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Summary

In this paper we introduce and study new probability distributions
named “digamma” and “trigamma” defined on the set of all positive
integers. They are obtained as limits of the zero-truncated Type B3
generalized hypergeometric distributions (inverse Pélya-Eggenberger or
negative binomial beta distributions), and also by compounding the log-
arithmic series distributions.

The family of digamma distributions has the logarithmic series as a
limit and the trigamma as another limit. The trigamma distributions
are very close to the zeta (Zipf) distributions. Thus, our new distri-
butions are useful as substitutes of the logarithmic series when the
observed frequency data have such a long tail that cannot be fitted
by the latter distributions.

In the beginning sections we summarize properties of the Type B3
generalized hypergeometric distributions. It is emphasized that the
distributions are obtained by compounding a Poisson distribution by
“ gamma product-ratio” distributions.

1. Type B3 generalized hypergeometric distributions

Generalized hypergeometric distributions are discrete distributions
defined on an integer interval having probabilities expressed as

1 L= (r—8) TI'(x+a)l(x+p)
(1) == e AT@I () T+

which we shall refer to as F(a, 8; 7). There are three major (or sta-
tistically useful) subfamilies in the generalized hypergeometric distri-
butions :

Type Al. F(—§&, —n;{), (>0, é>n—1, 2=0,1,---, n.

Type A2. F(¢, —n; =), €>0, {>n—1, z=0,1,---,n

Type B3. F'(§, 7;0), §>0, >0, {>¢+4, ©=0,1,2,---.
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The Type Al distributions are positive hypergeometric distributions
including ordinary hypergeometric; the Type A2 distributions are neg-
ative hypergeometric, Polya-Eggenberger or binomial beta distributions;
the Type B3 distributions are inverse Pdlya-Eggenberger, generalized
Waring or negative binomial beta distributions. In this paper we study
exclusively the last Type B3 distributions. See Shimizu [14] and Sibuya
and Shimizu [15] for the generalized hypergeometric distributions and
their classification.

Changing parameters slightly, we shall deal with a probability dis-
tribution F(a, 8; a+B-+7), namely

Ma+)lE+n) _ @0,
I'(e+B+1I'(r) zi(a+B+7):
x=0, 1) 2’"'; a, .B’ T>0 y

(2) p(x; e, B, 7)=

where (a), is Pochhammer’s symbol

1, x———oy

(a)zz
al@+1)---(a+2x—1), z=1,2,.--.

We shall refer to the distribution simply as GHgB3. This subfamily
is called inverse Pélya-Eggenberger being obtained by inverse sampling
in Pélya’s urn model (cf., e.g. Johnson and Kotz, [7]). It is called
the generalized Waring because the special case a=1 (or f=1) was
named the Waring previously being obtained by Waring’s expansion
into inverse factorial series (Irwin, [4], [5], [6]). The Waring distribu-
tions contain the Yule distributions, the case a=p=1 (cf. Simon, [16],
[17]), and also the Mizutani distributions, the case f=y=1 (cf. Mizu-
tani, [11]). The name “negative binomial beta” is discussed in Sec-
tion 2.

We describe some elementary facts on the GHgB3 of the expres-
sion (2) for completeness. It is unimodal with mode at the integral
part of m=(a—1)(83—1)/(r+1) or at m—1 and m if m is an integer,
and has factorial moments, if y>7,

(3) E[X"]=(a).8)./(r—1)", r=1,2,.--.

Central moments can be computed like those of the hypergeometric
distributions (cf., e.g. Kendall and Stuart [8]),

aflety—1)(B+r=1) _ (1, prathtl
(r—2)(r—1) "< t— >>“

3:)“z(?-'a‘1'7’—'1)(2194’7’—1): [ 19, (r_1
(4) w Yot 1oty )42 )

He=
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m= gty (9] -2~

The ratio
p(x+1)/p(x)=(a+2x)(B+2)/(x+1)(a+B+71+x)

is increasing for sufficiently large x depending on parameter values. If
the ratio is increasing, then the probabilities are log-convex in the
sense that p(x)<vVplz—Dplx+1)<(p(x—1)+p(x+1))/2. For some pa-
rameter values the ratio increases at all x, and p(x) reveals J-shaped.
This is the case if, e.g., —(a—1)(8—1)/(a+8+7r—1) and (a+7)(B+7)/
(a+B+7—1) are positive.

