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Summary

In estimating the mean of certain stationary processes it is shown
that it is better to sample at fixed equi-spaced time intervals than
to sample randomly according to a renewal process. On the other hand
it is shown that the estimation of autocorrelation is sometimes better
accomplished by random sampling.

1. Introduction

Let {X(t), t=0} be a real stationary Gaussian time series with mean
u, variance ¢%, and autocorrelation function p(r) involving some unknown
parameter A. Estimation of the unknown parameters may be achieved
by observing the process {X(t)} over some subset T, of the index set
t=0. In many cases T and the set t=0 will coincide (asymptotically).
This would clearly be the way of extracting, from a sample, the most
information about the parameters. On the other hand, T may be con-
fined to be a countable set. This is in fact the most usual situation
found in the literature, where 7T is taken to be the set {ir, i=1,2,-..},
1/z then representing the sampling rate. The selection of the sampling
set T, has received remarkably little attention as has also the case
of the relationship between the resulting discrete time process and
the underlying continuous time one. Loynes [6] reviews some of the
work done on these problems. As he points out, the main contribu-
tion in this area seems to be that due to Shapiro and Silverman [9]
who deal with the problem of the elimination of “aliasing”. They
show that if a continuous Gaussian time series is observed over a
random set T, generated by a renewal process then (subject to con-
ditions on the interarrival distribution which are satisfied for Poisson
processes) the autocorrelation function of the underlying process can
be completely recovered from that of the sampled one. Recently
Gaster and Roberts [5] have considered the effect, on the sampling dis-

487



488 PHILIP McDUNNOUGH AND DAVID B. WOLFSON

tribution of the spectral density estimator, of sampling a continuous
Gaussian time series using a Poisson process. In addition, they give
(see also Daudpota, Dowrich, and Greated [3]) an interesting example
involving the measurement of fluid flows where the method used (laser
anemometry) yields a randomly sampled time series.

Insofar as parametric estimation is concerned Brillinger [2] has
considered the estimation of the mean of a stationary process, using
the sample average, for various sampling schemes (see also [3]). Robinson
[8] considers the problem of estimating the parameters of a continuous
time process, governed by the Langevin equation, from a countable
number of unequally spaced (nonrandom) time points. Finally, Taga
[10] has shown that, for stationary Markov processes with exponential
autocorrelation functions, the sample average is a better estimate of
the mean when based on a sample taken at fixed time points, ¢z, than
at random time points generated by a renewal process with mean in-
terarrival time r.

This article compares the estimation of the mean and autocorrela-
tion parameter of a stationary Gaussian process under the following
two sampling schemes: (i) sampling the continuous time process at fixed
equally-spaced times ir, 1=1,2,--- and (ii) sampling at the random
times 7,, ¢t=1,2,--. which are independent of {X{(¢)} and form a re-
newal process Wlth AT, =T,—T,_,, T,=0, having distribution function
G. For the most part we shall restrict our attention to the Markov
univariate case although a generalization to non-Markov vector processes
is given. We also remark that some of the results presented here can
be extended in an obvious fashion to include random sampling schemes
where {4T,, i=1,2,---} forms a stationary ergodic sequence. Finally
the assumption will be made that X(T;) is a random variable in the
sense of being measurable with respect to the product o-algebra gen-
erated by the processes {X(f)} and {T;}. This in fact need not be true
for all processes {X(t)} but is certainly the case when {X(¢)} has right
(or left) continuous sample paths (cf. Doob [4]).

2. Estimating the mean

Consider a stationary Gaussian process {X(t)} with mean g, variance
a®, and autocorrelation function p(r)=e *. If this process is observed
at the fixed equidistant times r, 2r,-.., nr then it is well known that
the maximum likelihood estimator of x is simply the sample mean

n! Z X(ir) which is asymptotically normal with asymptotic mean # and

varlance I.(¢)~'/n where I.(zz) may be interpreted as the (asymptotic)
information per observation extracted by the sample mean and is given
by
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I()=(1—e")/d'(1+e7™) .

