SOME NEW PROPERTIES OF THE BECHHOFER-KIEFER-SOBEL STOPPING RULE

Y. L. TONG

(Received May 12, 1978; revised Oct. 18, 1979)

Introduction

For $k \ge 2$ consider k Koopman-Darmois populations with pdf's

$$(1.1) f(x_i, \theta_i) = \exp\left\{T(x_i)Q(\theta_i) + R(x_i) + S(\theta_i)\right\},$$

where T, Q, R, S are real-valued functions and $\theta_i \in \Omega$ (the parameter space) for all i. Let

$$\boldsymbol{\theta} = (\theta_1, \, \theta_2, \, \cdots, \, \, \theta_k)$$

be the vector of parameters and let

$$\theta_{[1]} \leq \theta_{[2]} \leq \cdots \leq \theta_{[k]}$$

denote the ordered parameters. For selecting the population associated with the largest parameter $\theta_{[k]}$ Bechhofer-Kiefer-Sobel proposed a "Basic Ranking Procedure" in their book ([3], p. 114). The procedure, to be identified as the BKS Procedure in this paper, represents a multihypothesis extension of Wald's Sequential Probability Ratio Test [13]. It calls for sampling one vector at a time, and the stopping rule depends on a statistic $Q^*(\xi_m)$ which in turn depends on the sequential probability ratio. Let us denote

$$(1.4) X_{j} = (X_{1j}, X_{2j}, \cdots, X_{kj})$$

and consider a sequence of independent random variables $\{X_j\}_{j=1}^{\infty}$ with a common pdf $f(x, \theta) = \prod_{i=1}^{k} f(x_i, \theta_i)$. Let $\delta^* > 0$ and $P^* \in \left(\frac{1}{k}, 1\right)$ be predetermined real numbers. For every $m \ge 1$ define

(1.5)
$$Y_{im} = \sum_{i=1}^{m} T(X_{ij}), \quad i=1, \dots, k.$$

Let

$$(1.6) Y_{[1]m} \leq Y_{[2]m} \leq \cdots \leq Y_{[k]m}$$

424 Y. L. TONG

be the ordered Y's; and define

$$(1.7) Q^*(\xi_m) = \exp\left(\delta^* Y_{[k]m}\right) / \sum_{i=1}^k \exp\left(\delta^* Y_{[i]m}\right).$$

Then the stopping variable N under the BKS Procedure is

(1.8)
$$N =$$
the smallest n such that $Q^*(\xi_n) \ge P^*$.

A more general theorem in their book ([3], p. 129) implies that the probability of a correct selection is at least P^* whenever $Q(\theta_{\lfloor k \rfloor}) - Q(\theta_{\lfloor k-1 \rfloor}) \ge \delta^*$ holds $Q(\theta)$ is assumed to be strictly increasing in θ).

The behavior of E N (the average sample number) has been studied rather extensively. In particular, a general lower bound on E N for multihypothesis testing problems ([3], p. 33 or [9]) can be applied; separate results on the behavior of E N as $\delta^* \to 0$ and as $P^* \to 1$ were given ([3], Sections 6.3 and 6.4). On the other hand, the problem of obtaining upper bounds on E N was stated as an open problem ([3], p. 336), and the distribution and the limiting behavior of the stopping variable N itself have not yet been investigated.

In this paper we obtain some new properties of both N and E N. We first obtain bounds on the stopping variable N. The behavior of N can then be obtained from the behavior of its bounds. In particular, it is shown that, when $\theta_{\lfloor k \rfloor} > \theta_{\lfloor k-1 \rfloor}$ holds, then the probability $P_{\theta}[N>n]$ converges to zero exponentially. Because of this fact we can obtain upper bounds on E_{θ} N (which depends on θ , δ^* and P^*). A limiting behavior of N as $\delta^* \to 0$ or as $P^* \to 1$ is also given. In particular, it's shown that under the slippage configuration