If the parameter a (or f) is an integer, then the sum of the prob-
abilities (2) is expressed by that of a negative hypergeometric distri-
bution, Type A2 generalized hypergeometric F(8, —a—2x; —r—a—2x+1);

) Zriesn=3 (1) (V)W)
Z(B-i-s 1><r+a+m—s—l>/<ﬁ+r+a+x 1)

= atr—s atx

This is shown from the fact that the cumulative sum of the negative
binomial distribution can be expressed by that of the binomial distri-
bution ;

5 (P Dpa—pr=3 (T )pa-p.

Assume p to be a beta variable with parameters y and 3, take expec-
tation. with respect to p, and the terms of the left-hand side become
GHgB3 probabilities as discussed below and the terms of the right-hand
side become those of the expression (5).

2. GHgB3 distributions as compound Poisson

It is known that GHgB3, the expression (2), is obtained by assum-
ing that the parameter p of a negative binomial distribution, NBn (a, p),

(T2 Dpa-pr,  2=0,1,2,-; a>0, 0<p<1

is distributed as a beta distribution Be(y, 8) with the probability den-
sity
1

' (1—p)t, 0<p<l; B, r>0.
B(r, B)
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That is, GHgB3 is a beta compound of a negative binomial. Symbol-
ically, we express this fact by writing

(6) F(a, 8; a+p+71)=GHgB3=NBn (a, p)/’}Be(r, B -

It is also well known that the negative binomial distribution NBn
(a, 1/(1+c¢)) is obtained when a Poisson distribution, Po (1),

e[l , 2=0,1,2,...; 2>0,

is compounded by a gamma distribution, Ga (a, ¢), with the density

1
A7l 0<L2 ; a,¢>0.
T@e ° SASed o>

If p=1/1+-¢) is distributed as Be(7y, 8), then ¢=(1—p)/p is distributed
as the second type beta distribution, Bell (3, ), with the density

1 ¢t
BB, ) (1+c)*

Thus, (6) is rewritten as
(7) F(e, B; a+p+7)=GHgB3=NBn (e, 1/1+c) ABell (8, 7)
=Po(A)AGa(a, c)ABell (8, 7).

) 0<c<00; By T>0'

This shows that GHgB3 is also a compound Poisson, since compounding
is associative provided compounding operations are well-defined.

This fact was noticed in Irwin [5], where he fitted GHgB3 to ac-
cident data and analyzed the fluctuation of occurrences into three com-
ponents; randomness, individual’s internal proneness, and his external
liability. Here, we are concerned with the Poisson compounder leading
to GHgB3, on which Irwin wrote very briefly.

DEFINITION 1. Let V,, V, and V, be standard gamma random vari-
ables with shape parameter «, 8 and r, respectively. We call the dis-
tribution of V,V,/V,, a “gamma product-ratio” distribution, and refer
to it as GaPR(«, 8, 7).

THEOREM 1. The generalized hypergeometric distribution (2) is a
compound Poisson distribution compounded by a gamma product-ratio
distribution :

(8) F(a, §; a+f+7)=GHgB3=Po () AGaPR (e, 8, 7) -

Proor. Compounding with respect to scale parameter is equivalent
to obtaining the distribution of product of two random variables; the
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compounded with unit scale and the compounder. So our compounder
is the product of a Ga(a, 1) variable V,, and a Bell(, y) variable which
is the ratio of a Ga(B, 1) variable to a Ga(y, 1) variable.

3. Gamma product-ratio distributions
From the genesis of GaPR (e, 83, v), we have
(9) GaPR(e, 8, r)=Ga(a, c)ABell (8, r)=Ga (8, c) ABell(a, 1)
=Ga(a, c)//\BeII (r, B)=Ga (8, c)é\BeII (7, a) .
1/¢ [

The last two expressions mean that the inverse scale of a gamma dis-
tribution follows a second type beta. Some other expressions are ob-
tained by changing the order of compounds and by compounding three

variables.
The gamma product-ratio distribution has the probability density.

__ TI'g+n B Y A
e S
— I'(,B"*‘T) wa—l Swe—wt totr-t
F()I'(B)(r) o A+
= P}‘::;;)(g)(ﬁ?;;) w ' U(e+7r, e—p+1, w) ,

where U is the function defined by the above integrations, is a solution
of Kummer’s equation, and relates to Kummer’s confluent hypergeo-
metric function (e.g., Slater [18]). In (10) @ and 8 can be exchanged.

