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Summary

The joint density function of the latent roots of S.S;' under viola-
tions is obtained where S; has a complex non-central Wishart distribu-
tion W, (p, n,, ¥, ) and S;, an independent complex central Wishart,
W{(p, ny, 2,,0). The density and moments of Hotelling’s trace are also
derived under violations. Further, the non-null distributions of the
following four criteria in the two-roots case are studied for tests of
three hypotheses: Hotelling’s trace, Pillai’s trace, Wilks’ criterion and
Roy’s largest root. In addition, tabulations of powers are carried out
and power comparisons for tests of each of three hypotheses based on
the four criteria are made in the complex case extending such work
of Pillai and Jayachandran in the classical Gaussian case. The findings
in the complex Gaussian are generally similar to those in the classical.

1. Introduction

Consider the test of the following three hypotheses: 1) equality
of covariance matrices in two p-variate complex normal populations,
2) equality of p-dimensional mean vectors in [ p-variate complex nor-
mal populations having a common covariance matrix, and 3) independ-
ence between a p-set and a g-set of variates in a (p-+¢)-variate complex
normal population. In order to study the robustness of tests of 1) and
3) when the assumption of normality is violated and 2) when that of
a common covariance matrix is disturbed, the density of the charac-
teristic roots of S,S;! is studied, where S, has a complex non-central
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Wishart distribution and S; has an independently distributed complex
central Wishart distribution. Further, the density function and mo-
ments of Hotelling’s trace are also obtained under violations. In the
real case, the density of the characteristic roots of S,S;' under viola-
tions has been studied by Pillai [19].

Pillai and Sudjana [20] have carried out numerical study of the
robustness of tests of 1) and 2) in the real two-roots case based on
the four test criteria: i) Hotelling’s trace, ii) Pillai’s trace, iii) Wilks’
criterion and iv) Roy’s largest root. Pillai and Hsu [22], have made a
similar study for 3). Earlier, Pillai and Jayachandran [16], [17] have
made power comparisons of the tests of the three hypotheses based on
the above four criteria in the two-roots case. In this paper a similar
power comparison study is attempted in the complex case. For this
numerical study, the non-null distributions of the four criteria in the
two-roots complex case are obtained for each of the three hypotheses.
The tabulations of the powers are made for various values of the pa-
rameters and selected degrees of freedom and are available in [21].
Finally, some findings from the tabulations have been discussed.

2. Preliminaries

In order to study the distribution problem of the characteristic
roots of S,S;! in the sequel, we introduce in this section a few nota-
tions and lemmas. Let A, B etc. be pXp Hermitian matrices. We

call A positive definite or A>0 if LAI’>0 for any 1Xp complex matrix
1+0, and C.(A), [7], the complex zonal polynomial of A corresponding
to partition k=(k,,- -, k,) of k where k,>--=k,20 and 3)k,=k. Fur-
ther we denote -

(2.1) [a],:]j(a—i—}-l)ki, where (a),=a(a+1)---(a+k—1),
2.2) Ifa)=rre-br ﬁl I'a—i+1)

2.3) i@, =22 1] Matk—i+1),
and

@2.4) [fa, —k)=nr>-v f[ T(a—p—k+1) .
=1

We define complex hypergeometric functions of matrix argument as

(@ @i by b A)= 5 51 L0k [an). ClA)
(2'5) nFq(alr 1an7 bh ] bq’ A) gg [bI]‘- X -[bq]‘ k! ]
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2.6) it ety bye e, by A, By=35 5 0l (o). GAC(EB)
(2.6) (@ an; Oy B)=3 3 [b:.- - -[b,).  KICAT)

where I denotes the pXxp identity matrix.
For special cases of (2.5) by (89), (90) of [7] we have

(2.7) JF(A)=exp(trA) and
2.8) Fia; A)=|I-Al".
The splitting formula: (See (92) of [7]) is given by
@9 | CavBtHay=SHAuUB
U(p) C‘(I)

where U(p) is the unitary group of pXp Hermitian matrices.

