EXTENSION OF THE INEQUALITY FOR THE VARIANCE OF AN ESTIMATOR BY BAYESIAN PROCESS

ANTONIO DORIVAL CAMPOS

(Received May 1, 1978)

Introduction

Let X_1, X_2, \cdots be a sequence of random variables identically distributed, whose distribution function depends on the parametric vector $\Theta \in \Omega_p \subset \mathbb{R}^p$. Let $L_j(x/\Theta)$ and $G(\Theta)$, defined over Ω_p be the conditional likelihood function for

$$x=(x_1, x_2, \dots, x_j), \quad j=1, 2, \dots$$

and the distribution of θ , respectively. Let us consider the same sequential process described by Wolfowitz [6] and also the existence of a estimating function $g_{N,h}(x,\theta_h)$ for θ_h , with $1 \le h \le p$, defined by Godambe [4].

2. Regularity conditions

We now postulate the following regularity conditions to be satisfied by $L_j(x|\theta)$ and $g_{N,h}(x,\theta_h)$

- i) $\theta_h \in \Omega \subset R$ for $1 \leq h \leq p$.
- ii) There exists a set A_j , $j=1, 2, \cdots$, independent of θ_h , $\Pr(A_j)=0$, such that for all

$$(x_1, x_2, \dots, x_j) \notin A_j$$
, we have that

$$\frac{\partial^r}{\partial \theta_h^r} L_j(x/\Theta)$$

exists for $h=1, 2, \dots, p$ and $r=1, 2, \dots, k$. Now if $L_{j}(x/\theta)=0$, we define

$$H_{i,h}^r(x/\Theta) = 0$$
, that is,

 $H_{j,h}^r(x|\Theta)$ is defined completely for all $\theta_h \in \Omega$ $(1 \le h \le p)$ and for almost all $x \in R_j$, where $H_{j,h}^r(x|\Theta) = (1/L_j(x|\Theta))(\partial^r/\partial \theta_h^r)L_j(x|\Theta)$.

iii) $E_{\theta} E[g_{N,h}(X, \theta_h)/\theta] = 0$ for $1 \le h \le p$ and all $\theta \in \Omega_p$.

iv) There exists a set B_j , $j=1, 2, \dots$, independent of θ_h $(1 \le h \le p)$, $\Pr(B_j)=0$, such that

$$\frac{\partial^r}{\partial \theta_h^r} g_{j,h}(x,\,\theta_h)$$

exists for all

$$(x_1, x_2, \dots, x_j) \notin B_j$$
 and $r=1, 2, \dots, k$.

v) For $j=1, 2, \dots, h$ and $r=1, 2, \dots, k$, let

$$T_i^r(x_1, x_2, \cdots, x_i)$$

be non-negative and L-measurable functions.

a) There exists a set C_j , $j=1, 2, \cdots$ independent of

$$\theta_h$$
 $(1 \leq h \leq p)$, $Pr(C_i) = 0$, such that,

for all $(x_1, x_2, \dots, x_j) \notin C_j$, we have

$$\left|\frac{\partial^r}{\partial \theta_h^r}g_{j,h}(x,\theta_h)L_j(x/\Theta)\right| < T_j^r(x_1,x_2,\cdots,x_j).$$

- b) $\int_{R_j} T_j^r(x_1, x_2, \dots, x_j) \prod_{i=1}^j dx_i < \infty$.
- vi) Let us define for $1 \le h \le p$ and $j=1, 2, \cdots$,

$$t_{\scriptscriptstyle f}(heta_{\scriptscriptstyle h})\!=\!\int_{\scriptscriptstyle R_{\scriptscriptstyle f}}g_{\scriptscriptstyle f,\,h}\!(x,\, heta_{\scriptscriptstyle h})L_{\scriptscriptstyle f}\!(x/\!artheta)\prod_{i=1}^{\scriptscriptstyle f}dx_{i}$$
 ,

and let us also postulate the uniform convergence of the following series

$$\sum_{j=1}^{\infty} \frac{d^r}{d\theta_h^r} t_j(\theta_h) \quad \text{for } r = 1, 2, \cdots, k.$$

vii) For each $j=1, 2, \dots$, there exist functions

$$S_i^r(x_1, x_2, \dots, x_i)$$
 for $r=1, 2, \dots, k$,

such that, when $g_{t,h}(x,\theta_h)$ and

$$T_j^r(x_1, x_2, \cdots, x_j)$$

are replaced by unity and $S_j^r(x_1, x_2, \dots, x_j)$, respectively, the conditions v) and vi) remain valid.

viii) The covariance matrix $\|\lambda_{rs}\|$ of $H_{N,h}^r(x/\theta)$, $r=1, 2, \dots, k$ exists and is non-singular.