On the other hand if {X(f)} is observed at the random renewal times
T,, then the sampled process {X(T,), ©=1,2,---} is stationary with
mean p, variance ¢, and autocorrelation sequence 7, given by

r=E[o(T;1s— T)]=[E (exp (—24T))I*,
the expectation being with respect to the distribution, of 4T;, G. It
is then readily established that the sample average n™ i} X(T) is
i=1

asymptotically normal with mean g and variance I,(g)~'/n where
Iz A(f)=[1—E (exp (—24T}))]/s*[1+E (exp (—24T}))] .
In order to show this we set »,=E (o(4T})) and b=E (o(24T})). Let

Y,=Z S T~ T) .
n iJj
Now

-1
ri,

E(Y)=2 S E (6T~ Ty)=2

L
n &4
so that as n— oo

E(Y,)—d(1+r)/A—r)=[Iza(@)]™ .
Using the fact that

t+k
Tt+k— Tt= ) AT}

J=i+1

and the exponential nature of po(tf) we can rewrite Y, as

Y,.=a==+2; 2 PATe)- - -pdT)) -

We shall first establish that Var(Y,)—0 as n—oco. In the calculation
of Var(Y,) there are several cases to consider when evaluating

Cov (o(4T 1) - - p(4T}), o(dT11)- - - p(4T)))
Case A: 1+1=5ji<k+1<l.
Here the covariance is clearly zero.
Case B: 1+1<k+1<55<l.

It is obviously sufficient to consider only
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E{o(4T 1) - - o(dT))o(dTy1) - - p(4T))}

(since the convergence of Var(Y,) to zero is all that is important).
Now this expected value is equal to

E{o(dT:11)- - - o(dTe)oH(dTss)- - - 0(4T))p(4T ;1) - - - o(4T0)}
=k rr

Therefore consider

1 n-1 n Jj—-1 n
et DI p—ipd=kpl=4
nt i1 jSiv kSt i=g
<153 S g
T m? S jsi esin
w3 ) A (R
T 1l—p, w3 " jZ_'_:rl ro/ k= \ b "
e a0
1—7 (Q—n/b) n* iz T ,§+1 b b
_n 1 1 12 -t 1_(ﬂ>!-i>
b 1—r, 1—mry/b) n’ izjg-l b
" 1 1 _1—_|:n—1 n bj_i—'n—l n rf-i]
b 1—nm (1 ’I'l/b) nt izﬂleil §j=i+l !

This last expression converges to zero as nm— oo,
Case C: 1+15k+1157.
Here it is sufficient to consider

E{o(4T 1) - o(4T)p"(dTrsr)- - - p(AT)p(AT 1) - - p(4T)}
= ph-tpikpl-t

which leads to an examination of

1 e ¢ k—iphl—kpej—1
— Z > > iR
M ISl §50H1 kSTl 15K+

1k
sl 1% s (n)(2)”

(since b/r;<1)

~@—b/r)

which, again, tends to zero as n— oo.

The remaining cases need not be worked out separately, because
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of symmetry. In summary, we thus have, using self-explanatory nota-
tion,

40t ..
Var (Y, =— 3 Cov(s, J, k1)
nt 4551

4
=22(53 Cov (i, 4, k, D+ Cov (i, 4, b, )+ 5 Cov (G, 4, k, D}
where the three sums are over the %, 7, k and | of the three cases

considered and their symmetric counterparts.
The first sum is identically zero while

ogg Cov (z, 7, k, l)+%} Cov (¢, 3, k, 1)

=3 E@ 4,k D+ZEG 5,k 1)  where E(i, j, k, )
denotes expectation of the appropriate product.
Consequently we have that Var(Y,)—0 as n—o. We therefore

conclude that Y, converges to I.,(#)~' in mean square and thus in prob-
ability. Consider the standardized sum

Z,=

1 n
‘/—,’r E (X(Tt)—f‘) .

Conditional on Ty,---,T,, Z, is normal with mean 0 and variance Y,
so that its characteristic function is given by

E(exp (itZ,))=E[E (exp (i¢tZ,)| T\, - -, T)]=E (exp (—'Y,/2)) .

