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1. Introduction
For k>2 consider &k Koopman-Darmois populations with pdf’s
(1.1) (=, 0)=exp {T(x,)Q0:)+ R(x)+S(6,)} ,

where T,Q, R, S are real-valued functions and 6,€ 2 (the parameter
space) for all 7. Let

(1'2) a=(01! Oy -, 01:)
be the vector of parameters and let
(1.3) <0< - <0

denote the ordered parameters. For selecting the population associated
with the largest parameter 6,; Bechhofer-Kiefer-Sobel proposed a “ Basic
Ranking Procedure” in their book ([3], p. 114). The procedure, to be
identified as the BKS Procedure in this paper, represents a multihy-
pothesis extension of Wald’s Sequential Probability Ratio Test [13]. It
calls for sampling one vector at a time, and the stopping rule depends
on a statistic @*(¢,) which in turn depends on the sequential probabili-
ty ratio. Let us denote

(1.4) X, =Xy, Xoypp -+ Xiy)
and consider a sequence of independent random variables {X,}s., with
a common pdf f(x, 0)=ﬁ f(x;,0,). Let 6*>0 and P*e¢ <%, 1> be pre-

determined real numbers. For every m>1 define

(1.5) n,n:é T(X.,), i=1,--k.
Let
(1.6) Yium< Yom<:+ <Yum

423



424 Y. L. TONG

be the ordered Y’s; and define
.7 Q*(€n)=€XP (0% Yusa) |2 €XP (0% Yiom)

Then the stopping variable N under the BKS Procedure is
(1.8) N =the smallest n such that Q*(¢,)>P*.

A more general theorem in their book ([3], p. 129) implies that the
probability of a correct selection is at least P* whenever Q(6;)—Q(0r—17)
>3d* holds (Q(6) is assumed to be strictly increasing in 6).

The behavior of E N (the average sample number) has been studied
rather extensively. In particular, a general lower bound on E N for
multihypothesis testing problems ([3], p. 33 or [9]) can be applied;
separate results on the behavior of EN as 0*— 0 and as P*— 1 were
given ([3], Sections 6.3 and 6.4). On the other hand, the problem of
obtaining upper bounds on E N was stated as an open problem ([3],
p. 336), and the distribution and the limiting behavior of the stopping
variable N itself have not yet been investigated.

In this paper we obtain some new properties of both N and EN.
We first obtain bounds on the stopping variable N. The behavior of
N can then be obtained from the behavior of its bounds. In particular,
it is shown that, when 6;,>6;,_;; holds, then the probability P, [N >n]
converges to zero exponentially. Because of this fact we can obtain
upper bounds on Ey; N (which depends on &, é* and P*). A limiting
behavior of N as 6*— 0 or as P*—1 is also given. In particular, it’s
shown that under the slippage configuration
lim N/ {iC(a*, P*)} —lim N/ {LC(a*, P*)} ~1 as.,

Ax Pt Ay

340

. 1 % * 12 f 1 % * _

lim E, N/ {—C(3*, P*){ =lim E, N/ {—C(3*, P*)} =1
2* P*-1 (2*

holds when suitable conditions are satisfied, where

B 1 (k—1)P*
2*—Ep[k]T(X)—Eﬂ[k_1]T(X) ’ C(a*y P*)—a_* ln |: l_P* :| :

2. Some general inequalities and bounds on N
Because of the identity
k-1
(2.1) 1/Q*(6m)=1+§ exp {—d*U, n},

where U, ,=Yum— Yum (=1, ---, k—1), the stopping variable N de-
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fined in (1.8) can be rewritten as

2.2) N =the smallest » such that Q*<(1—P*)/P*
for
(23) i*=3 exp (0 Ui}
Denoting l—fm:% iz‘,:l Y., clearly we have

= 1 k2 ok 5

m__k—_]_t=1 [ji,m— k—l (Y[k]m Ym) .
Now for

1 (k—1)P*

(2.4) c@* PH=Ln [W]

consider two auxiliary stopping variables N, and N, given by
(2.5) N,=the smallest n such that U,>C(3*, P*),
(2.6) N,=the smallest n such that U,_,,>C(3*%, P*).

Those two stopping variables are obtained from (2.2) when the U, ,’s

are replaced by U, and U,_,., respectively. In practice we may not
actually use them. Our main reason for introducing them is that they
provide bounds and help establish the desired results.

THEOREM 2.1. The inequality
2.7 N, <N<N,

holds a.s. for every parameter vector 6.