$$\lim_{\delta^*\to 0} N \Big/ \Big\{ \frac{1}{\lambda_*} C(\delta^*, P^*) \Big\} = \lim_{P^*\to 1} N \Big/ \Big\{ \frac{1}{\lambda_*} C(\delta^*, P^*) \Big\} = 1 \quad \text{a.s.,}$$

$$\lim_{\delta^* \to 0} \mathbf{E}_{\theta} N / \left\{ \frac{1}{\lambda_*} C(\delta^*, P^*) \right\} = \lim_{P^* \to 1} \mathbf{E}_{\theta} N / \left\{ \frac{1}{\lambda_*} C(\delta^*, P^*) \right\} = 1$$

holds when suitable conditions are satisfied, where

$$\lambda_* = \mathrm{E}_{\theta_{[k]}} T(X) - \mathrm{E}_{\theta_{[k-1]}} T(X) , \qquad C(\delta^*, P^*) = \frac{1}{\delta^*} \ln \left[\frac{(k-1)P^*}{1-P^*} \right].$$

2. Some general inequalities and bounds on N

Because of the identity

(2.1)
$$1/Q^*(\xi_m) = 1 + \sum_{i=1}^{k-1} \exp\left\{-\partial^* U_{i,m}\right\},\,$$

where $U_{i,m} = Y_{[k]m} - Y_{[i]m}$ $(i=1, \dots, k-1)$, the stopping variable N de-

fined in (1.8) can be rewritten as

(2.2)
$$N = \text{the smallest } n \text{ such that } Q_n^{**} \leq (1-P^*)/P^*$$

for

(2.3)
$$Q_m^{**} = \sum_{i=1}^{k-1} \exp\left\{-\partial^* U_{i,m}\right\}.$$

Denoting $\bar{Y}_m = \frac{1}{k} \sum_{i=1}^k Y_{im}$, clearly we have

$$\bar{U}_m = \frac{1}{k-1} \sum_{i=1}^{k-1} U_{i,m} = \frac{k}{k-1} (Y_{[k]m} - \bar{Y}_m).$$

Now for

(2.4)
$$C(\delta^*, P^*) = \frac{1}{\delta^*} \ln \left[\frac{(k-1)P^*}{1-P^*} \right]$$

consider two auxiliary stopping variables N_1 and N_2 given by

(2.5)
$$N_1$$
=the smallest n such that $\bar{U}_n \ge C(\delta^*, P^*)$,

(2.6)
$$N_2$$
=the smallest n such that $U_{k-1,n} \ge C(\partial^*, P^*)$.

Those two stopping variables are obtained from (2.2) when the $U_{i,m}$'s are replaced by \bar{U}_m and $U_{k-1,m}$, respectively. In practice we may not actually use them. Our main reason for introducing them is that they provide bounds and help establish the desired results.

THEOREM 2.1. The inequality

$$(2.7) N_1 \leq N \leq N_2$$

holds a.s. for every parameter vector $\boldsymbol{\theta}$.

PROOF. It suffices to show that

$$(2.8) (k-1) \exp(-\delta^* \bar{U}_m) \le Q_m^{**} \le (k-1) \exp(-\delta^* U_{k-1,m})$$

holds a.s. The inequality on the r.h.s. follows immediately from $U_{1,m} \ge \cdots \ge U_{k-1,m} \ge 0$ a.s. To show the other inequality we simply use the fact that given (k-1) nonnegative real numbers their geometric mean is bounded above by their arithmetic mean.

Because of this theorem bounds on N can then be established from bounds on N_1 and N_2 .

426 Y. L. TONG

3. Upper bounds on P[N>n] and on E[N]

We first impose a condition on the density function $f(x, \theta)$ given in (1.1).

Condition A. (a) $Q(\theta)$ is strictly increasing in θ ; (b) $E_{\theta}T(X) = \mu(\theta)$ (say) exists for all $\theta \in \Omega$ and $\mu(\theta)$ is strictly increasing in θ .