As Y,=0, exp (—%'Y,/2) is bounded and, moreover, tends to exp (—t*-
I..()7'/2) in probability. Therefore by the dominated convergence the-
orem,

E (exp (—1'Y,/2))—exp (—t'Lo.(#)7/2)

which shows that n~! f‘_. X(T;) is asymptotically normal with mean g
i=1

and asymptotic variance Ip.(z)'/n.

If we now assume that E (4T))=rz, so that both sampling schemes
yield the same average distance between observations, it is easily shown
(as noted by Taga [10]) by using the convexity of e * and Jensen’s in-
equality, that I.(z)=Ig,(z). That is, for estimating px by the sample
average, random is never better than fixed sampling. It should be re-
membered however, as mentioned in the introduction, that one is some-
times forced to sample at random.

For sampling according to a Poisson process an exact comparison
can be made between I.(z) and Ir,(f), for here E (exp (—i4T))=1/(1+
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Ar) so that I.,(#) reduces to ir/o*(2+1r) which, as is I.(z), is an in-
creasing function of r with a maximum (supremum) of 1/¢* at r=oo.
Thus the maximum information about g, for varying sampling rates,
that can be extracted by the sample average, is the same for both
random and fixed sampling schemes.

It should be mentioned that the process {X(T;)} is not Gaussian.
Furthermore, for random sampling the sample average is no longer the
maximum likelihood estimator of x. To derive this latter estimator we
note, setting Y,=X(T,), that the joint likelihood of Yi,---,Y,; Ty,---,
T, (neglecting the marginal of Y; which has no asymptotic effect) is

@.1) LU [270%(1— exp (—224T,))]- "

—[Y,—p—(exp (—A4T)(Y,_,— p))? )}h(T“ e, T
20%(1—exp (—2247T))) "

. exp(

where h represents the joint density of T,,-.--,T,. If the T/s are
constants then we set h=1. From (2.1) the maximum likelihood esti-
mator of g is obtained as

M

i
-

nt
(2.2) fr=—"1—
3 (1—exp (—24T)))/(1+exp (—24T))

(Yi— Y., exp (—24T,))/(1+exp (—24T))

-

Now, using the strong law of large numbers we have, almost surely
(with respect to the product measure obtained from the processes {X(t)}
and {T}}.)

(2.3) lim " g (1—exp (—24T))/(1+exp (—24T))
=E[(1—exp (—24T)))/(1+exp (—24T)))]

and

lim n* 31 [(Yi—(exp (—24T) Y, )/(L+exp (—24T))]

=E[(Y;—(exp (—24T)))Y;_,)/(1+exp (—24T)))]
=p E[1—exp (—24T)))/(1+exp (—24T)))]

so that g, is a (strongly) consistent estimator of p. Now let ¢, ¢,,---
be a realization of T, T;,--- and let g, denote the estimate of x ob-
tained by replacing 4T; in (2.2) by 4t,. Note that f; is the maximum
likelihood estimator of g based on a sample X(t,),---, X(t,) taken at the
nonrandom unequally spaced, times t,,-.-,¢,. Clearly E(z)=pg. Fur-
thermore, it is readily shown that the X(¢,)— X(t;_,) exp (—24t;) are un-
correlated, and hence independent, for different ¢. Therefore
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Var (ju)=(nA,)* 3 Var [(X(t)— X(t.-:) exp (—24))/(1+exp (—14t)]
where we have put
A=n" g (1—exp (—2dt,))/(1+exp (—24t,)) .
Since Var (X(t,)—X(t,_,) exp (—14t,))=c*(1—exp (—14t,))}, we get
Var () =(n4.) ™ 33 (L—exp (—24t))/(1+exp (—24)) =(nA,) "

From (2.3) we have A,—E[(1—exp (—24T)))/(1+exp (—44T}))], this limit
holding for almost every ¢. Here the “almost every ” need only refer
to the probability measure generated by the renewal process. Since
the cumulants, of order greater than 2, of g are zero we obtain that
for almost every ¢, z; is asymptotically normal with mean x and vari-
ance Ip(#)~'/n where

I()=07* E[(1—exp (—24T))/(1+exp (—24Ty)] .