LEMMA 2.1. If f(A)dA is the probability density of a Hermitian
matriz variate A (pXp), then the distribution of the diagonal matrizc W

of the latent roots of A, A=UWU’ is
71.p(p—l)

I(p)

(2.10) S F(UAT)AU) 1T (@i—w,)'dw,- - -do,
Ui i>4
(see (93) of [T]).
LEMMA 2.2. Let A and B be two pXp Hermitian matrices, then
@11) |, . (exp(~tr 4)|AF"C(ABEA=T@)[a)C(B)
(see (86) of [7]).
LEMMA 2.3. Let A and B be pXp Hermitian matrices, then
@12) [, (exp(~tr 4)|AF~C(BA)A=T}a, —0C(B)
(see (54) of [9]) .

LEMMA 2.4. Let Z: pXp be a Hermitian matric with character-
istic roots 2=z, =--- =z, such that the absolute values of z; (1=1,---, p)
are less than or equal to 1. Then

@13) 33 LiS)C2)/kICAD)]
—|[—Z[| "> SU( exp (—tr SUZ(I-2)"TNdU,

where S 1s an arbitrary pXp Hermitian matric and

214) LiS)=exp(trS) | (Fr+ I oFi(r+p; —RS)
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- (exp (—tr R))|R['C(R)dR  (see [11]).

LEMMA 2.5. For any positive definite pXp Hermitian matriz S,
we have

(2.15) |Lr2(S)|=[n).C(I)exp (tr S), = where n=p.

Proor. First consider (2.15) when n=p. By (91) of James [7],
loFi(p; —RS)|<1, then from (2.11) and (2.14) we get

(2.16) LYS)=<[p).C(I)exp (tr S) .

Next, we want to show that

_ . _ [B—7]. Li(S)g:..
2.1 s C(Dk!]= Tt B
@17 LASHICADRY]= 3 3= 5 ilCI)

where v is a partition of ¢, r is a partition of ¢ and g;. is defined by
CASYCAS) =2 5:.C48) -

To show (2.17), multiply |I—Z| %~ on both sides of (2.13). The right
hand side becomes

(218) 333 LAS)CAZ)RICAD)] -

The left hand side is |I—Z|-*-" 3 31 L1(S)C(2)/[k!C.(I)]. Now, expand-
k=0 =«
ing | I-Z I"""’=§. S ([8—71.C(Z )/t!), then the left hand side becomes
t=0 ¢

= LUS) &y [B=7) <1z
2.19 A » C(Z) .
( ) Z‘&Z EICAD) cgo; t! $g‘ (Z)

Comparing the corresponding coefficients of C.(Z) in (2.18) and (2.19),
we get (2.17). Putting r=0 in (2.17) and using (2.16), we get

LXS) [8l. g:.[pl exp (trS) _
(2.20) WD) ngZ:k Z i 7 Kexp(trS),

where K can be easily seen to be the coefficient of C.(Z) in the expan-
sion of |I-Z|*|I-Z|™, i.e., |I-Z|**. Hence K=[8+pl./k!, putting
p=n—p, we get (2.15).

LEMMA 2.6. Let A be a pXp Hermitian matriz and Z=(z;+12.,)
be a complex pXp matriz with z,; and z.;, real, and let them be mon-
singular. Define V and W as follows :
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_1 , 1., ’ d _ .7
Vij= -é— (zkj + zjk) y U= —2— (zkj —2jx) an V= ('vkj + ’ij)

Wiy = % (#t;+20),  wi= %‘ (zx—2z;) and W=(wy+iwy) .

Then Z=V+iW where V and W are Hermitian. Now, if f(A) is an
analytic function such that

(2.21) S 1oy (XD (—tr AZ))f(A)dA=0(Z)

Jor all V>0 and g(Z) satisfies the following conditions:
() {,_poplo@dz<co for all X,>0, and

(i) lim SV=X0 19(Z)|dZ=0,

0—>°

then we have the Cauchy inversion formula :

(2)*> S
(2n3)” Jv=x,>0

2.22) f(4)= (exp (tr AZ))g(Z)dZ .