The family GaPR(«, 8, ) has the moments of the order up to r
which are given by,

11) FIX=(a).(8),/(r—1)", r=1,2,.--.

This is equal to the factorial moments (3) of GHgB3, a general fact
for a compound Poisson. Central moments are

_#petatp+l)
=
r—2

(12)  p=—2 (2 Bt B0+ o+ 84t B)+2)

2 17 2
=ﬁ{(T—2)7+Fz(#+1)+F }

m= 7E4 i#a( /“‘2(7’#—2) +2—(T—4)ﬂ>+3y§(r—2)_4_2#2#2_*_6#2#_!_2#8} .
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The probability density is unimodal. In fact, it is log-concave,
since it is a compound of a gamma function with log-concave density.
(See, e.g., Artin [1].) It is J-shaped if a and/or B<1.

4. Some limits of GHgB3

As was pointed out in Section 3, a GHgB3 distribution is not only
a compound negative binomial but a compound Poisson. If the com-
pounder degenerates into a one-point distribution, then the GHgB3 re-
turns to the original negative binomial or Poisson. Therefore we can
expect that GHgB3 approaches either a negative binomial or a Poisson
distributions as the parameters tend to some limits. In fact, we have
the following limiting processes:
(i) GHgB3—NBn(a, p) as 8, y— oo with y/(8+7)=0».
(ii) GHgB3—Po (1) as a, 8, y— o with affr=21.
Other limiting processes are as follows. We denote by e(x) a distribu-
tion degenerated into one point z.
(iii) GHgB3—¢(0) as y— oo while a and 8 remain finite.
(iv) GHgB3—¢(0) as 8 and/or a—0 while y remains finite.
(v) »z;e B, v)—0 for all z, as y—0.
(vi) »(x;a, B, y)—0 for all z, as @ and/or 83— oo while y remains finite.
The process (v) and (vi) were further studied by Irwin [6]. We
are concerned with (iii) and (iv). In the case (iii) if £=0 is truncated,
the limit distribution degenerates again into e(1). While in the case
(iv), the limit of zero-truncated distribution exists, which we shall
study in the next section.
For x— oo, using Stirling’s formula, we see that

(13) p(x; @, B, ¥)— constant X =+,

This behavior is regarded as one of Zipf’s laws, so any justification of
the law supports partially the application of GHgB3. It is disputable
whether zeta or Zipf distributions (27) should be defined on positive
integers or nonnegative integers. In the latter case, GHgB3 with smal-
ler @ and B, including Yule distributions, is close to zeta. In the former
case, the following trigamma function is close to it.

5. Zero-truncated GHgB3

Before going into the discussion on the limits of zero-truncated
distributions, we remark upon the range of its parameters. It is known
that the range 0<ae<oo of a negative binomial distribution NBn (e, p)
is extended to (—1, 0)U(0, co) when zero-truncated, the limit-case a=0
being excluded for the logarithmic series distribution. The situation is
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similar to GHgB3.

THEOREM 2. The zero-truncated probabilities

(14) q(x; e, B, 7)=p(x; a, B, /(1—p(0; a, B, 7))

are positive (i) if 0>a>max (—7y, —1), (or 0>B>max (—y, —1)), or (ii)
if 0>a, B> —1 and a+B+7>0.

Proor. Write

q(x;d, .Br 7)= p(0;a’ ‘B’ T) a(a+1)1_1‘31 ’ x=112;°" ’

1-p(0; ¢, 8,7) (a+B+7).2!
and remark that p(0; «a, 8, ¥Y)<1 implies
(15) 'la+nI'@+n<I'Nr'(e++r, o B, 7r>0,

which means actually the log-convexity of the gamma function (cf. [1]).
If —y<a<0, then from (15)

I'(a+nI'B+r>I'() I (e+8+7), B, r>0.

So, further if a+1>0, then g(x; a, 8, ¥Y)>0. Thus the case (i) is proved.
The case (ii) is similarly proved. Actually this is the zero-truncation
of Type Bl generalized hypergeometric distributions F(—n+4e, —n43;
0), 0<e,8<1, >0 and n=1.

