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Summary

A necessary and sufficient condition is given under which the mini-
mum of X,/a,, k=1,2,---,n has the same distribution as X;, where
X’s are i.i.d. positive random variables and a’s are given positive con-
stants.

1. Introduction

It is well-known (Desu [2]) that if X, is the minimum in a sample
X, X, -+, X, of size n from a distribution F' on the half interval (0,
o), then nX;, has the same distribution as X; for all » if and only if
F is the exponential distribution. Some extensions of this character-
ization and related theorems are also known (Sethuraman [7], Gupta
[4] and Huang [5]. See also Galambos-Kotz [3]). In the present paper
we are concerned with the following problem: What can be said about
the distribution F if for some n and for some positive constants a,, a;,
-+, a,, the random variable Z=min {X,/a,} has the same distribution
as X;? We shall given in the next section a complete solution to a
more general problem. Throughout this paper we invariably assume
that the distribution F is non-degenerate and is concentrated on the
open interval (0, ). In other words, we assume that F(0)=0<F(zx,)
<1 for some positive ;.

2. Results

Let m,, my,---, m, (n==1) be positive integers and ¢, a,,a;,---,a,
be positive numbers such that ¢>max{a,} if n>1 and ¢=a, if n=1.
Let a be the unique positive number satisfying a:+as+---+az=c* if
n>1 and let it be an arbitrary positive number if n=1. Let X,,, j=
1,2,---,my; k=1,2,---,n be i.i.d. random variables with the common
distribution F. Write
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Z(k): min {Xj,k} y k=1, 2,"','"1

15jsmy
and

Z=min {(em*[a;)- Zq} -

15ksn .
We shall exclude the trivial case m=a,=m,=1, where Z reduces

to Xi,.

THEOREM 1. In order that Z has the distribution F(x), it is meces-
sary and suffictent that there exists a positive, bounded and periodic
Sfunction H(x) with periods A.=logemy“/a,, k=1,2,---,n and F can
be put in the form

0 <0
(1) F(x)=
1—exp{— H(—log 2)z°} , =0,

PrOOF. By the monotone transformation X;,—(cX, )", the prob-
lem reduces to the case a=c=1. Therefore we can and do assume
this without loss of generality. Then a’s satisfy

(2) atazt - +a,=1.
For any x>0, the definition of Z gives
(3) Pr{Z>ua}=Pr{(mia) 2>, k=1,2,---,n}
= T_f Pr {Ze>> @u/my} = JJ (1— F(au/mg))™ .
If F is of the form (1) then (3) becomes
Pr{Z>x}) =k]j1 exp { —m, H(—log a,x/m)a,x/m,}
=exp {— H(—log x)x} =1—F(x)

as was to be proved. Suppose conversely that Z has the distribution
F. Then it follows from (3)

(4) 1-F@=1] 1-Faw/m)™, 220.

As a,/m,<1 for k=1,2,---,n (4) implies that F(x)<1 for all z>0.
Then the function

H(x)=—¢"log (1—F(e™)

is defined for all real x and satisfies the functional equation

(5) H(x):él aHxtA), —oco<zlo.
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Let x, be an arbitrary real number. We shall show that (5) yields

(6) C=sup H(x)< oo
2
and
(7) H(x+A,)=H(x) , k=1,2,---,n, x=2,.

These are consequences of Theorems 1-2 of Shimizu [8]. If (6) is estab-
lished, we can also use Choquet-Deny’s theorem (see Meyer [6]) to
derive (7). But as we are dealing with the special form (5) of the
equation treated in Shimizu [8], the proofs of Theorems 1-2 can be
substantially simplified. We shall give here an elementary proof of (6)
and (7). The method of proof used here is essentially the same as the
one used in Davies-Shimizu [1]. For the proof of (6) it suffices to show
that the inequality

(8) H(x)=e*H(x,)

holds for all x>x,, where A=max {A,, 4;,---, 4,}. It follows from the
equation (5) that there exists a k, such that H(z)=H(%,+A4;). Simi-
larly there exists a k, such that H(x)=H(xy+A.)ZH(x+ A, +A).
In this way we obtain a sequence k,, k,,--- of positive integers such
that H(z)zZ H(zy+ Ar,+As,+---+4;), m=1,2,---. If m=a=m+A4,
(8) follows from the inequality

(9) H@x+y)<e'H(x), x=w, y=0,

which can easily be verified from the definition of H(x). Suppose x>
2+ A. As min{A4,, 4,,---, A,}>0, we can find an m such that

xo+Ak1+ A +Akmém<x0+Akl+ A +Akm+1 .

