$

by assumption (xi) of Section 6. This completes the proof of Lemma 5.3.

LEMMA 5.4. For every compact $K \subset H$, there exist $\varepsilon > 0$ and $k_K \colon \mathscr{X} \times \mathscr{X} \to \overline{R}$ such that

- (i) $\overline{K'} \subset H$
- (ii) $\sup_{\theta \in K} E_{\theta}(k_K^2) < \infty$
- (iii) $|f_{\sigma}^{(2)}(x_1, x_2) f_{\sigma'}^{(2)}(x_1, x_2)| \le k_K(x_1, x_2) |\sigma \sigma'|$ for all $x_1, x_2 \in \mathcal{X}$ and $\sigma, \sigma' \in K'$ such that $|\sigma \sigma'| < \varepsilon$.

PROOF. Similar to Lemma 3 of Strasser [8].

LEMMA 5.5. For every compact $K \subset H$, there exist sets $M_{n,\theta} \in \mathcal{A}^{n+1}$, $n \geq 1$, $\theta \in K$ satisfying (5.1) such that $\mathbf{x} \in M_{n,\theta}$ implies

$$\left| \int_{H} L_{10}(\theta_{n}(\boldsymbol{x}), \sigma) R_{n, \boldsymbol{x}}(d\sigma) - \int_{W_{n}^{\theta}(\boldsymbol{x}, s_{K})} L_{10}(\theta_{n}(\boldsymbol{x}), \sigma) R_{n, \boldsymbol{x}}(d\sigma) \right| \leq C_{K} n^{-1}.$$

LEMMA 5.6 For every compact $K \subset H$ and every $\varepsilon > 0$ with $\overline{K}^{\epsilon} \subset H$, there exists $e_K > 0$ such that

$$|L_{11}(\sigma,\sigma)-L_{11}(\sigma,\sigma')|\leq C_K|\sigma-\sigma'|$$

for all $\sigma, \sigma' \in K^{\epsilon}$ such that $|\sigma - \sigma'| \leq e_K$.

PROOF. Similar to Lemma 3 of Strasser [8].

LEMMA 5.7. Let $\{\theta_n, n \ge 1\}$ be a sequence of MCE. For every compact $K \subset H$ there exists $a_K, C_K > 0$ such that

$$P_{\theta} \left\{ \left| n^{-1} \sum_{i=1}^{n} \alpha(\theta) f_{\theta}^{(2)}(X_i, X_{i+1}) - 1 \right| \ge a_K n^{-1/2} (\log n)^{1/2} \right\} \le C_K n^{-1/2}$$

for all $\theta \in K$, $n \ge 1$.

Proof of this lemma is similar to Lemma 4.2 of Prakasa Rao [5] and it makes use of Lemmas 4.1 and 4.3 and the Berry-Esseen bound given in Lemmas 3.4 and 3.5 of the reference cited. We omit the details.

Regularity conditions

We shall now state the regularity conditions.

- (i) $\theta \rightarrow P_{\theta}$ is continuous in H with respect to the supremum metric on $\{P_{\theta} \colon \theta \in H\}$.
- (ii) For each pair x_1, x_2 in $\mathcal{X}, \theta \rightarrow f_{\theta}(x_1, x_2)$ is continuous in H.
- (iii) For every $\theta \in H$, there exists a neighbourhood W_{θ} of θ such that

$$\sup_{\tau \in W_{\theta}} \mathrm{E}_{\tau} \left[\sup_{\sigma \in W_{\theta}} f_{\sigma}^{2} \right] < \infty .$$

(iv) For every pair $x_1, x_2 \in \mathcal{X}$, $\theta \rightarrow f_{\theta}(x_1, x_2)$ is twice differentiable in H and for all $\theta \in H$ and for all $x \in \mathcal{X}$

$$\mathbb{E}_{\theta}[f_{\theta}^{(1)}(X_1, X_2) | X_1 = x] = 0$$

where $f_{\theta}^{(i)}$ denote the *i*th derivative with respect to θ .