3. Theorem

Under the above conditions, we can show that

(3.1)
$$\mathbf{E}_{\theta} \mathbf{E} \left[g_{N,h}^{2}(X, \theta_{h})/\Theta \right] \geq \sum_{r,s=1}^{k} \lambda^{rs} \mathbf{E}_{\theta} \mathbf{E} \left[W_{N,h}^{r,0}(X, \theta_{h})/\Theta \right]$$

$$\cdot \mathbf{E}_{\theta} \mathbf{E} \left[W_{N,h}^{s,0}(X, \theta_{h})/\Theta \right] ,$$

where $W_{N,h}^{k,j}(x,\theta_h) = H_{N,h}^k(x/\theta)(\partial^j/\partial\theta_h^j)g_{N,h}(x,\theta_h)$ and λ^{rs} is the element of the rth line and sth column of the inverse matrix of $\|\lambda_{rs}\|$.

PROOF. Let

$$(3.2) D = g_{N,h}(x, \theta_h) - \sum_{r=1}^k \alpha_r H_{N,h}^r(x/\Theta)$$

where α_r 's are independent of X and Θ for $r=1, 2, \dots, k$. According to the sequential procedure developed by Wolfowitz [6], we can write

$$(3.3) \qquad \qquad \sum_{j=1}^{\infty} \int_{R_j} L_j(x/\Theta) \prod_{i=1}^j dx_i = 1.$$

Now taking the rth derivative with respect to θ_h $(1 \le h \le p)$ in both sides of (3.3), we get by virtue of condition vii)

$$\sum_{j=1}^{\infty}\int_{R_{j}}H_{j,h}^{r}(x/artheta)L_{j}(x/artheta)\prod_{i=1}^{j}dx_{i}\!=\!0$$
 ,

that is,

(3.4)
$$\mathbb{E}\left[H_{N,h}^r(X/\Theta)/\Theta\right] = 0 \quad \text{for } r=1, 2, \cdots, k.$$

From iii) and (3.4), it follows that

$$E_{\theta} E(D/\theta) = 0$$
.

So

(3.5)
$$\operatorname{Var}(D) = \operatorname{E}_{\theta} \operatorname{E}(D^{2}/\Theta) = \operatorname{E}_{\theta} \operatorname{E}\left\{\left[g_{N,h}(X,\theta_{h}) - \sum_{r=1}^{k} \alpha_{r} H_{N,h}^{r}(X/\Theta)\right]^{2} \middle/ \Theta\right\}.$$

Equation (3.5) can be written like

(3.6)
$$\operatorname{Var}(D) = \operatorname{E}_{\theta} \operatorname{E}\left[g_{N,h}^{2}(X,\theta_{h})/\theta\right] - 2 \sum_{r=1}^{k} \alpha_{r} \Lambda^{r} + \sum_{r,s=1}^{k} \alpha_{r} \alpha_{s} \lambda_{rs},$$

where

$$\lambda_{rs} = \mathbb{E}_{\theta} \mathbb{E} \left[H_{N,h}^r(X/\theta) \cdot H_{N,h}^s(X/\theta)/\theta \right] = \operatorname{Cov} \left[H_{N,h}^r(X/\theta), H_{N,h}^s(X/\theta) \right]$$

and

$$\Lambda^r = \mathbb{E}_{\theta} \mathbb{E} \left[W_{N,h}^{r,0}(X,\theta_h)/\Theta \right] = \operatorname{Cov} \left[g_{N,h}(X,\theta_h), H_{N,h}^r(X/\Theta) \right].$$

We propose now to determine the values of α_r for $r=1, 2, \dots, k$ that minimize (3.6). Condition viii) says that $\|\lambda_{rs}\|$ is non-singular; then these values of α_r $(r=1, 2, \dots, k)$ are given by

(3.7)
$$\alpha_{rs} = \sum_{s=1}^{k} \lambda^{rs} \Lambda^{s}.$$

Taking the values of α_r $(r=1, 2, \dots, k)$ given by (3.7), into (3.6), we get

(3.8)
$$\operatorname{Var}(D) = \operatorname{E}_{\theta} \operatorname{E}\left[g_{N,h}^{2}(X, \theta_{h})/\theta\right] - \sum_{r,s=1}^{k} \lambda^{rs} \Lambda^{r} \Lambda^{s}.$$

Since Var(D) is non-negative, from (3.8) it follows that

(3.9)
$$\mathbb{E}_{\theta} \mathbb{E}\left[g_{N,h}^{2}(X,\theta_{h})/\Theta\right] \geq \sum_{r,s=1}^{k} \lambda^{rs} \Lambda^{r} \Lambda^{s}.$$

Obviously, by the definition of Λ^r , equation (3.9) can be written as

$$egin{aligned} \mathbf{E}_{ heta} & \mathbf{E}\left[g_{N,h}^{s}(X,\, heta_h)/ heta
ight] \geqq \sum\limits_{r,\,s=1}^{k} \lambda^{rs} \, \mathbf{E}_{ heta} \, \mathbf{E}\left[W_{N,h}^{s,\,0}(X,\, heta_h)/ heta
ight] \\ & \cdot \, \mathbf{E}_{ heta} \, \mathbf{E}\left[W_{N,h}^{s,\,0}(X,\, heta_h)/ heta
ight] \, , \end{aligned}$$

which is the result expressed by (3.1).