ProoF. This follows from the inverse Laplace transform theorem
for several variables. We only pay attention to tr AZ=tr A(V+iW)
=tr AV+itr AW. Let A=(a,;+1b:;), where a,;, b;; are real, then by
the Hermitian property

(2.23) tr AZ=ij‘: (@x;+1by;) (Ve +105,) +1 ij (@ +Tby,) (Wi, +Tw}))
=[] auv+2 X akjvkj+2 Z bkij;j]
k k>j k>j
+7'[2 QWi +2 3 akjwk,j+2 > bkjwl/cj] .
% > k>4

So, in (2.21), since A>0, V>0, we have the real part of tr AZ posi-
tive, which satisfies the condition for Laplace transform. Furthermore,
there are p* variables in (2.21), namely a,, for all k=7 and b,; for all
k>j. From (2.23) we can easily see that we have to transform from
W, WY to 2W,,;, 2WY;, clearly, the Jacobian is 2#*-P. So, the con-
stant for inversion formula must be 27#~Y/(2zi)”. The lemma follows
from the inverse Laplace transform theorem (see Herz [6]).

Now let K=27?"0/(2xi)”. Define

(2.24) Lr2(2)=K-TI'(ny,v) SV (exp (tr Z2))| Z|C(I—Z'R)dZ .

=Xo>0
This definition will be equivalent to (2.14).

Now, from Herz [6], g(Z)=|Z|™ with n=1 satisfies (i) and (ii) of
the above lemma and hence we have the following equation:
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(2.25) JFi(n,; 1A, =T,(n)-K S vex, 0 EXP (tr Z))|Z]™

- (exp (tr Z1))2'*A,2"*dZ .

LEMMA 2.7. Let H be a pXp positive definite Hermitian matriz,
then the Jacobian of the transformation H— H™' 1s |H|™.

PrRoOOF. The lemma follows directly from the relation dH =
—H'dH)H™.

3. The distribution of the latent roots of S,S;*

Let S; (pXp) have a complex non-central Wishart distribution with
n; d.f. and non-centrality £ and covariance matrix %, denoted by
W.p, n, 2., ) and S,, an independent complex central Wishart dis-
tribution with n, d.f. and covariance matrix X,, W.(p, n,, 2:,0). The
densities of S, and S, are respectively given by, [7],

3.1) [T 2(10)| 21 [1]7" (exp (—tr Q))oﬁ (ny, TTVRITS)
- (exp (tr Z7'S)) IS 77,

and
(3.2)  [[(ny)| Zf]~" (exp (—tr Z7'S))|S,[=7,

where all the matrices are Hermitian.

Let R=diag (7, -, r,) where 0<7r,<..-<r,<oco are the latent
roots of R=8S72S,S;"%. (The same notation is used to denote a matrix
A both before and after diagonalization as is a practice with many
authors.) Now we prove the following theorem:

THEOREM 3.1. Under the assumption that A=2,2;' is “random”
(“Random” as defined by Pillat [19] denotes partial random i.e. diago-
nalization of the matriz by a unitary matriz U and integration of U,
in other words, putting a Haar prior on U leaving the latent roots non-
random. See Appendix C.) the joint density of ri, 1y, +, 7, 18 given by

(8.3) D(p, ny, n;) (exp (—tr Q)| 4| ™| R["~?| [+ AR|"™1*"2
B e Sy ) CURIAARY Y [t
>4 k=0"% k!
E o (=278, C(A ) L2 R2)
° 2 Z — ’
n=0 v Cv(I)Cv(I) [nl]v

where D(p, n,, n2)=z”‘""f’,(n1+nz)/f,(n,)f,(n,)f,(p) where 2 18 a positive
number, and R=diag (r,,---,r,) and @., 18 defined by




DISTRIBUTION OF THE CHARACTERISTIC ROOTS OF S,S;* 451

(34)  CI+ACD=3 56, LANCD)

where v is a partition of n. Ln(R) is defined in Lemma 2.6.
PROOF. By (3.1) and (3.2), the joint density of S, and S; is given by
[T (n) F(m)| Z o™ 2721t exp (—tr £) (exp (—tr ZT'S))|Sy [+
- oFi(ny, Z72Q2T18)) (exp (—tr 2778))) |82 .