6. Digamma and trigamma distributions

As mentioned previously, the zero probability »(0; e, 8, y) approaches
one if 8 and/or a approach zero, and GHgB3 degenerates. However,
the zero-truncated distribution gq(x; a, 8, 7) in (14) converges to a non-
degenerate distribution. The new distribution is related to the digamma
(psi) function ¢(z)=d log I'(2)/dz and the trigamma function ¢/(2)=dy(z)/
dz.

THEOREM 3.

1 (),
Pat+r)—P(r) x(a+7), '
2=1,2,---; y>0, a>—1(a#0), a+r>0

(16) 1}1{3 qx; a8, 7)=q(x; a,7)=

and

. . _ a1 (z—1)!
(17) },IﬁIBOQ(xya! B’ T)_QZ(xy 7)_‘(‘7(‘;)_ m()’)x

x=1,2,..+; r>0.
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In each case the ratio of both sides tends to 1 uniformly in x.

The proof is based on the Taylor expansion
Te+0)=T@ 144+ L@@+ +0w)] -

Because of the uniformity of convergence, ¢; and ¢, are probability
distributions. It can be also proved that

lim qy(x; @, ¥)=q(2; 7) -
a—0

DEFINITION 2. We call ¢(x; @, 7) in (16) and g¢xx;7) in (17) a “di-
gamma” and a “trigamma” distributions, and refer to them as DGa(a,
r) and TGa (y) respectively.

Theorem 3 gives a new proof of the formulas

(@)
(18) Pla+7)—¢(7) g‘{ ety
and
(19) =3 =Dl
n=1 n(T)n

The formula (18) was shown in Norlund [12], and the formula (19) was
obtained by Matsunawa [10] and Ruben [13]. Our proof is essentially
the same as Ruben’s.

Distributions DGa (e, ) and TGa(y) are J-shaped. More precisely,
g(x) (i=1, 2) are decreasing in 2 and ¢(x)<+vq{x—1)g.(x+1) for all z.
The moments of DGa are obtained by considering the form of F(a, 1;
atl4y):

1 = (@

20 E [.X{( X),]= +

@0 EXe+tXI=e =00 2 (et
1 (a)r+1

T Hatr)—¢() r—r—1"’
7'=07 1! 2" tc T>’r+17 a>_1 (a¢0) .

Or considering the form of F(a+7, r;a+7y+7), we get the factorial
moments,

] — 1 5 (E=Dl(e).

21 E[X"]=

(21) [x™1 la+7)—¢(r) == (x—n)l(a+7).
(”'—1)! (a)r

T Hat—9@) G-’
r=1,2,---; y>7r, a>—1 (a#0).
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From either of these expressions,

_ 1 a
Pla+7)—¢(r) r—1

i a—|-1:|

b

1

I: 1
m=p| + 2

(22)

wp=p 1+

2 (@D (a+——

— — (a+1)(2a+1)]

d=p[ 143 (a+1)(a+2)(a+3)——F
L r—4 r—3

41 (a+1)(3a2+3a+1)].
r—2

(a+1)(a+2)

The moments of TGa are obtained from Waring’s expansion ;
I S S
¢'(r) r—r—1

Or, considering the form of F(r, r; y+7), we get the factorial moments,

(23) E [X(X),]= , r>r+1; r=0,1,2,---.

e 1 ((,'._1)!)2 _ .
24 E[X]= , =1,2,---; .
9 =0 e 7 T

From either of these,

JGe—1 " T Yme-2 ‘=2’
1 2 1 7_, =1y
25 = - - ,
) : ¢'(1) [7—3 7—2] # (r—2)®
r— 1 6 _ 6 1 — ‘,\'(‘r—l)2 )
a ¢'(7) [7—4 r—3 + 7—2} # (r—2)®

As mentioned above, the trigamma is a limit of the digamma:
DGa (a, ¥)—TGa (7) (a—0).

Remark that this limit process is not restricted to positive @, thus the
trigamma is a boundary between the digamma distributions with posi-
tive ¢ and negative «.

On the other hand, if a, y—> oo keeping p=y/(a+7) constant, then
the limit is a logarithmic series distribution (28);

DGa(e, r)—LSr(1—p) .

This is a natural result because of the parallelism between NBn and
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LSr on one hand and between GHgB3 and DBa/TGa on the other hand.
The parallelism becomes clearer in Section 7.
For negative a another limit is obtained by letting a+7—0.