We immediately see that the family of densities $\{f(x,\theta):\theta\in\Omega\}$ has the monotone likelihood ratio property in T(x) under (a). It follows that the corresponding family of distributions of T(x) is a stochastically increasing family and $\mu(\theta)$ is nondecreasing in θ (see [8], Chapter 3). Hence if $\theta_1 \neq \theta_2$ implies $\mu(\theta_1) \neq \mu(\theta_2)$, then (b) in Condition A follows immediately from (a). Denote

(3.1)
$$\lambda_i = \mu(\theta_{\lceil k \rceil}) - \mu(\theta_{\lceil i \rceil}) \quad \text{for } i = 1, \dots, k-1$$

and

$$\bar{\lambda} = \frac{1}{k-1} \sum_{i=1}^{k-1} \lambda_i.$$

Clearly $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_{k-1} > 0$ holds whenever $\theta_{[k]} > \theta_{[k-1]}$ holds. For notational convenience λ_{k-1} will be denoted by λ_* .

For $i=1, \dots, k$ let us define $Y_{(i)m}$ the corresponding Y statistic given in (1.5) from the population with parameter $\theta_{[i]}$. It is obvious that for every $n=1, 2, \dots$

$$[N_2{>}n]{=}igcap_{m=1}^nigcup_{i=1}^{k-1}[U_{i,m}{<}C]{\subset}igcup_{i=1}^{k-1}[U_{i,n}{<}C]$$
 ,

where $C=C(\delta^*, P^*)$ was defined in (2.4). Therefore for every fixed θ

$$(3.3) \qquad P_{\theta}[N_{2}>n] \leq 1 - P_{\theta}[U_{k-1,n}>C]$$

$$\leq 1 - P_{\theta}\left[\bigcap_{i=1}^{k-1}\left\{Z_{i,n}>\frac{C}{n}\right\}\right],$$

where $Z_{i,n} = \frac{1}{n} (Y_{(k)n} - Y_{(i)n})$ $(i=1, \dots, k-1)$. Now for every n the random variables $Z_{i,n} = \frac{1}{n} (Y_{(k)n} - Y_{(i)n})$

dom variables $Z_{1,n}, \dots, Z_{k-1,n}$ are conditionally independent (for given value of $Y_{(k)n}$). Following from a similar argument used in [10] or Theorem 5.2.4 in [12] we have

(3.4)
$$P_{\theta}[N_2 > n] \le 1 - \prod_{i=1}^{k-1} P_{(\theta_{[i]}, \theta_{[k]})} \left[Z_{i,n} > \frac{C}{n} \right].$$

Note that for every $i=1, \dots, k-1$, $\to Z_{i,n}=\lambda_i$, $Z_{i,n}\to\lambda_i$ a.s. as $n\to\infty$ and the distribution of $Z_{i,n}$ depends on θ only through $(\theta_{\lceil i\rceil}, \theta_{\lceil k\rceil})$.

We now give a result concerning large deviations for a stochastically increasing family of distribution functions. Let $\{F(v,\theta):\theta\in\Omega\}$ be a family of distributions with moment generating functions (m.g.f.) $\{\phi_{\theta}(t):\theta\in\Omega\}$, where

(3.5)
$$\phi_{\theta}(t) = \int \exp(tv) dF(v, \theta) .$$

Let $\{V_{1j}\}$, $\{V_{2j}\}$ be two sequences of independent and identically-distributed random variables with distributions $F(v, \theta')$ and $F(v, \theta'')$, respectively. For arbitrary but fixed $\varepsilon > 0$ define

(3.6)
$$\phi(t) = e^{-it} \phi_{\theta'}(t) \phi_{\theta'}(-t) ,$$

which is the m.g.f. of $(V_{21}-V_{11}-\varepsilon)$.