PRrOOF. It suffices to show that
(2.8) (k—1) exp (—*U,) < Q¥ *<(k—1) exp (—*U,_y,m)

holds a.s.- The inequality on the r.h.s. follows immediately from U,
>...2U1n=0 a.s. To show the other inequality we simply use the
fact that given (k—1) nonnegative real numbers their geometric mean
is bounded above by their arithmetic mean.

Because of this theorem bounds on N can then be established from
bounds on N, and N,.



426 Y. L. TONG

3. Upper bounds on P[N>n] and on EN

We first impose a condition on the density function f(z,6) given
in (1.1).

Condition A. (a) Q) is strictly increasing in 6; (b) E, T(X)=p(6)
(say) exists for all 6 € 2 and p(6) is strictly increasing in 6.

We immediately see that the family of densities {f(z,6): 6 € 2} has
the monotone likelihood ratio property in T'(x) under (a). It follows
that the corresponding family of distributions of T(x) is a stochas-
tically increasing family and u(d) is nondecreasing in # (see [8], Chap-
ter 3). Hence if 6,+#6, implies u(6,)#x(6,), then (b) in Condition A
follows immediately from (a). Denote

(3.1) 4= p(0ps)) — p(0s7) for i=1, .-, k-1
and

._-.- 1 k-1
3.2) 2 =1 & y

Clearly 4,>2,>:::>2,_,>0 holds whenever 6,,>6;;_,; holds. For nota-
tional convenience 1,_, will be denoted by 2.

For i=1, ...,k let us define Y, the corresponding Y statistic
given in (1.5) from the population with parameter 6,,. It is obvious
that for every n=1,2, ...

[Ni>n]= (U [U,a<CIC U [U,a<Cl,
where C=C(3*%, P*) was defined in (2.4). Therefore for every fixed 6
(3.3) Py [N:>n]1<1—-Py[U,_,,>C]
<1-P,[n {2.>}],
i=1 n
where Z,,,,:-:-&-(K,,,,,— Y..) (t=1, --., k—1). Now for every n the ran-

dom variables Z,,, --+, Z,_,, are conditionally independent (for given
value of Yi,,). Following from a similar argument used in [10] or
Theorem 5.2.4 in [12] we have

k—1
(3’4) P’ [N2 >n]31_:l]; P(ﬂ[ﬂ,d[k]) [Zi,n>%:| .

Note that for every ¢=1,...,k—1, EZ,,=2, Z,,— 1, a.8. a8 n— oo
and the distribution of Z;, depends on & only through (6., 6)-
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We now give a result concerning large deviations for a stochas-
tically increasing family of distribution functions. Let {F(v, #): 6 € 2}
be a family of distributions with moment generating functions (m.g.f.)
{go(t): 0 € 2}, where

3.5) ¢,,(t)=S exp (tv)dF (v, 6) .

Let {Vy}, {V,;} be two sequences of independent and identically-dis-
tributed random variables with distributions F'(v, #') and F(v, "), re-
spectively. For arbitrary but fixed ¢>0 define

(3.6) P(t)=e"""¢p (t)ge (—1) ,
which is the m.g.f. of (Vy,— Vy1—e).

THEOREM 3.1. Assume that ¢,(t) (hence ¢(t)) exists for t € (a,d) for
some a<0, b>0 (possibly +oo) for all 6, and define

(3.7 p=p(e, 0, 0”)=i:nof R
If BEg,on (Vu— Vi) >e, then (a) p€(0,1) and

_ 1 n _ n n
(3.8) P=Pau| (V=3 Viy ) <e | <o

holds for n=1,2,.--. (b) If in addition the family of distribution
Sfunctions 1is stochastically increasing, i.e., if for 6<6"”, F(v, ¢)>F(v, 6")
holds for all v, then p is monotonically decreasing in 6" and mono-
tonically increasing in 0 for all <8"”. (c) For fixed 8 and 0", p s
monotonically increasing in e.

PrRoOOF. The proof of (a) follows immediately from Chernoff’s
Theorem (see [4] or [1]). To prove (b) we rewrite ¢(f) in the form of

o(t)=e"""(E,. exp (t Vu)) (Ey exp (=t V) .

Clearly exp(tVy) (or exp(—tV,)) is monotonically decreasing (or in-
creasing) in V, (or V) for t<0. Therefore, applying a result in
Lehmann ([8], p. 112), ¢(t) is monotonically decreasing in ¢” and mono-
tonically increasing in #’. The proof now follows from the definition
of p. The proof of (¢) is similar.