@) lim oo o N=a()=T0"De p=1,2,05 0<r<1,
a+y .

since x¢g(x)— —1 as £—0. This is a right shift by one of F(1,1—7;2)
and has a very long tail and does not have a finite mean.
A trigamma distribution is similar to a Zipf (or zeta) distribution,

Z(p),

1

@7 el

z=1,2,---; p>0.

Apparently Z (1)=TGa(1) and the families are close to each other for
parameters around p=y=1. There is difference of at most several per-
cent of probabilities between the closest Z (8) and TGa (y) as discussed
in Section 9. It is difficult to distinguish them practically from a sam-
ple of moderate size.

7. Other geneses of digamma and trigamma distributions

It is interesting to note that DGa and TGa are obtained by com-
pounding the logarithmic series distribution, LSr ()

1 6°

(28) —log (1-6) z

rx=1,2,.--; 0<6<L1.

As the compounder we need,

DEFINITION 3. We call a distribution with the probability density

(29) h(p; 4, ,u)=c(+’y)(—10g P (1—pyt,
0<p<Ll; 2>0, =0,
where
@) o= (~log pp-1—py-idp
B, p){¢pQQ+m)—¢(D)}, 2, >0,
={ ey 23>0, 4=0.

“(zero-) end accented beta” distribution, and refer to it as EABe (2, p).

By symmetry of the beta distribution, we can define the one end
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accented beta with factor —log (1—p). Remark that parameter value
#=0 is included. This is, in fact, a probability density function as
shown below.

THEOREM 4. Digamma and trigamma distributions are compound
logarithmic series distribution in the semse that

(81) DGa (e, yY)=LSr 1—p)AEABe (7, @) ,

and

TGa (y)=LSr (1—p) AEABe (7, 0) .

PrRoOOF. Consider the integral

32 Sl 1 (1—p)* (—log p)pl_l(l—p)”_ldp=§—(l’—:j_ﬁ

o —logp %
_{ BQ, ) {plp+0)—¢D}a(z; ¢, 2), 2, >0,
¢'Nao(x; 2) =0, >0,

x=1,2,..-.

We sum up the integrand and the right-hand side over xz=1,2,-.-,
since the integral is uniformly convergent with respect to . We get
(30) as the result, showing that (29) is a probability density.

Kendall and Stuart [8] computed the integral (30) for 2, x>0, to
obtain geometric mean of the beta distribution, by differentiating
Euler’s first integral B(1, ¢) with respect to 2. Changing the integra-
tion variable, we have

(33) CQ, )= S: te=(1—e~ty-idt ,

whose p¢=0 case is very well known.

It is known that a logarithmic series distribution is obtained by
compounding a zero-truncated Poisson distribution. In fact, if the pa-
rameter 2 of a zero-truncated Poisson

(34) 16"_1 #lwl,  w=1,2,---, 2>0,
—e

is a random variable with the probability density
(35) A—eHa1te ¥ [log 1+w) ,

then the compounded distribution is a logarithmic series distribution
LSr (w/(1 4 w)).
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This fact, together with the above discussion, shows a digamma
distribution to be a compounded zero-truncated Poisson distribution.

THEOREM 5. If the parameter A of a zero-truncated Poisson distri-
bution 1s a random variable with the probability density function

(36) h2; e, f)="1=¢)" S" g O g

Cra) b @toy™

== 1y, —a, 2 1>0;

—_—— < y — &y ) >01 a, Y>0 y
vy D0 A

where C(y, a) was defined by (80) and Uy, —e, 2) was introduced in (10),
then the compound distribution is DGa(a, ). Compounding by h(2; 0, y)
we obtain TGa ().

The proof is by direct computation. The fact that h of (36) is a
probability density function is also checked by direct computation.

Let X be a random variable with the probabilities Pr[X=x]=
p(x—1;1,a+1,r-1), x=1,2,.+-, a>0, y>1, which is a GHgB3 distri-
bution with particular parameter values and right shifted by one. If
X=u is observed, then it is retained with a probability ¢/x and com-
pletely neglected with the complementary probability 1—e¢/x. The re-
sulting probability distribution of X is

I'(nI'(e+7) De-rl@+1)ey e _cr=1) (a)s
I'a+7+1)I(r—1) (@+7+1),(x—1)! a  x(e+r).

which is DGa (e, y) if the probabilities are normalized.