THEOREM 3.1. Assume that $\phi_{\theta}(t)$ (hence $\psi(t)$) exists for $t \in (a, b)$ for some a < 0, b > 0 (possibly $\pm \infty$) for all θ , and define

(3.7)
$$\rho = \rho(\varepsilon, \theta', \theta'') = \inf_{t < 0} \phi(t).$$

If $E_{(\theta',\theta'')}(V_{21}-V_{11})>\varepsilon$, then (a) $\rho\in(0,1)$ and

$$(3.8) p_n = P_{(\theta',\theta'')} \left[\frac{1}{n} \left(\sum_{j=1}^n V_{2j} - \sum_{j=1}^n V_{1j} \right) \le \varepsilon \right] \le \rho^n$$

holds for $n=1, 2, \cdots$. (b) If in addition the family of distribution functions is stochastically increasing, i.e., if for $\theta' < \theta''$, $F(v, \theta') \ge F(v, \theta'')$ holds for all v, then ρ is monotonically decreasing in θ'' and monotonically increasing in θ' for all $\theta' < \theta''$. (c) For fixed θ' and θ'' , ρ is monotonically increasing in ε .

PROOF. The proof of (a) follows immediately from Chernoff's Theorem (see [4] or [1]). To prove (b) we rewrite $\psi(t)$ in the form of

$$\phi(t) = e^{-\iota t} (\mathbf{E}_{\theta''} \exp(t V_{21})) (\mathbf{E}_{\theta'} \exp(-t V_{11}))$$
.

Clearly $\exp(tV_{21})$ (or $\exp(-tV_{11})$) is monotonically decreasing (or increasing) in V_{21} (or V_{11}) for t<0. Therefore, applying a result in Lehmann ([8], p. 112), $\phi(t)$ is monotonically decreasing in θ'' and monotonically increasing in θ' . The proof now follows from the definition of ρ . The proof of (c) is similar.

Theorem 3.1 asserts that p_n converges to zero exponentially in n whenever the difference of the means is greater than ε . Also, if the two probability distributions move away from each other (i.e., the distance between θ' and θ'' becomes larger), then the upper bound on p_n will approach to zero at a faster rate (with a smaller ρ).

Now for $i=1, \dots, k$ let $X_{(i)}$ have pdf $f(x, \theta_{[i]})$ defined in (1.1). For arbitrary but fixed ε in $(0, \lambda_i)$ (λ_i was given in (3.1)), define (for $i=1, \dots, k-1$)

(3.9)
$$\rho_i = \rho_i(\varepsilon, \boldsymbol{\theta}) = \inf_{t < 0} \left\{ e^{-\iota t} \phi_{\theta_{[k]}}(t) \phi_{\theta_{[i]}}(-t) \right\},$$

where $\phi_{\theta_{\lceil i \rceil}}(t)$ is the m.g.f. of $T(X_{(i)})$, and

(3.10)
$$M_* = M_*(\varepsilon) = \text{the smallest integer} \ge C(\delta^*, P^*)/\varepsilon$$
.

Before stating a main result we first observe a lemma.

LEMMA 3.1. Assume that $\phi_{\theta}(t)$, the m.g.f. of T(X) with parameter θ , exists for $t \in (a, b)$ for some a < 0, b > 0 (possibly $\pm \infty$) for all $\theta \in \Omega$, and that Condition A holds. If θ satisfies $\theta_{\lfloor k \rfloor} - \theta_{\lfloor k - 1 \rfloor} > 0$, then (a) the inequality

$$(3.11) P_{(\theta_{[i]},\theta_{[k]})} \left[Z_{i,n} \leq \frac{C}{n} \right] \leq \rho_i^n$$

holds for all $n>M_*$ for all $i=1, \dots, k-1$; (b) the ρ_i 's satisfy

$$(3.12) 0 < \rho_1 \le \cdots \le \rho_{k-1} < 1$$

for every ε in $(0, \lambda_*)$.

PROOF. It is easy to check that Theorem 3.1 applies. The proof follows immediately from that theorem and the fact that $(C(\partial^*, P^*)/n) \le \varepsilon$ holds for all $n \ge C(\partial^*, P^*)/\varepsilon$, and that ρ_i depends on θ only through $\theta_{[k]}$ and $\theta_{[i]}$.