Theorem 3.1 asserts that p, converges to zero exponentially in n
whenever the difference of the means is greater than e. Also, if the
two probability distributions move away from each other (i.e., the
distance between ¢ and 6" becomes larger), then the upper bound on
p, will approach to zero at a faster rate (with a smaller p).
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Now for i=1,---,k let X, have pdf f(z, 6,,) defined in (1.1).
For arbitrary but fixed ¢ in (0, 1) (1, was given in (8.1)), define (for
=1, -+, k—1)

(3.9) p=pde, 0)=inf {3y (O (— O}
where ¢, .(t) is the m.g.f. of T(X,), and

(3.10) M,=M,(c)=the smallest integer>C(s*, P*)/e.
Before stating a main result we first observe a lemma.

LEMMA 3.1. Assume that ¢,t), the m.g.f. of T(X) with parameter
0, exists for te(a,b) for some a<0, b>0 (possibly +oo) for all € L,
and that Condition A holds. If @ satisfies 0;—0_1;>0, then (a) the
tnequality

(3.11) Puggaap| Zun S | <o

holds for all n>M, for all =1, ---,k—1; (b) the p,’s satisfy
(3.12) 0<p< - <ppa<l
Sfor every e in (0, A).

PROOF. It is easy to check that Theorem 3.1 applies. The proof
follows immediately from that theorem and the fact that (C(s*, P*)/n)
<e holds for all n>C(d*, P*)/e, and that p, depends on @ only through
0y and 6.

For notational convenience p,_, will be denoted by p,. We now
prove a theorem concerning the behavior of the BKS stopping vari-
able N.

THEOREM 3.2. Assume that the conditions stated in Lemma 3.1
are met. If @ satisfies 0.,1>0_1;, then the following statements are true:
(a) For every ¢ in (0, A,) and for p,=pi(c, 0) defined in (3.9),

k—1 k-1
(3.13) Py [IN>n]<1-]T (1-p}) <X ot
holds for every m>M,. In particular,

(3.14) P,[N>nlsl—(1—pz)~-*=':2:(—1)f-l(k;1)p;"S(k—1)p;

holds for all n>M,. (b) The average sample number is bounded above by
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(3.15) E, N<3 inf {1-+(C(*, P¥)e)+1/[1—pi(e, O)]}

i=1 0<e<2

and

(3.16) B, N< inf [1+(C0*, P+ (=1 (¥ 1) [11—pice, o))
< inf {1+(C0% P¥)je)+(k—1)/[L—pu(s, O)}

0<e<2

Proor. (3.13) follows from (2.7) and (3.11), (3.14) follows from
(3.13) and (3.12), (3.15) and (3.16) follow from E; N =i‘, Py [N=n],
(3.13) and (3.14).

Remarks. (a) The inequality given in (3.14) asserts that the prob-
ability P, [N >n] approaches to zero exponentially in n. - Since for k=
2 the BKS stopping rule N is equivalent to the Sequential Probability
Ratio Test, the finding is consistent with existing results in this special
case (see, e.g., Wijsman [14] and Lai [7]).

(b) The upper bounds on E, N given in (3.15) and (3.16) offer
a solution to an open problem in the book of Bechhofer-Kiefer-Sobel
([3], p. 336). Recently Huang [6] made an attempt to solve this prob-
lem. Unfortunately the proof of his result contains a key error which
cannot be patched up, and a counter-example to his proof was given
by Tong [11]. For details, see Tong [11].

Example. Consider k normal distributions with a mean vector &
satisfying 6,;,=:--=60,_;; and a common known variance ¢°. Let A,=
Oy—00-11>0 hold. Then from (3.9) one has, for every e in (0, 24),

psx=1inf {exp [(Ax—e)t+ ']} =exp (— (A4 —e)*/4d”) .
t<0
Therefore for every 8 satisfying 2,>0 we have
(3.17) E, N< inf {1+(C(a*, P¥)e)
0<e< 2y

S el (25T

or

(3.18) E, N< inf {1+(C(a*, P*)/s)+(k—1)[1—exp<—< Ay —e _)T}

0<e<y 20
if the crude bound is to be used. With k=4, P*=0.99, s*=1/4, 2,=
1/2 and ¢=1 an elementary calculation shows that the bounds in (3.17)
and (3.18) are 196.7 and 246.0, respectively. Note that when i, be-
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comes larger the upper bounds become smaller.