This process is similar to a genesis of the logarithmie series from
a shifted geometric distribution.

It is instructive to compare chance mechanisms generating the di-
gamma distributions and those generating the logarithmic series dis-
tributions (cf. Boswell and Patil [2]).

8. Parameter estimation

We give here some estimators for the digamma and the trigamma
distributions without discussing their properties, which are not fully
known and further investigations are desired.

For the parameters a and y of DGal(a, 7), the first estimator is
based on the factorial moments m,=3 #{”, i=1, 2, and 3. To avoid

solving nonlinear equations we use the three moments rather than the
first two, and obtain the linear equations,

(37) Mgy —ma=m;+2m; ,  Mmyy—2ma=4m,+3m, ,
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which cannot be used when the population moments do not exist.

The second estimator is based on the relative sample frequencies
f: for sample values =1, 2, and 8. Here also we use the three fre-
quencies rather than the first two to obtain the linear equations,

2fi—fa+2fir+2f,— =0,
Bfi—2f)e+3fir+6f;—4/,=0.

If one does not want to use the higher sample moments but the
sample mean, he can use m,, f; and f, and compute the third estimator

@ =()/(-rly) et

These estimators may be used also as the starting values for solv-
ing iteratively the maximum likelihood equations

(38)

¢'(7) o v,

lat+r)—¢(r) 1 atr—1"

_Ylatn—¢@) _ 3 v, ’
da+7r)—¢(y) =t at+r+r—1

(40)

where v»,= i f; are the relative frequencies of observations such that
Jj=r

r,2r (l=v,Z02v=--).
Some estimators for the parameter y of TGa (y) based on the same
principle as above and using m, and/or f, are

41 =M 9
(41) 7 m2+
Ji
TI‘—_I’
21z
and
y=—14u
my— fi

(42) _ ¢"'(1) — i V,

9. Graphs showing features of digamma and trigamma distributions

It is natural to ask how digamma and trigamma distributions are
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close to or different from logarithmic series or zeta distributions. Some
graphs are presented to answer the question.

Figure 1 shows the graphs of (p,, p;), where p,=Pr[X=x], for
logarithmie, digamma and trigamma distributions. The graph for zeta

P2 1
sl =gn AP=1"n

. e \ o log-series

- S {  digamma a=2

’ \  trigamma, zeta

2 \, digamma a=— 0.5
i 2 \_limit line, g4

1 1 1 Il 1 L 1 il L P1

.2 .4 .6 .8 1.0
Fig. 1. (p1, p2) curves

distribution is almost the same as that for trigamma. For all distri-
butions p,=p,/2 as p,—0 while p,=1—p, evidently as p,—1. For di-
gamma distributions with negative « the value of p, is limited by p,>
y=—a. At this limit p,=p,(1—»,)/2 whose graph is shown by a broken
line and corresponds to the limit distribution g¢s;(x) of (26).

Figure 2 shows the graphs of (r,=p,/p, r:=ps/p:). All of them
move from the origin (the limit p,—1, p,—0 and p;—0) to the point
(1/2, 2/3) (the limit p,, p., »,—0). Analytic expression of the graphs
are,

(2/3) -

digamma a=2|

11=p2/py
| 1 1 1 1 L | 1

0] 1 2 .3 4 .5
Fig. 2. (71, r2) curves (r1=2py/D1, r2=Ds/D2)

1
1
|
1
)
i
|
1
|
[
1
!
!
|
!
1
!
|
1
i




DIGAMMA AND TRIGAMMA DISTRIBUTIONS 387
for LSr r,=4r/3,

for TGa r,=8r/31+2m,) ,
for DGa r,=4(24+a)r/3(L+a+27,) ,

(43)

and for Z log r,=(log; 3—1) log r, .

The graphs for digamma distributions with negative a values are limited
by that for ¢, which is a straight line shown by a broken line.

It is known that for logarithmic series probabilities (x+1)p.,/p. is
linear in z, and this fact characterizes the distribution. For other
distributions the ratio is as follows.

for LSr Oz ,

" for TGa 2/(r+2) ,
) for DGa r(a+x)/(et+r+2),

and for Z 't )(1+z) .

Table 1 shows that actually all the values are so close that drawing
the points are almost meaningless if the parameter values are suitably
adjusted. In Table 1 they are chosen so that p,=0.4 or 0.2. For
smaller values of p, the ratios are closer. It is not practical to use
the ratios of sample frequencies to identify its population distribution.