For notational convenience ρ_{k-1} will be denoted by ρ_* . We now prove a theorem concerning the behavior of the BKS stopping variable N.

THEOREM 3.2. Assume that the conditions stated in Lemma 3.1 are met. If $\boldsymbol{\theta}$ satisfies $\theta_{\lfloor k \rfloor} > \theta_{\lfloor k-1 \rfloor}$, then the following statements are true: (a) For every ε in $(0, \lambda_*)$ and for $\rho_i = \rho_i(\varepsilon, \boldsymbol{\theta})$ defined in (3.9),

(3.13)
$$P_{\theta}[N>n] \leq 1 - \prod_{i=1}^{k-1} (1-\rho_i^n) \leq \sum_{i=1}^{k-1} \rho_i^n$$

holds for every $n > M_*$. In particular,

$$(3.14) \qquad \mathbf{P}_{\boldsymbol{\theta}}\left[N > n\right] \leq 1 - (1 - \rho_{*}^{n})^{k-1} = \sum_{r=1}^{k-1} (-1)^{r-1} \binom{k-1}{r} \rho_{*}^{rn} \leq (k-1)\rho_{*}^{n}$$

holds for all $n>M_*$. (b) The average sample number is bounded above by

and

$$(3.16) \quad \mathbf{E}_{\boldsymbol{\theta}} N \leq \inf_{\boldsymbol{\theta} < \boldsymbol{\epsilon} < \boldsymbol{\lambda}_{\bullet}} \left\{ 1 + (C(\boldsymbol{\delta}^{*}, P^{*})/\varepsilon) + \sum_{r=1}^{k-1} (-1)^{r-1} {k-1 \choose r} / [1 - \rho_{*}^{r}(\varepsilon, \boldsymbol{\theta})] \right\}$$

$$\leq \inf_{\boldsymbol{\theta} < \boldsymbol{\epsilon} < \boldsymbol{\lambda}_{\bullet}} \left\{ 1 + (C(\boldsymbol{\delta}^{*}, P^{*})/\varepsilon) + (k-1)/[1 - \rho_{*}(\varepsilon, \boldsymbol{\theta})] \right\}.$$

PROOF. (3.13) follows from (2.7) and (3.11), (3.14) follows from (3.13) and (3.12), (3.15) and (3.16) follow from $E_{\theta} N = \sum_{n=1}^{\infty} P_{\theta} [N \ge n]$, (3.13) and (3.14).

Remarks. (a) The inequality given in (3.14) asserts that the probability $P_{\theta}[N>n]$ approaches to zero exponentially in n. Since for k=2 the BKS stopping rule N is equivalent to the Sequential Probability Ratio Test, the finding is consistent with existing results in this special case (see, e.g., Wijsman [14] and Lai [7]).

(b) The upper bounds on $E_{\theta}N$ given in (3.15) and (3.16) offer a solution to an open problem in the book of Bechhofer-Kiefer-Sobel ([3], p. 336). Recently Huang [6] made an attempt to solve this problem. Unfortunately the proof of his result contains a key error which cannot be patched up, and a counter-example to his proof was given by Tong [11]. For details, see Tong [11].

Example. Consider k normal distributions with a mean vector $\boldsymbol{\theta}$ satisfying $\theta_{[1]} = \cdots = \theta_{[k-1]}$ and a common known variance σ^2 . Let $\lambda_* = \theta_{[k]} - \theta_{[k-1]} > 0$ hold. Then from (3.9) one has, for every ε in $(0, \lambda_*)$,

$$\rho_* = \inf_{t < 0} \left\{ \exp \left[(\lambda_* - \varepsilon)t + \sigma^2 t^2 \right] \right\} = \exp \left(-(\lambda_* - \varepsilon)^2 / 4\sigma^2 \right).$$