Now make the transformation 4,=23;v28,3"* and A4,=237"2S,27"*. The
Jacobian is given by |, and the joint density of A4, A; is obtained as
(8.5)  [Fm)I(m;)]™* exp (—tr ) exp (—tr A,) exp (—tr 44,)

< | Ayre] Ay Pa?| A2 Fi(ny; B4
Now substitute (2.25) into (3.5) and transform B,=A4"*A4"?, B,=A"A,

.A"* and further transform B,=B,, B,=B!*R,B!*, then integrating B,
over B,>0 we get

(3.6)  [KITym)] (exp (—tr @) AI™IR? | (exp (tr 2))Z|™
I p('n,l-i-'nz)l R+ AV¥(I— 2'2Z-1Q'7) A—l/2l—(nl+nz)d 7.

Transform R, back to W=R;' (using Lemma 2.7). Let W=URU'
where U is unitary and R is diagonal, then integrate U over unitary
group. We get:

Ker e OTm 1), (oxp (—tr @)\ AR ] (re—r.)

3.7
&1 T(n,)T(p)

) pong (€XD (61 21 ZI™

. S | I+ UR U A V(I—QVZ QN A|- ™2 dUAZ .
U(p)
Now, in view of the identities

3.8)
SU(p) - UVlﬁ’Vzl_adU=1ﬁo(a; Vi, Vo).

Substituting (3.8) into (3.7) and expanding F, we get

(3.9) KT L0t (oyp (—tr @))|Ai RPN T+ AR
Tm)I3(p)

5 C(IR(I+21;‘)“)[nx+nz] T[(r _ry
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2R D78, (exp tr 2)| 21
) C(A I(I Q2 7- 1‘91/2))
CAD)

Now transform A—UAU’ and integrating U over U(p) we get

(3.10) S C (UA™ U’(I 01Z-1QN U= C(AHC(I—-RZ- 1‘91/2)
) z D

Further, substitute (3.10) in (3.9) and integrate with respect to Z using
(2.24). We get Theorem 3.1.

In order to discuss the convergence of series (3.3) let us note that
series (3.3) (excluding the factors outside the summation) is dominated
by the series

[n+1.].C.AR(I+R)™) & o @..C(—217'47") exp (tr Q)
,;, ; k! 7§J ‘T" C(D)

in view of Lemma 2.5. Further, by (3.4)

51 306, O — 214G T) =C(I— 2~ A/CA ) .

n=0 v

Hence (3.3) is dominated termwise by

D@, mu, m)| [ RP?| T+ AR T (re—r))

[’"/1'*""42] 1 -1 1
Mg WD) C.(I-2'4AY)CAR(I+AR)™) ,
which is independent of £ and d,, coefficients and is in fact the joint
density function of the characteristic roots of S,S;' in the complex
Gaussian case given by Khatri [10]. The choice of 2 can be made to
improve the convergence of the series in question. The distributional
form above is also useful for testing the hypothesis 1¥,=2,.

Special cases of Theorem 3.1
(a) For £2=0 from (2.24)

Im 22y = - CI-Z'D)
.11 ———— 1y 1 _—
(8.11) & Iy, »K S v xon0 (exp (tr Z))|Z| T VA

v

& i a,(—1)*
- p(nli ”)Kd%;] ; _C‘Nﬁ—— sV=Xa>0

- C(Z'Q)dZ

( 1) avl
=Ty(n)[n, 2 P a(5€)
AL 2R Ty O

(exp (tr 2))|Z|™




DISTRIBUTION OF THE CHARACTERISTIC ROOTS OF S,8;! 453

where v is a partition of » and 4 a partition of d. Hence, we have

Lo g
CI)[m),

Now putting 2=1 and 2=0 in (3.3) we get

(312) Do, m, m) Al RP T+ RE T (ri— )

CAR(I+R)™)[n+m,). & S (=14, ,C(4™
k! a=0 s CAI)

= D(p, m, m) Al RP T RE T (rir
- Fy(n+ny, I-47', R+ R)™) .