Factorial moments of the first and the second order in Figure 3 show
the difference among these distributions. Mean-variance curves behave
similarly. Logarithmic series distributions have finite mean and vari-

Table 1 (x+1)pz+1/p= for logarithmic series, digamma, trigamma
and zeta distributions

p1=0.4
DGa
x LSr TGa Z
a=6 a=2
1 .893 .839 .786 .671 .692
2 1.785 1.712 1.661 1.606 1.613
3 2.678 2.609 2.579 2.578 2.575
4 3.571 3.525 3.521 3.563 3.554
5 4.463 4.454 4.478 4.553 4.539
6 5.356 5.394 5.444 5.546 5.529
7 6.249 6.343 6.418 6.541 6.521
8 7.141 7.298 7.396 7.538 7.516
9 8.034 8.258 8.378 8.535 8.511
10 8.926 9.223 9.363 9.532 9.507
15 13.390 14.096 14.313 14.525 14.495
20 17.853 19.015 19.284 19.521 19.489
25 22.316 23.959 24.266 24.519 24.485
30 26.779 28.918 29.254 29.517 29.483

LSr (.8926) DGa (6, 1.3471) DGa (2, .8165) TGa (.4908) Z (.5303)
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Table 1 (Continued)

p:1=0.2
DGa
x LSr TGa z
a=6 a=2
1 .993 .952 .915 .826 .854
2 1.986 1.916 1.870 1.809 1.824
3 2.979 2.887 2.842 2.803 2.810
4 3.972 3.864 3.823 3.799 3.802
5 4.965 4.845 4.810 4.797 4.797
6 5.958 5.829 5.799 5.796 5.794
7 6.951 6.816 6.791 6.795 6.791
8 7.944 7.804 7.784 7.794 7.789
9 8.937 8.794 8.779 8.794 8.787
10 9.930 9.785 9.774 9.793 9.786
15 14.895 14.753 14.759 14.792 14.782
20 19.860 19.733 19.751 19.791 19.780
25 24.826 24.720 24.746 24.791 24.778
30 29.791 29.710 29.742 29.790 29.778
LSr (.9930) DGa (6, .3517) DGa (2, .2771) TGa (.2112) Z (.2269)
. | digamma digamma
#olg=—0.5,  zeta trigamma =2 a=6 log. series
10}
9l
8t
[
71
6 -
5 -
4 -
3 -
g
1 =
0 L L 1 L | 1 1 L 1 L i L L " L ”
1 1.5 2.0 2.5

Fig. 3. Factorial moments of the first and the second orders
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I(TGa(7), Z(p))

of
28 L(TGa(r), Z(p))

L 001 10 .001
g .00071 _
0007 (TGa(n), z ()7 (7, p)
0004 4 0004
:.0(}02 9 10002
7 of TGa(7)

T2 4 TP 3 4 710 20 40 70 Y100
00007 g .
[ 00004 (% 2) 4 .00004
00002 / 00002

/

Fig. 4. The closest TGa(r) and Z (o) and the minimum entropy distance
I(TGa (o), Z (1)

ance for all parameter values. Trigamma, zeta and digamma with
negative a have relatively larger variance even if it is finite.

Figure 4 shows the closeness between zeta and trigamma distribu-
tions. The distance from a probability distribution f(z) (here TGa (7))
to another g(x) (here Z(p)) is measured by the entropy distance

(45) 1(f, 9)=3} f(@) log (f@)g()) -

The distance of another direction I(g, f) can be used as well as this.
For a given value of y of TGa(y) we obtain the value of p of Z(p)
minimizing the distance (45) and the minimized distance, and plot both
values in Figure 4. To simplify computation of the distance for smaller
values of y and p, terms for Pr[X>1000] are grouped together and
distances between the grouped distributions are computed. For larger
values of # and y the probabilities concentrate to smaller values of 2
and they match well if the parameter values are suitably chosen. For
smaller values of 6 and 7, all probabilities are smaller and they match
well when global tendencies are similar.

For computing the digamma and the trigamma functions refer to
de Medeiros and Schwachheim [3], and for the zeta function refer to
Markman [9].

In summary, digamma distributions with trigamma as a limit are
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situated between logarithmic series and zeta distributions. So they
are useful for data which cannot be fitted by the latter distributions.
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