Therefore for every θ satisfying $\lambda_* > 0$ we have

$$(3.17) \quad \mathbf{E}_{\boldsymbol{\theta}} N \leq \inf_{0 < \iota < \lambda_{\bullet}} \left\{ 1 + (C(\delta^{*}, P^{*})/\varepsilon) + \sum_{r=1}^{k-1} (-1)^{r-1} {k-1 \choose r} \left[1 - \exp\left(-\left(\frac{\lambda_{*} - \varepsilon}{2\sigma}\right)^{2}\right]^{-1} \right\},$$

or

$$(3.18) \quad \mathbf{E}_{\boldsymbol{\theta}} \ N \leq \inf_{\mathbf{0} < \epsilon < \lambda_{\star}} \left\{ 1 + (C(\boldsymbol{\delta}^{\star}, P^{\star})/\epsilon) + (k-1) \left[1 - \exp\left(-\left(\frac{\lambda_{\star} - \epsilon}{2\sigma}\right)^{2} \right]^{-1} \right\} \right\}$$

if the crude bound is to be used. With k=4, $P^*=0.99$, $\delta^*=1/4$, $\lambda_*=1/2$ and $\sigma=1$ an elementary calculation shows that the bounds in (3.17) and (3.18) are 196.7 and 246.0, respectively. Note that when λ_* be-

comes larger the upper bounds become smaller.

4. The limiting behavior of N and $\to N$

We shall now investigate the limiting behavior of the stopping variable N and the average sample number E N as $\delta^* \to 0$ or as $P^* \to 1$. For the sequences of random variables $\{U_{i,m}\}$ ($i=1, \dots, k-1$) and $\{\bar{U}_m\}$ defined in Section 2 we first observe an almost sure convergence property.

LEMMA 4.1. Assume that Condition A holds. If $\boldsymbol{\theta}$ satisfies $\theta_{[k]} > \theta_{[k-1]}$, then

(4.1)
$$\lim_{m\to\infty}\frac{1}{m}\bar{U}_m=\bar{\lambda}\quad a.s.,$$

$$\lim_{m\to\infty}\frac{1}{m}U_{k-1,m}=\lambda_*\quad a.s.$$

PROOF. Without loss of generality assume that $\theta_i = \theta_{[i]}$ holds for $i=1, \dots, k$; and let $\varepsilon' > 0$ be arbitrary but fixed. Then, by the Strong Law of Large Numbers, for every ω in the product sample space except possibly in a null set, there exists an $M' = M'(\omega, \varepsilon', \theta)$ such that

$$\left|\frac{1}{m}Y_{i,m}(\omega)-\mu(\theta_{[i]})\right|<\varepsilon'/2$$

holds for $i=1, \dots, k$ whenever m>M'. For $\varepsilon'<\lambda_*$ this implies $Y_{k,m}(\omega)=Y_{[k]m}(\omega)$ and

$$\bar{\lambda} - \varepsilon' \leq \frac{1}{m} \bar{U}_{m}(\omega) = \frac{1}{m} Y_{k,m}(\omega) - \frac{1}{k-1} \sum_{i=1}^{k-1} \frac{1}{m} Y_{i,m}(\omega) \leq \bar{\lambda} + \varepsilon'$$

for every m > M'. Those in turn imply (4.1). The proof of (4.2) is similar.

We now investigate the limiting behavior of the stopping variables N_1 and N_2 defined in (2.5), (2.6) respectively.

LEMMA 4.2. Assume that Condition A holds. If θ satisfies $\theta_{[k]} > \theta_{[k-1]}$, then

(4.3)
$$\lim_{\delta^* \to 0} N_1 / \left\{ \frac{1}{2} C(\delta^*, P^*) \right\} = \lim_{P^* \to 1} N_1 / \left\{ \frac{1}{2} C(\delta^*, P^*) \right\} = 1 \quad a.s.,$$

(4.4)
$$\lim_{\delta^* \to 0} N_2 / \left\{ \frac{1}{\lambda_*} C(\delta^*, P^*) \right\} = \lim_{P^* \to 1} N_2 / \left\{ \frac{1}{\lambda_*} C(\delta^*, P^*) \right\} = 1 \quad a.s.$$