- (v) For every compact $K \subset H$
 - (a) $\inf_{\theta \in K} E_{\theta} [f_{\theta}^{(1)}(X_1, X_2)]^2 > 0,$
 - (b) $\inf_{\theta \in K} E_{\theta} [f_{\theta}^{(2)}(X_1, X_2)] > 0.$
- (vi) For every compact $K \subset H$ there exists $b_K > 0$ such that for all $x \in \mathcal{X}$,
 - (a) $\sup_{\theta \in K} E_{\theta} (|f_{\theta}^{(1)}(X_1, X_2)|^3 |X_1 = x) \leq b_K$
 - (b) $\sup_{\theta \in K} E_{\theta} (|f_{\theta}^{(2)}(X_1, X_2)|^3 |X_1 = x) \leq b_K.$
- (vii) For every $\theta \in \overline{H}$, there exists a neighbourhood U_{θ} of θ such that for every neighbourhood U of θ , $U \subset U_{\theta}$ and every compact $K \subset H$

$$\sup_{\tau \in K} \mathrm{E}_{\tau} [\inf_{\sigma \in U} f_{\sigma}]^{2} < \infty.$$

For every $\theta \in H$, there exists an open neighbourhood V_{θ} of θ and (viii) an $\mathcal{A} \times \mathcal{A}$ -measurable function $k_g: \mathcal{X} \times \mathcal{X} \to \overline{R}$ such that

$$\sup_{\tau \in K} \mathrm{E}_{\tau} [k_{\theta}^{2}] < \infty$$

for every compact $K \subset H$ and

$$|f_{\sigma}^{(2)}(x_1, x_2) - f_{\tau}^{(2)}(x_1, x_2)| \leq |\sigma - \tau| k_{\theta}(x_1, x_2)$$

for all $\sigma, \tau \in V_{\theta}, x_1, x_2 \in \mathcal{X}$.

- For every compact $K \subset H$ (ix)

 - (a) $\sup_{\theta \in K} r_{\theta} < \infty$, (b) $\sup_{\theta \in K} \rho_{\theta} < 1$, and
 - (c) $\sup_{\theta \in \mathcal{F}} ((\rho_{\theta} + \sqrt{2r_{\theta}})/(1 + \sqrt{2r_{\theta}})) < 1.$
- λ has a continuous positive density $p(\cdot)$ on H with respect to the (\mathbf{x}) Lebesgue measure satisfying the following conditions: for every $\theta \in H$, there exists a neighbourhood W_{θ} of θ and a constant C_{θ} ≥ 0 such that

$$\left| \frac{p(\sigma)}{p(\sigma')} - 1 \right| \leq C_{\theta} |\sigma - \sigma'| \quad \text{for all } \sigma, \sigma' \in W_{\theta}.$$

Let $J(\cdot)$ be a real valued continuous function such that (xi)

$$\limsup_{|t| \to \infty} \frac{|J(t)|}{|t|^p} < \infty$$

for some p>0.

Remark. Observe that assumption (xi) implies that

(a)
$$\int_{-\infty}^{\infty} |t|^k |J(t)| e^{-t^2/2} dt < \infty, \ k=0, 1, 2, 3,$$

(b)
$$\sup_{B} \left| \int_{B} t^{k} J(t) e^{-t^{2}/2} dt - \int_{B_{n}} t^{k} J(t) e^{-t^{2}/2} dt \right| \leq C n^{-1/2}, \ k = 0, 1, 2$$

for some constant C>0 where B is a Borel set in R and $B_n=\{t\in B:$ $t^2 \le s \log n$ for sufficiently large s > 0,

(c) for every $0 < \delta < 1$,

$$\int_{-\infty}^{\infty} |tJ(t)| \exp\left\{-rac{1}{2}t^2(1\!-\!\delta)
ight]\!dt\!<\!\infty$$
 ,

(d) and for any fixed s>0

$$\int_{\{|t| \le s(\log n)^{1/2}\}} |J(t)| dt = O(n(\log n)^{-1/2}).$$

A $\mathcal{B} \times \mathcal{B}$ -measurable function $L: \bar{H} \times \bar{H} \rightarrow \bar{R}$ is called loss function if

$$L(\theta, \theta) < L(\tau, \theta)$$
 for all $\theta \in H$, $\tau \in \overline{H}$, $\theta \neq \tau$.

We assume that the following regularity conditions given by Strasser [8] are satisfied.