4. Application

From inequality (3.1), for $1 \le h \le s$, let

$$g_{N,h}(X, \theta_h) = \delta_{N,h}(X) - \theta_h - \mathbb{E} \left[\Psi_h(\boldsymbol{\theta}) \right] + \mathbb{E} \left(\theta_h \right)$$

be, such that

$$\mathrm{E}\left[\delta_{N,h}(X)\right] = \mathcal{V}_h(\theta)$$
.

Thus, we get

$$(4.1) \quad \mathbf{E}_{\theta} \mathbf{E} \left\{ \left[\delta_{N,h}(X) - \theta_{h} \right]^{2} / \Theta \right\}$$

$$\geq \mathbf{E}_{\theta}^{2} \left[\boldsymbol{\varPsi}_{h}(\boldsymbol{\theta}) - \theta_{h} \right] + \sum_{r,s=1}^{k} \lambda^{rs} \mathbf{E}_{\theta} \left[\frac{\partial^{r}}{\partial \theta_{h}^{r}} \boldsymbol{\varPsi}_{h}(\boldsymbol{\theta}) \right] \mathbf{E}_{\theta} \left[\frac{\partial^{s}}{\partial \theta_{h}^{s}} \boldsymbol{\varPsi}_{h}(\boldsymbol{\theta}) \right].$$

When N is fixed and equal to n, (4.1) can be written as

$$(4.2) \qquad \mathbf{E}_{\theta} \, \mathbf{E} \, \{ [\partial_{n,h}(X) - \theta_h]^2 / \Theta \}$$

$$\geq \mathbf{E}_{\theta}^2 \, [\, \Psi_h(\Theta) - \theta_h] + \sum_{r,s=1}^k \lambda^{rs} \, \mathbf{E}_{\theta} \, \Big[\frac{\partial^r}{\partial \theta^s} \, \Psi_h(\Theta) \Big] \, \mathbf{E}_{\theta} \, \Big[\frac{\partial^s}{\partial \theta^s} \, \Psi_h(\Theta) \Big]$$

which is the inequality obtained by Gart [3]. Now, when θ is constant and equal to θ for all $1 \le h \le p$, then (4.1) becomes

$$(4.3) \quad \mathbb{E}\left\{\left[\delta_{N}(X) + \theta\right]^{2} / \theta\right\} - \mathbb{E}^{2}\left\{\delta_{N}(X) - \theta\right\} \geq \sum_{r,s=1}^{k} \lambda^{rs} \frac{d^{r}}{d\theta^{r}} \Psi(\theta) \frac{d^{r}}{d\theta^{s}} \Psi(\theta) .$$

From (4.3) it follows that

(4.4)
$$\operatorname{Var}\left[\delta_{\scriptscriptstyle N}(X)\right] \ge \sum_{r,\,s=1}^k \lambda^{rs} \frac{d^r}{d\theta^r} \varPsi(\theta) \frac{d^s}{d\theta^s} \varPsi(\theta)$$
,

which is the inequality obtained by Seth [5].

Finally, from (4.3) we get inequality proved by Wolfowitz [6] and from (3.1) inequalities obtained by Campos [2], which contains the Bhattacharyya [1] and Godambe [4] inequalities, setting appropriate conditions.

Universidade de São Paulo

REFERENCES

- Bhattacharyya, A. (1946). On some analogues to the amount of information and their uses in statistical estimation, Sankhyā, 8, 1-14.
- [2] Campos, A. D. (1973). An extension of the Bhattacharyya inequality, Anais da Faculdade de Ciências do Porto-Portugal-fasc. 1 -2 -3 Vol. LVI, 1-13.
- [3] Gart, J. J. (1959). An extension of the Cramér-Rao inequality, Ann. Math. Statist., 30, 367-380.
- [4] Godambe, V. P. (1960). An optimum property of regular maximum likelihood estimation, Ann. Math. Statist., 31, 1208-1211.
- [5] Seth, G. R. (1949). On the variance of estimates, Ann. Math. Statist., 20, 1-27.
- [6] Wolfowitz, J. (1947). The efficiency of sequential estimates and Wald's equation for sequential processes, Ann. Math. Statist., 18, 215-230.