Writing d=2— (% + A, + -+ +4;, ) we obtain from (9), H(z)=H(2y+ Ay,
+-o+ A, +0)SEH(@+ A+ - -+ A, )<e*H(x,) as was to be proved.
To complete the proof of Theorem 1 we have only to prove (7) for k
=1. To this end we introduce the bounded function K(x)=H(x+A4,)
—H(x). It is easy to verify that K satisfies the functional equation

(10) K(2) =k2 GK@+A), o=.
Repeated application of (10) yields

1) K@= > —"™  ghghe..aBK@+kdt--+kA4,),

kyterstkp,=m kl! . 'kn!

where m is an arbitrary positive integer and the summation extends
over all non-negative k’s such that k,+k,+-.-+k,=m. Note that each
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of the kA+---+k,A, in the right-hand side of (11) is not less than
mXmin {4,, 4;,--+, 4,}, which tends to infinity as m. In particular,
for any ¢>0, we can take m sufficiently large so that

!
|K(®)|=% ?'k’:n.—k'afla;z. | K@+ kAt - - -+, A,))|
eyl k)

A

m! —
> maf‘a;”' . 'a:"(e‘*‘lel_g} |K(&)])

S(a+ayt+---+a,)(e+a)=e+a, where a=lim|K(8)|.
§—c0
As £>0 is arbitrary we conclude that
(12) |K(2)|l=a, a=a,.

We shall prove (7) by showing that a=0. We can assume without loss
of generality that e=Iim K(¢)=—lim K(¢). It follows from (10) and
§—o0 §—oo

(12) that

Kx)so,K(x+A)+(1—ay)a , T=X .
Repeated substitution in this inequality gives
13) K@)<aiK(x+kA)+(1—ab)a , =%, k=0,1,2,---.

By the definition of a there exists, for any ¢>0, and for any positive
integer L, an x, (>2,) such that a—eal <K(x,). It follows from (13)

a—eal = K(x) Sa'K(x,+kA)+(1—a)a k=0,1,2,.--.
which in turn implies
(14) a—eal "< K(z+kA) , k=0,1,2,....
Adding both sides of (14) for k=0,1,---, L—1, we obtain

L(a—-e)§lg (a—eaf"‘)gg K(x,+kA) = H(z,+ LA)— H(z,)
<2sup|H(x)|=2C .

As ¢ and L are arbitrary, this is possible only if a=0. Our argument
does not depend on the choice of z, and this completes the proof of
Theorem 1.

CorROLLARY 1. Let X;,---, X, (n>1) be a sample from a distri-
bution F and let a,,a,,---, a, be positive constants subject to the condi-
tion (2) and such that loga./loga; is an irrational number for some
pair © and j. If Z=112¢i£l {Xi/a} has the same distribution F as X,
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then F' is the exponential distribution.

COROLLARY 2 (Arnold —see Huang [56] and Galambos-Kotz [3]—,
Sethuraman [7]). Let X, be the minimum in a sample X, X;,---, X,,
Srom a distribution F. If, for two values m, and m, of m such that
log my/log m, is irrational, m,X, . and m,X, ., have the same distribu-
tion as X,, then F' is expomential.

PROOF. These two correspond to the cases m;=m,=:--=m,=1,
and n=a,=1<m,, j=1, 2, respectively. We have only to note that
by Theorem 1 F has the form (1) and H has period 4,=—loga,, j=
1,2,---,n (Cor. 1) and A,=logm,, j=1,2 (Cor. 2), respectively. As,
in both cases, A,/A, is irrational for some 4 and j, H must be a con-
stant. See also Remark of [9].

COROLLARY 3 (Gupta [4]). Suppose the distribution function F(x)
18 such that lim F(x)/x=2>0. If for some m>1, mX, , has the same
zl0

distribution F, then F' is exponential.

ProoF. Again by Theorem 1, F' is of the form (1). The condition
of Corollary 3 implies lim H(x)=A. Sinece H is periodic it must be a

T—oo

constant.

Remark. Theorem 1 does not insist that any distribution F of the
form (1) has the property that Z is distributed as F. In fact we can
construct a distribution function F' which can be put in the form (1)
with a bounded and periodic H(x) for which the variable Z does not
follow this distribution no matter how %, m’s and a’s are chosen. (See
[9].) In this connection we can easily prove

THEOREM 2. Let F be a distribution function of the form (1) with
a=1, and suppose that H(x) has the fundamental period p>0. Let n,
My, -+, M, be given positive integers. In order that there exist positive
numbers a,---, a, subject to the conditon (2) and such that the variable
Z has the distribution F, it is necessary and sufficient that e=* is a zero

of the polynomial i‘, m, X?%—1, where p’s are unspecified positive integers.
k=1
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