4. The limiting behavior of N and EN

We shall now investigate the limiting behavior of the stopping
variable N and the average sample number E N as *— 0 or as P*—
1. For the sequences of random variables {U;,} (t=1, ---,k—1) and
{U,} defined in Section 2 we first observe an almost sure convergence
property.

LEMMA 4.1. Assume that Condition A holds. If @ satisfies Oy,>
0[;¢_1], the'n/

(4.1) lim L 7,=71 as.,
mow M
(4.2) lim 71{[]"“"’":1* a.s.

PrOOF. Without loss of generality assume that 6,=6; holds for
1=1 ,k; and let ¢'>0 be arbitrary but fixed. Then, by the Strong
Law of Large Numbers, for every o in the product sample space ex-
cept possibly in a null set, there exists an M'=M'(v, ¢', 8) such that

1
— Y, w(w)—p(047) | <€'[2
m

holds for ¢=1, ..., k whenever m>M’'. For &<, this implies Y, .(»)
= Y[k]m((l)) and

i—e< L (o )=—- 1 Ykm(w)—__z; Km(w)<l+e
m k—1 i=1

for every m>M’'. Those in turn imply (4.1). The proof of (4.2) is
similar.

We now investigate the limiting behavior of the stopping variables
N; and N, defined in (2.5), (2.6) respectively.

LEMMA 4.2. Assume that Condition A holds. If 6@ satisfies 0;,>
Oe—1yy then

“3)  ImN, / H._C(a*, P*)} =lim N, / %C(a*, P*)} =1 as.,

(49 lim Nz/ {%C(a*, P*)}:lim M/ {%*_C(a*, P*)}:l a.s.
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Proor. Clearly the stopping variable N; defined in (2.5) can be
rewritten as

N,=the smallest » such that E/(ﬁn/n)s'n/ {-%.—C(a*, P*)} .

Since C(0*, P*)— oo as d* — 0 or as P*—1 and since (by Lemma 4.1)

the sequence of random variables A/(U,/n) converges to 1 a.s., the
proof of (4.3) follows from Lemma 1 of [5]. The proof of (4.4) is
similar.

THEOREM 4.1. Assume that Condition A holds. If 6 satisfies Oy,
>0_13, then the BKS stopping variable N satisfies

. 1 (k—1)P* ]
(4.5) !;H.r(} inf N {ia* ln[ TP+ }21 a.s.,
o 1 (Ic—l)P*] > .
(4.6) ll)lr_r.} inf N {fd* ln[ 1= pr }_1 a.s.;
. 1 (k—1)P*
4.7) kgjlsupN/{l*d* ln[ T pr ]}gl a.s.,
. 1 (k—1)P* }
4.8) 1’113 sup N/{l*a* ln[ T p+ ] <1 a.s.
Under the slippage configuration when 6 is of the form 6y=-- =0u_y
<Oy with 2= p(0u)—p(0) (=1, ---, k—1), we have
: 1 (k—1)P* ]} _
4.9) %{E}N {1*6* ln[ T pr =1 a.s.,
. 1 (k—1)P*
4. 1 [ =1 as.
(4.10) lim N Iz*a* n | E=1E B 1 as

PrROOF. The proof of the theorem follows immediately from In-
equality (2.7), Lemmas 4.1 and 4.2.

We are now ready to prove a limiting property of the stopping
variable N.

THEOREM 4.2. Assume that Condition A holds. If 6 satisfies O
>0u-1, then, for Ay, and 2 defined in (3.1) and (3.2) respectively,

(4.11) lim inf E, N/{z;* 1n[(’°1:11)f:*]}21,
(4.12) lim inf E, N/{z;* ln[(kl:lz)f*]}m,
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: 1 (k—l)P*]
41
(4.13) gfﬂsupE’N/{z*a*ln[ 1—p* }Sl’
. 1 (k—1)1->*]
(4.14) },l‘r_ﬁsupE,N/{l*a* ln[ — }31.

Under the slippage configuration when 6 is of the form 6=+ =0
<Oy, we have

@19 im B N e[S =
19 i N [ =1

ProOF. The proof of (4.11)-(4.14) follows from (4.5)-(4.8) and an
application of Fatou’s lemma. (4.15) and (4.16) follow from (4.11)-(4.14).

Remark. The result given in Theorem 4.2 also holds when both
0* -0 and P*—1 take place at the same time. Note that Theorem
6.4.1 in [3] was obtained for fixed P*, hence that Theorem does not
apply when both é* and P* are subject to vary.
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