Iy
k=0 =«

This is exactly the same as Khatri’s result [10].
(b) For A=I and 2=1 in (3.3), and v=3d=«k, we get the result of
James [7], Khatri [10]
(3.13) D(p, my, ma) (exp (—tr ), Fi(ny+my5 ny; 2, R(I+R)™)
S IRPTH RO T ()
i>

2 completely random

Let us consider now £ as a random matrix IV MYY'M'2[V?,
where YY' has a complex central Wishart distribution W.(q, n;, X, 0),
i.e.

(3.14) [Iy(ny)| Zs[=]" (exp (—tr 7Y Y")| YY"
Substituting (3.11) in (3.3) we get

(3.15)  D(p, my, ms) (exp (—tr @A™\ R T+ 2R 1] (re—r)

2« CORI+AR) [+ & « (=17Y)6,,C(4™)
pIp3 k! =3 eI
()

AT

We let @=3""MYY'M'Y*, Multiplying (3.14) by (3.15) and us-
ing (2.11) to integrate out YY’ we get the joint density of »,,---, r, as

(3.16) D(p, my, ma)| A5 RI?| I+ AR+ | T+ @, 1T (ri—1,)?
i>J

& < COR(I+R)) [y +m,), & (=2Ya..C4™)
kgﬂ Z:] k! 12_}1 ‘? C'y( I
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(=1)@,.[ml:C(I+2)7'R)
[%1:C(T)

If we let @=(I+2)"'2,, 1=1, n,+ny=n,, v=3=k, A=1 and R'=(I+
R)'R=diag (,- - -, 7)) where r,=7r/1+7r,), by (3.16) we get
(3.17)  D(p, ny, my)| R'[M7?| I— R/ [~ ™72 | I— Qs

& o ([l CARNCAQ) o
A3 paucy ST

535>
d=0 3

This is the same as the joint density of the canonical correlations in
James [7] and Khatri [10].

4. Density function and moments of U®

Density function of U®

Let UP=U=2AtrS,S;! where >0 and S,, S; are as defined in the
previous section, then we have the following theorem:

THEOREM 4.1. Under the assumption that 2 is “ random ”, the den-
sity function of U® is given by
(4.1)  f(U)=[Tyn+n)/T(n)]|24]™™ (exp (—tr ) Um»~
S5 It ml(— UG I n@)
£=0 kIC(DI'(np+k)

where A=diag (4;,+-+,4,), 4, +, 4, being the latent roots of Z,2;', 0<
21§"‘§2p<00 and Uélll.

Proor. We start from (3.5). The Laplace transform of U=2atr
S.S;'=2tr A, A;" is given by

E () =[Fy(m) Fyn)]™ (exp (— tr 2))] 4P
| s (€XP (—tr A4)) | Ayp-2

' (SA1>0 (exp (—tr A))|Ai["? (exp (-t tr A, 4;7))
. oﬁ1(’n1; QAl)dAl>dA2 .

Now using (2.11) to integrate out A4,, we get

4.2)  E(e)=g(t)=[yn)]"* (exp (—tr )| 4P
| s (€XP (—tr A4)| A2 I+ 2457
- (exp (tr (I+t2A;)2))d A,
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=[F(n;)1™* (exp (—tr 2))] 4
' Sm (exp (—tr AA))| A, 2|t A7 ™| T+ (£2) " Ay
- (exp (tr Q(tA) AT+ () 4,) ")) A, .

Further let 2—UQU’ and using (2.13) to integrate U over U(p), (4.2)
becomes

(43 gO=[F,m)]" (exp (—tr A)r |, (exp(—tr A44)|Asf+

g S s L@~ C 4 i
e A 35S T A, .

Now the density function of U, f(U), is given by the inverse Laplace
transform of g(t), i.e.

(44 SfU)=5=

2r1 Sn(z»o

eUg(t)dt .