This (asymptotic distribution), not depending on #, is thus the asymp-
totic distribution of fp,. It is interesting to note that I.(z)=I.(p)=
I..(#). 1t should also be pointed out that E(gz)=EI[E (gz:|T=%)]=¢ so
that the maximum likelihood estimator of x based on X(T)),---, X(T,)
is unbiased and is therefore the minimum variance unbiased estimator
of p.

Finally we note that the asymptotic variance of g is given by I,
where I,=nl,(p) is easily calculated, using (2.1), to be the Fisher in-
formation about g contained in X(Ty),: -, X(T,). Thus (roughly speaking)
fr asymptotically achieves the Cramér-Rao lower bound for variances.

3. Estimation of the mean and autocorrelation

As we have seen, the estimation of the mean is better accomplished
by using a fixed sampling scheme as opposed to a random one. This,
surprisingly, is not always the case when estimating other parameters.
For instance, consider the estimation of 1 in the autocorrelation of the
Markov process considered in section two. It is well known that the
maximum likelihood estimator of 2, calculated on the basis of the fixed
sampling times {ir}, is asymptotically normal with mean 1 and vari-

ance I(1)~!/n where
IF(IA) =1l ¥ (14 ) /(L—e M)t

On the other hand, random sampling can be shown to yield a con-
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sistent root of the likelihood equation which is asymptotically normal
with mean 4, (the true value of 2) and variance Iﬂ(ﬁ)“/n where

L(A)=E [(4T.y exp (— 224 T;)(1+exp (— 224 Ty))/(1—exp (— 224 T))'] .
Indeed, let [,(1) denote the log likelihood function of (X(T)),T)),---,
(X(T,),T,). From (2.1) we have, omitting the marginal for X(T)),

1,(1) = —nlog (27:0)-% 5 {1og (1—exp (—224T)))
i=

+ [Yi—p—(exp (—ldTi))(I’t—#)]’}
d*(1—exp (—224T)))

+10g h(TI! TZ” * %y Tn) .
In order to show that the likelihood equation, (9/02) log {l,(2)} =0, has a
consistent root 1 it suffices to show that (cf. Rao [7], p. 300)

3.1) -j;z,.u)l»E LA)m] ,

which is, in fact independent of n.
Clearly, since the 4T, are independent and have the same distri-
bution,

% S log (L—exp (—244T,)) - E [log (L—exp (—214Ty)] .

i=1

We are implicitly assuming here that E [|log (1—exp (—224T)))|1< + .
This in fact holds for any bounded continuous density function (of 47T}).
We also have

Ty, -+, T)=1T 9Ty ,
where g is the p.d.f. of 4T,.
%log KTy, -+, T.)>E[log g(4T)] -
Finally consider
E{[Y:—p—(exp (—24T))(Yi-i—p)J/(1—exp (—224T))} .
By conditionning first on 47T, this reduces to

E {(1+exp (—224T)—2 exp (—(2+4)4T))/(1—exp (—224T))}

which clearly is finite. Furthermore, a straightforward calculation
yields
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Var L $3[Yi—p—(exp (—A4T)) (¥is— /(L —exp (— 224T))—>0
so that
— S} [Yimp—(exp (—MT))(Yer—w)F/(L—exp (~214T))

converges to its expectation in probability. These results establish (3.1).
Now expand the likelihood function about 4, in a Taylor series. Usual
arguments yield

—5_ oy (V7)) (dl.(2)/d4)
(3.2) Vr(A—2) T/ +e,
where ¢,-50. A direct calculation (as done previously) yields
1 dLW 2 p(l dLA))__ 13
(33) n  da <n da ) L@ .

Consider (setting p=e™™, =0, and Z;=Y,—p’":Y,_, for convenience),

_ 1 d@®_ 1 3 ATip"‘[ iz, 0L} :|
(3'4) J%— dlo - J%_ E 1—p24Ti o i+ l—pszi +Z11,i—l .