- (xii) $L: \overline{H} \times H \rightarrow \overline{R}$ is continuous.
- (xiii) (a) $L(\theta, \sigma)$ is extended λ -integrable in σ for all $\theta \in \overline{H}$ and has finite λ -expectation if $\theta \in H$.
 - (b) For every $\theta \in \overline{H}$ there exists a neighbourhood U_{θ}^{λ} of θ such that for every neighbourhood $U \subset U_{\theta}^{\lambda}$ of θ , $\inf_{\theta \in U} L(\theta, \sigma)$ is λ -integrable.
- (xiv) (a) For every $\sigma \in H$, $L(\theta, \sigma)$ is twice differentiable in H. We denote $L_{10}(\theta, \sigma) = (\partial/\partial\theta)L(\theta, \sigma)$; $L_{20}(\theta, \sigma) = (\partial^2/\partial\theta^2)L(\theta, \sigma)$.
 - (b) For every $\theta \in H$, $L_{10}(\theta, \sigma)$ is differentiable in H. We denote $L_{11}(\theta, \sigma) = (\partial/\partial\sigma)L_{10}(\theta, \sigma)$.
- (xv) Foa every compact $K \subset H$:
 - (a) $\sup_{\theta \in K} |L_{10}(\theta, \theta)| < \infty$,
 - $\text{(b)}\quad \sup_{\scriptscriptstyle{\theta\in K}}|L_{\scriptscriptstyle{20}}\!(\theta,\,\theta)|\!<\!\infty,$
 - (c) $\inf_{\theta \in K} L_{20}(\theta, \theta) > 0$,
 - (d) $\sup_{\theta \in K} \int |L_{10}(\theta, \sigma)| \lambda(d\sigma) < \infty$,
 - (e) $\sup_{\theta \in K} \int |L_{20}(\theta, \sigma)| \lambda(d\sigma) < \infty$.
- (xvi) (a) For every $\theta \in H$, there exists a neighbourhood \tilde{W}_{θ} of θ and a constant $\tilde{C}_{\theta} \ge 0$ such that

$$|L_{20}(\sigma,\sigma')\!-\!L_{20}(\sigma,\sigma'')| \leqq \tilde{C}_{\theta}|\sigma'\!-\!\sigma''|$$

for all σ , σ' , σ'' in \tilde{W}_{θ} .

(b) For every $\theta \in H$, there exists a neighbourhood \tilde{W}_{θ} of θ and a constant $\tilde{C}_{\theta} \ge 0$ such that

$$|L_{11}(\sigma,\sigma') - L_{11}(\sigma,\sigma'')| \leq \tilde{C}_{\theta} |\sigma' - \sigma''|$$

for all σ , σ' , σ'' in $\tilde{\tilde{W}}_{\theta}$.

(c) For every $\theta \in H$, there exists a neighbourhood V_{θ}^{λ} of θ and a continuous function $k_{\theta} : H \rightarrow R$ such that

$$|L_{20}(\sigma',\sigma) - L_{20}(\sigma'',\sigma)| \leq k_{\theta}(\sigma)|\sigma' - \sigma''|$$

for all σ' , σ'' in V_{θ}^{λ} and all $\sigma \in H$ and

$$\int k_{ heta}(\sigma)\lambda(d\sigma)\!<\!\infty \qquad ext{for all } heta\in H\,.$$

REFERENCES

- [1] Borwanker, J. D., Kallianpur, G. and Prakasa Rao, B. L. S. (1971). The Bernstein-von Mises theorem for Markov processes, Ann. Math. Statist., 42, 1241-1253.
- [2] Doob, J. L. (1953). Stochastic Processes, Wiley, New York.
- [3] Gänssler, P. (1972). Note on minimum contrast estimators for Markov processes, Metrika, 19, 115-130.
- [4] Hipp, C. and Michel, R. (1976). On the Bernstein-von Mises approximation of posterior distributions, *Ann. Statist.*, 4, 972-980.
- [5] Prakasa Rao, B. L. S. (1973). On the rate of convergence of estimators for Markov processes, Z. Wahrscheinlichkeitsth., 26, 141-152.
- [6] Prakasa Rao, B. L. S. (1978). On the rate of convergence of Bernstein-von Mises approximation for Markov processes, Serdica Bulgaricae Math. Publ., 4, 36-42.
- [7] Strasser, H. (1974). Asymptotic properties of posterior distributions, Z. Wahrscheinlichkeitsth., 35, 269-282.
- [8] Strasser, H. (1977). Improved bounds for the equivalence of Bayes and maximum likelihood estimation, *Teor. Veroyat. Primen.*, 22, 358-370.