Noting that

45) @)U rap+k= oo,
R(>0

substitute (4.3) in (4.4), then using (4.5) we get

4.6)  f(U)=[Tyms)]"* (exp (—tr QmAr‘nSs (exp (—tr AA,)| Ay~

Uan—l l-lA ny 1 p(Q)C(—l IUAZ)
| | %“’g kICAI)(np+k)

Using (2.15), the integral in (4.6) is bounded by
L +n,) Un*=27™ (exp (tr ), Fy(n,4+n,; —UQA)™) ,

which is convergent when all the absolute values of the latent roots
of —U(aA4)™" are less than 1, this is true by our assumption U=Z24,.
Now, using (2.11) to integrate out A; in (4.6), we get (4.1).

THEOREM 4.2. Under the assumption A is “random?”, if n,=p+k
then the kth moment of U® 13 given by

)
C(n

PROOF. Since U*=(atr 8,S;')*=1 > C.(A.4;"), then by (3.7) we

have

E (U¥)=[I(n)(m)]™* (exp (—tr 2))| 4"

@D EUI=Im)] "2 3 Fm, —0Ln(-2)2%)
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) SA1>O (exp (—tr 4))| A, Iﬂl—poﬁl(nx; L2A4A)
' (SA:>0 (exp (—tr 44,)| 4,72 33 C.(AA; ‘)dA2>dA1 .

Using (2.12) to integrate out A,, we get
(4.8)  E(UY=[ln)lyn,)]" (exp (—tr @))2*
' g SA1>0 (exp (—tr A))| 4, ["‘_poﬁvl(nx; QA)
- I(ny, —x)C(AA)dA, .

Now, making 4 “random” in (4.8), i.e. transforming 4—UAU’ and
integrating U over U(p), by (2.9), we get (4.7).

Special cases for E (U¥)
(i) If we let 4=TI and 2=1 in (4.7), we get

49)  EUH=[lm)]™ = L, —)Ln(~Q) .

(4.9) can be shown to be (46) of Khatri [11] when his result is cor-
rected for a factor (—1).
(i) If we let 2=0 and 2=1 in (4.7), we get

(410) EU)=[l}m)]" I Iyne, —x)[ml.C(4) .

(4.10) can be easily shown to be (48) of Khatri [11].

5. Numerical results

In order to make power comparisons of the tests of each of the
three hypotheses (see Introduction) based on the four criteria, we tabu-
lated the powers by using the exact distributions of all four criteria
in the two-roots case (which can be derived easily from (3.12), (3.13)

and (3.16) by using the relation C’,,(g’ g)= P kﬂk(r, s)(a+b)"(ab)* where
r4+28=

b.(r, s) are given in Appendix B). We discuss below the c.d.f.’s of the
four criteria in the three cases as used for computation. In comput-
ing from these c.d.f.’s, zonal polynomials of degree 0 to 6 were used.
Before computing the tail probability for specific values of the param-
eters, the total probability in that case over the whole range of the
respective statistics for all terms included in the formula was calcu-
lated and the number of decimals included in the tables was determined
depending on the number of places of accuracy obtained in the total
probability, at least as many decimal places as in the table. Moreover,
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the total probability was computed by cumulating successively the prob-
ability contribution for each term from k=0 to 6 and noting the suc-
cessive reduction in the contribution for each term. The c.d.f.’s used
for computation are as follows:

1) For hypothesis 1), we have

Pr{U%su}=Da)™ 58 Vi 33 blr, 9H, ),
Pr{V®<o}=D(d) ™ 3 S Ve 33 bir, 9K, (0)
k=0 « r+28=k

Pr{W®=w}=DAd) ™S V,. 3 b(r, 5)G.w),
k=0 « r+28=%k
and
28=k

Pr{LoSl =DAW) ™ 55 Ve, 33 b(r, 9P.0) .