PROOF. Clearly the stopping variable N_1 defined in (2.5) can be rewritten as

$$N_1 = ext{the smallest } n ext{ such that } \overline{\lambda}/(\overline{U}_n/n) \leq n \Big/ \Big\{ rac{1}{\overline{\lambda}} \, C(\delta^*, \, P^*) \Big\} \, .$$

Since $C(\delta^*, P^*) \to \infty$ as $\delta^* \to 0$ or as $P^* \to 1$ and since (by Lemma 4.1) the sequence of random variables $\overline{\lambda}/(\overline{U}_n/n)$ converges to 1 a.s., the proof of (4.3) follows from Lemma 1 of [5]. The proof of (4.4) is similar.

THEOREM 4.1. Assume that Condition A holds. If θ satisfies $\theta_{[k]} > \theta_{[k-1]}$, then the BKS stopping variable N satisfies

(4.5)
$$\lim_{\delta^* \to 0} \inf N / \left\{ \frac{1}{\overline{\lambda} \delta^*} \ln \left[\frac{(k-1)P^*}{1-P^*} \right] \right\} \ge 1 \quad a.s.,$$

(4.6)
$$\lim_{P^*\to 1}\inf N/\left\{\frac{1}{\bar{\lambda}\delta^*}\ln\left[\frac{(k-1)P^*}{1-P^*}\right]\right\} \geq 1 \quad a.s.;$$

(4.7)
$$\lim_{\delta \to 0} \sup N / \left\{ \frac{1}{\lambda \cdot \delta^*} \ln \left[\frac{(k-1)P^*}{1-P^*} \right] \right\} \le 1 \quad a.s.,$$

$$(4.8) \qquad \lim_{P^* \to 1} \sup N \Big/ \Big\{ \frac{1}{\lambda_{\star} \delta^*} \ln \Big[\frac{(k-1)P^*}{1-P^*} \Big] \Big\} \le 1 \quad a.s.$$

Under the slippage configuration when θ is of the form $\theta_{[1]} = \cdots = \theta_{[k-1]} < \theta_{[k]}$ with $\lambda_* = \mu(\theta_{[k]}) - \mu(\theta_{[i]})$ $(i=1, \dots, k-1)$, we have

(4.9)
$$\lim_{\delta^* \to 0} N / \left\{ \frac{1}{\lambda_* \delta^*} \ln \left[\frac{(k-1)P^*}{1-P^*} \right] \right\} = 1 \quad a.s.,$$

(4.10)
$$\lim_{P^*\to 1} N \Big/ \Big\{ \frac{1}{2 \cdot \delta^*} \ln \Big\lceil \frac{(k-1)P^*}{1-P^*} \Big\rceil \Big\} = 1 \quad a.s.$$

PROOF. The proof of the theorem follows immediately from Inequality (2.7), Lemmas 4.1 and 4.2.

We are now ready to prove a limiting property of the stopping variable N.

THEOREM 4.2. Assume that Condition A holds. If θ satisfies $\theta_{[k]} > \theta_{[k-1]}$, then, for λ_* and $\overline{\lambda}$ defined in (3.1) and (3.2) respectively,

(4.11)
$$\lim_{\delta^* \to 0} \inf \mathbb{E}_{\theta} N / \left\{ \frac{1}{\bar{\lambda} \delta^*} \ln \left[\frac{(k-1)P^*}{1-P^*} \right] \right\} \ge 1,$$

