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Summary

A computational algorithm for random complete packing by dises
is proposed. Monte Carlo simulations using this algorithm give the
value 0.5473 for random packing density of discs. It greatly improves
the Solomon’s result, 0.4756.

1. Introduction

Random sequential packing of non-overlapping objects in a contain-
er of finite size is a typical one among the various random packings.
The centre of the non-overlapping object is assumed to be uniformly
distributed over the occupiable space of the container, which we ecall
the residual space, hereafter. The packing procedure ends when the
residual space becomes null. We call the packing in which the residual
space completely vanishes the random complete packing. This type of
packing has applications in connection with the adsorption of molecules
on a crystal surface, the structure of liquids, the spatial pattern in
ecological systems and so on.

Since an exact mathematical treatment was given by Rényi [1] of
the so called car parking problem, random sequential packing has at-
tracted attention of many authors. Most of their works are, however,
limited to the theoretical investigation of random packing in a one-
dimensional lattice or continuous space (for example, Page [2], Mackenzie
[3], Bankovi [4], Dvoretzky and Robbins [5], and Mannion [6], [12]). In
the case of higher dimensions, there seem to exist unsurmountable dif-
ficulties in a mathematically strict treatment and we are compelled to
investigate by computer simulations. Some attempts on this subject
up to the present time (Palasti [7], Solomon [8], Blaisdell and Solomon
[9], and Akeda and Hori [10], [11]) are more or less connected with the
conjecture of Palasti. She suggested that the homothetic packing den-
sity of n-dimensional unit cubes is equal to the n-th power of the pack-
ing density of unit rods on a line, where by “homothetic” is meant
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the situation where the sides of cubes are parallel to the sides of -
dimensional cubic container. The main concern of these authors was
the limiting packing density; i.e., the fraction of the total volume of
the packed objects to the container volume in the limit of an infinite
container size, and it is also our present concern. With regard to the
random sequential packing of spheres, systematic studies do not seem
to have been so often carried out compared with those of the homo-
thetic packing of cubes. Solomon [8] reported packing densities of n-
dimensional spheres (2<n<5) but the number of spheres used for each
dimension was rather small. Furthermore, it is doubtful whether a
random “complete” packing was attained by each of the computer
simulations in continuous space so far appearing in literatures.

The purpose of this paper is twofold. The first is to provide a
computational technique for a random complete packing of two-dimen-
sional spheres or discs. And the second is to give an accurate packing
density for an infinite system of disecs. In the next section, a prevail-
ing computational technique for random sequential packing, the simple
rejection scheme, is examined. In Section 3, we propose an economical
algorithm for constructing a complete packing of spheres. Section 4 is
devoted to the case of discs, namely, the proposed algorithm is exam-
ined and the result of simulation is given for this case. Finally, in
Section 5, some discussions about our method and result are given.

2. Examination of simple rejection scheme

A computational technique which corresponds to the procedure of
random sequential packing of non-overlapping particles is the simple
rejection scheme. In this case, the coordinates of the centre of a
“test” particle are determined by a random point which is uniformly
distributed in the part of the container where the centre of the first
particle can be placed. If a test particle does not overlap with the
particles already placed, it is fixed at its position. Otherwise, the par-
ticle is discarded and another test particle is generated. The process
is continued until a prescribed stopping condition is satisfied. As a
stopping rule of the scheme, two types of conditions are usually em-
ployed. The first rule prescribes that the procedure ought to stop if
a successive number of failures for test particle to hit residual space
exceeds a given maximum value and the second rule prescribes it should
stop if the total number of test particles generated exceeds a given
value.

We examine the simple rejection scheme in the case of the packing
of discs. Let the disc be denoted by K and let N,(k) be the number
of test particles generated up to the addition of the k-th disc K,. Let
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R, be the residual space which is left for the addition of K,. The
probability that a test particle hits R, is proportional to |R,|, the area
of R,. Because |R,| decreases monotonously with the increase of £,
we can easily see that the expectation of N,(k) will rapidly grow large
with k. That means the number of test particles which would be re-
quired to add one disc increases as the packing procedure goes on.