V.. and b(r, s) are given in Appendix A.
2) For hypothesis 2), we have

Pr{U®<u}=De-“*> )5V M,. S br, 9)H,(u),

k=0 = r+28=k

Pr {V(z)é'v} = De~1tep i > ﬂk,. ) . 5;("', S)Kn(v) ’
k=0 = r+28=

Pr{W®<w) = De~crto» i S My 3 blr, G w)
=0 « r4+28=
and

Pr{Losl=De=? S ST I, 3 blr, 9P.0) .

k=0 =«

M, . are given in Appendix A.
3) For hypothesis 3), we have

Pr{U®su}=D[1—-)1—-i)' S2Fr. 3 b(r, )H. W),
Pr{V®=o}=Dl1-1-pAI 5 Fu. 3 bir, 9K 0) ,

Pr{W®sw}=Dl1-)(1-a) 32 Fu. 3 bir, 9Guw) ,
and

Pr{Lo<l} =D[(1— ) (1—p)J" iu DG 3 bir, 9)PL0) -
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.. are given in Appendix A. H,(u), K,(v), G,(w) and P,(l) are avail-
able in [22].

Powers are tabulated for values of a«=.05, m=0,1, 2,5, n=5,15,
30, 40, where m=n,—2, n=n,—2 and for various values of the param-
eters. For hypothesis 1) the tabulations are presented for f,=1,—1,
1=1,2. All these tabulations and a table of upper/lower 5% points
used for computing the powers are available in [22]. The following
findings seem to emerge from the tabulations:

1. There is general agreement in the behaviour of the powers of each
criterion in regard to the tests of the three hypotheses.

2. Relative performances of the ecriteria for each of the three hypo-
theses are also in general about the same in the three cases.

3. For small deviations from hypothesis, in general, Power(V®)=
Power (W®)=Power (U®)=Power (L,).

4. For constant sum of the roots, Power(V®) increases generally as
the two roots tend to be equal, Power(W®) increases in most cases
but those of U® and L., decrease.

5. For large deviations from the hypothesis, when the values of the
roots are far apart, Power (U®)=Power (W®)=Power (V®). But Pow-
er (V®)=Power (W®)=Power (U®)=Power (L,) when the values of
the roots are close.

6. Power (Lg,) stays below those of the other three criteria except for
large deviations in which case Power(Ly) seems to exceed those of
others when there is only one non-zero deviation.

7. The findings are in general agreement with those discussed by Pillai
and Jayachandran in the real case [16], [17].

8. The powers for tests of hypotheses 1) and 2) are larger in the
complex case than in the real for the same m, n and parameter value ;
on the other hand, for test of hypothesis 3) it is just the opposite.

It should be pointed out that, in the real case, for test 2), the
admissibility of U and L, has been established by Ghosh [5] for large
values of the parameters in the alternative hypotheses i.e. against un-
restricted alternatives and Schwartz [24] that of V® in the same sense.
Kiefer and Schwartz [12] have shown that V‘® test is admissible Bayes,
fully invariant, similar and unbiased. They have also shown that W@
is admissible Bayes, under a restriction, although admissibility could
be established without this restriction. Further, sufficient conditions
on the procedure for the power function to be a monotonically increas-
ing function of each of the parameters, for 1) are obtained by Anderson
and Das Gupta, [2]; for 2), by Das Gupta, Anderson and Mudholkar,
[3]; and for 3), by Anderson and Das Gupta, [1]. Furthermore, for 2)
and 3) Mudholkar [14] has shown that the power functions of the mem-
bers of a class of invariant tests based on statistics, which are sym-
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metric gauge functions of increasing convex functions of the maximal
invariants, are monotone increasing functions of relevant noncentrality
parameters.

Tests for 2) and 3) based on W and for 1) to 3) based on U®
and L., have been shown by the above authors to have monotonicity
property of power with respect to each population root. The mono-
tonicity of the power function of L., has been demonstrated earlier by
Roy and Mikhail [13], [23]. More recently Perlman [15] has shown that
the power functions of the tests of 2) and 3) based on V® are monoto-
nically increasing in each noncentrality parameter provided that the
cut off point is not too large. Eaton and Perlman [4] have shown the
Schur-convexity of the power functions of the test for 2) based on
U® and L,. He also proves the finding of Pillai and Jayachandran
from numerical studies that the power functions of L., and U® in-
crease as the rank of the centrality matrix decreases from p to 1.