We consider the behaviour of (3.4) for fixed 47,=4t,. We have, since
dl(3)/d4, represents the score function of X(t),---, X(t.),

(g 42

Also, noting that Z,,---, Z, are independent, as well as Z; and Y, for
j<1, it is straightforward (though lengthy) to show that

while the higher-order cumulants tend to zero. Consequently, for al-
most every ¢, (1/v/n)(dl.(2)/d4,) is asymptotically normal with mean zero
and variance IR(ﬁ)"/n. This also holds unconditionally and also for 2
by (3.2), (3.3) and (3.4).

Now it is straightforward (though tedious) to show that there
exists an x, such that the function #%*(1+e7%)/(1—e **)* is concave for
0<z <z, and convex for x>x,. Hence (using Jensen’s inequality) there
exists a 7, such that for 4T,<z, almost surely

I(2) 2 (E (4T\))* exp (— 22 E (4T\))(1+exp (— 22 E (4T3)/
(1—exp (-2 E(4Ty))
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=1l ¥ (14 e~ %)/(l— e~ )= Ir(j) .

Similarly for 47T,>r, almost surely, IR(ﬁ)_Z_IF(ﬁ). Thus, roughly speak-
ing, if one samples rapidly, then fixed is better than random while for
slow sampling random is better than fixed. It should also be noted

that IF(ﬁ) is a decreasing function of r with a maximum of 1/22* at
t=0+4+. On the other hand for random sampling r=E (4T}) converging
to 0 implies that 4T, converges to 0 in probability and hence (4T))%-
(exp (—224T,))(1+exp (—224T))/(L—exp (—24T,))* converges in probabil-

ity to 1/22>. Thus as E(4T)—0, IR(ﬁ)—>1/212. From these results and
those of Section 2 we see that both random and fixed sampling yield
the same maximal precision for estimating either the mean or the auto-
correlation of a stationary normal Markov process. That this is not
necessarily the case may be seen by considering the joint estimation
of ¢ and 2. We recall (cf. Rao [7], p. 271) that the Fisher information
matrix is a measure of the information contained in a sample about
the unknown parameters. A direct calculation for both fixed equi-
spaced and random sampling schemes yields information matrices I, and
I, respectively, which are both diagonal. The diagonal elements of

I, are nly(g) and nIF(ﬁ) while those of I are nlx(z) and nIR(i). As
is well known (see, for example, T. W. Anderson [1], Chapter 7) the
determinant of a covariance matrix may be considered as a generalized
variance. Hence one possible comparison of the information about g
and 1 extracted by fixed and random sampling schemes may be obtained
by comparing

det (In/n)=Lo(i)I:(1)
with
det (In/n)=In(i)Ia(R) -

Both these quantities depend, of course, on the sampling rate. Taking
2 and ¢* to both be 1 we find numerically that the maximum of det (Iy/
n) is approximately .0950 this being attained at a sampling interval of
7=.9889. On the other hand for Poisson random sampling det (I;) has
a maximum of around .1037 this being achieved at a slower average
sampling rate corresponding to E (47,)=1.3982. Assuming then, that
the determinant of the Fisher information matrix provides a reasonable
measure of the information contained in a sample, about g and 2, we
conclude that random is “better” than fixed sampling for extracting
information (about the mean and autocorrelation parameter) from the
underlying process.
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4. A concluding note

While the above analysis has been confined to real stationary Markov
Gaussian processes some extensions are readily obtained. Consider for
example the estimation of the mean vector g of a stationary vector
process {x(t), =0} having autocovariance matrix C(z)=E [(x(t)— g)-
(x(t+7)—p)']. Assume that the matrix P(r)=(C(r)+C(z)')/2 is convex
in the sense that every quadratic form s'P(z)s is a convex function of
7. An example of such a case is a stationary vector Markov Gaussian
process with C(r)=C(r)=exp (—4r) for some positive (semi) definite
matrix 4. If we estimate g# by the sample mean then

¥.=limn Var (n“ 31 X( Ti)>

n—oo

=C(0)+2 ki R., where R,=E[P(T;..—T)]
>C(0)+2 ;’_} P(kz)

—¥,=limn Var <n" > X(ir)) .

n—oo

Note that ¥,=J¥, means that },—J¥, is positive semi-definite.
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