(4.12)
$$\lim_{P^*\to 1}\inf \mathbf{E}_{\boldsymbol{\theta}} N / \left\{ \frac{1}{\bar{\lambda}\delta^*} \ln \left[\frac{(k-1)P^*}{1-P^*} \right] \right\} \ge 1,$$

$$\lim_{\delta^* \to 0} \sup \mathbf{E}_{\boldsymbol{\theta}} \, N \Big/ \Big\{ \frac{1}{\lambda_{\star} \delta^*} \ln \Big[\frac{(k-1)P^*}{1-P^*} \Big] \Big\} \le 1 \,,$$

$$\lim_{P^* \to 1} \sup \mathbf{E}_{\boldsymbol{\theta}} \, N \Big/ \Big\{ \frac{1}{\lambda_{\star} \delta^*} \ln \Big[\frac{(k-1)P^*}{1-P^*} \Big] \Big\} \leq 1 \; .$$

Under the slippage configuration when $\boldsymbol{\theta}$ is of the form $\theta_{[1]} = \cdots = \theta_{[k-1]} < \theta_{[k]}$, we have

$$\lim_{\delta^* \to 0} \mathbf{E}_{\boldsymbol{\theta}} \, N \Big/ \Big\{ \frac{1}{\lambda_{\star} \delta^*} \ln \Big[\frac{(k-1)P^*}{1-P^*} \Big] \Big\} = 1 \, ,$$

(4.16)
$$\lim_{P^*\to 1} \mathbf{E}_{\boldsymbol{\theta}} N / \left[\frac{1}{\lambda_{\star} \delta^*} \ln \left[\frac{(k-1)P^*}{1-P^*} \right] \right] = 1.$$

PROOF. The proof of (4.11)–(4.14) follows from (4.5)–(4.8) and an application of Fatou's lemma. (4.15) and (4.16) follow from (4.11)–(4.14).

Remark. The result given in Theorem 4.2 also holds when both $\delta^* \to 0$ and $P^* \to 1$ take place at the same time. Note that Theorem 6.4.1 in [3] was obtained for fixed P^* , hence that Theorem does not apply when both δ^* and P^* are subject to vary.

University of Nebraska

REFERENCES

- Bahadur, R. R. (1971). Some Limit Theorems in Statistics, NSF Regional Conference Lecture Notes, SIAM, Philadelphia.
- [2] Bahadur, R. R. and Rao, R. R. (1960). On deviations of the sample mean, Ann. Math. Statist., 31, 1015-1027.
- [3] Bechhofer, R. E., Kiefer, J. and Sobel, M. (1968). Sequential Identification and Ranking Procedures, Institute of Mathematical Statistics Research Monograph Series, Vol. III, Chicago University Press, Chicago.
- [4] Chernoff, H. (1952). A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations, *Ann. Math. Statist.*, 23, 493-507.
- [5] Chow, Y. S. and Robbins, H. (1965). On the asymptotic theory of fixed-width sequential confidence intervals for the mean, Ann. Math. Statist., 36, 457-462.
- [6] Huang, D. Y. (1976). A note on an efficiency of the Bechhofer-Kiefer-Sobel sequential selection procedure, Bull. Inst. Math., Academia Sinica, 4, 249-252.
- [7] Lai, T. L. (1975). Termination, moments and exponential boundedness of the stopping rule for certain invariant sequential probability ratio tests, Ann. Statist., 3, 581-598.
- [8] Lehmann, E. L. (1959). Testing Statistical Hypotheses, John Wiley and Sons, Inc., New York.
- [9] Simons, G. (1967). Lower bounds for average sample number of sequential multihypothesis tests, *Ann. Math. Statist.*, 38, 1343-1364.
- [10] Tong, Y. L. (1977). An ordering theorem for conditionally independent and identically distributed random variables, Ann. Statist., 5, 274-277.
- [11] Tong, Y. L. (1979). Review of a paper by D. Y. Huang, Mathematical Reviews, 57, 1423.

- [12] Tong, Y. L. (1980). Probability Inequalities in Multivariate Distributions, Academic Press, Inc., New York.
- [13] Wald, A. (1947). Sequential Analysis, John Wiley and Sons, Inc., New York.
- [14] Wijsman, R. A. (1968). Bounds on the sample size distribution for a class of invariant sequential probability ratio tests, *Ann. Math. Statist.*, 39, 1048-1056.