Pillai and Li [18] have extended to the complex case the results
on the monotonicity of power proved in the real case by the authors
Anderson and Das Gupta [2]; Das Gupta, Anderson and Mudholkar [3],
Anderson and Das Gupta [1], and Mudholkar [14]. However these re-
sults relate only to the monotonicity of power and do not serve to
compare the powers of the tests of any of the three hypotheses based
on the four criteria. Hence the relevance of this numerical study.

In regard to robustness of these criteria against violations of as-
sumptions in tests of 1) to 3) in the complex case it may be conjec-
tured that the findings in the real case may possibly apply in the com-
plex case as well. This conjecture is brought forth here in view of
the finding 7 above that the results of this paper on power comparisons
are in general agreement with those discussed by Pillai and Jayachand-
ran in the real case [16], [17]. In the event the conjecture is true the
V@®_test may have some advantage over others [20], [22], in regard to
the violation of the assumption of equality of covariance matrices in
test of hypothesis 2) and that of normality in the test of hypothesis
3). However a separate study is needed in this direction for the veri-
fication of the conjecture.
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Appendix A
Ve My and F, . coefficients
Eo,<o>=1

E1,(1) = -;—aqd(n
Eyo= (al— a5)d 3,[6
Ez,(1,1) = -]2; azdu, i)

E; o =(a}—2a,a,)d /24

Es 6.0 =a010:d, /12

E, w=(ai—3ala,+a3)d /120

E, o »=(ala,—a3)dq,1,/72

E; ¢0»=0idq»/24

E; o, =(a}—4ala,+3a,a3)d s, /720
E; o »=(ala,—2a,a3)d, ,/480

E;s, ¢ » =a,03d 3,5/240

E, = (al—bata,+ 6ala; —a3)d /5040
Eq o =(ala,—3ala;+aj)ds 1,/3600
Eg o0 =(aja;—a3)dy »/2160

Eq .0 =03ds,3/720

where (i) E..=V,, if we let a,;=2—1/A4+1/4), a,=1—1/4)(1—1/4)
and d,=[n;+n].

(ii) By.=M,,. if we let a,=0+w;, ;=@ and d.=[n+n,]./[n].

(iii) E, .=, if we let a;=p+p:, A:=p10, and d,=([n].)*/[n]..



DISTRIBUTION OF THE CHARACTERISTIC ROOTS OF §,S;! 461

Appendix B

The constants b,(r, s) up to k=6 for the c.d.f. of
the criteria in the two-roots case

£ 1,50 | 1] 2 £ |, % 0] 1] 2|3
(1y | 1 |1 (5) | 5 | 1
(2) | o0 -1 3 —4
2 | 1 1 3
a | o 1 (1) | 3 4
(3) | 8 | 1 1 -8
1 -2 32 | 1 5
@1 | 1 2 (6) | 6 | 1
(4) | ¢ | 1 4 -5
2 -3 2 6
0 1 0 -1
3,1 | 2 3 5,1) | 1 5
0 -3 2 -15
@) | o 2 0 5
4,2 | 2 9
0 -9
@ | o 5
Appendix C

For test concerning the noncentrality matrix 2, 4 is assumed to
be I. However if we wish to see whether tests concerning £ are robust
against the violation of the assumption of equality of covariance ma-
trices we need to investigate the powers of the tests where A+1.

Here we discuss the consequence of the “ partial randomness”. In
order to compute the power for studying the robustness we need to
specify latent roots of both X;2¥, X7 and X7Vup/ X712 ie. Ay, -, Ay,
and wy,- -, w,, respectively. Assume no “partial randomness” i.e. con-

sider the usual classical invariant tests. Write E;‘”Z'IZ';W=£} .88,
where 2, is the 4th characteristic root and S;, the correspondi;lg char-
acteristic vector and similarly Z’f"zpp’fl"/z:é w, I',I',. Let us con-
sider I'; and B; known (¢=1,---, p). Then -

12

pp = <E§/2<iz:i jiﬁi‘&) ;/2>1/2<f§1’l w,T, I’é) <z;/2<£2:’1 Xtﬂtﬂi) Z';ﬂ)

which expresses pg’ as a function of ¥,. If “partial random”, then
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py' is a function of ¥, and B,’s. This shows that the classical case is
contained in the “ partial random ” case.
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