In order to examine the behaviour of N,(k) with k, we performed
a Monte Carlo simulation employing the second stopping rule. Letting
the diameter of the disc be unity, we used a rectangular of size rxy
=31.000x32.177 as a container, where x and y represent the side lengths
of the container. The container can accommodate 1129 discs in hexag-
onal close packing. Let N, be the number such that the procedure
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Fig. 1 Relation between the number of added discs, k, and the number of
test particles generated up to the addition of the k-th disc, Ni(k), in case
of the rectangle xx y=31.000x32.177. Solid curve is the mean of N (k).
Upper and lower dotted curves bound the standard deviation of Ny(k).
Vertical broken line represents the mean of the number of added discs
in complete packing.
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stops if the total number of trials exceeds it. Simulation was carried
out for seven cases of N,, i.e., (2.5, 8, 4, 6, 10, 20, 40)x10* and for
each case ten trials were performed. We will mention the results of
this simulation also in a later section. Figure 1 represents an empirical
relation between k and N,(k) in a semi-log scale obtained by superposing
the results of repeated trials. The solid curve is the sample mean of
Ny(k) and the dotted curves represent the standard deviation of N,(k).
In this figure, the number of samples used for these estimations is 70
for £<600, while it gradually decreases for £>600. The vertical broken
line at the right hand side in the figure indicates the average number
of added discs obtained by an independent simulation of 50 trials em-
ploying the complete packing algorithm to which we will refer in the
next section. The figure shows that N,(k) increases with & more than
exponentially and that it becomes more and more difficult to add a fur-
ther disc as we approach the state of complete packing. In other words,
the area of the residual space becomes small very quickly as we go
near the complete packing.

We performed another simulation with N,=2x10% in order to see
how many more discs could be added before a complete packing was
attained starting from a state which had been obtained by the gener-
ation of such a large number of test particles. Let the number of
added discs attained for a given N, in a rectangular container of size
Xy be v, where the superscript (1) indicates the simple rejection
scheme. And let y,, be the number of added discs in the container in
the complete packing. In the simulation, we used the container of the
same size as shown above. The results of three trials are

trial V() Vay A=y, —5)
a 669 676 7
b 678 686 8
c 673 681 8

These should be compared with the results of the simulation men-
tioned above in which the averages of 4 (=y,,—{)) are 18.5, 25.4 and
37.9 for N,=4x10% 2x10° and 10°, respectively. This suggests that 4
will not vanish even if more than several millions were chosen for N,.
Therefore, we conclude that, practically, it is very difficult to obtain a
random complete packing by the simple rejection scheme alone.

3. Algorithm for complete packing

We have seen in the previous section that the single use of the
simple rejection scheme is actually inadequate to fill the residual space
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completely, that is, to attain a complete packing. Accordingly, at a
proper number of generated test particles, the simple rejection scheme
must be replaced by an economical scheme which can fill the residual
space entirely. In a lattice space, a test particle ranges over the lattice
sites which are finite in number. In this case, therefore, economical
and unambiguous techniques can be devised. Blaisdell and Solomon [9]
made use of a “random occupiable site method ”, where indices of oc-
cupiable sites which remained after some duration of the use of the
simple rejection scheme are stored and from them a site to which a
new particle is to be assigned is selected at random. In this method,
the number of occupiable sites vanishes definitely within some finite
number of steps and a complete packing is obtained.

In case of continuous space, on the contrary, it is difficult to pre-
pare a scheme which corresponds exactly to the method such as the
“random occupiable site method ” mentioned above. This is because in
practice we are unable to assign a test particle at random in the re-
sidual space which may be separated into a number of simply connected
regions of various shapes and sizes. Let us call each of these regions
an occupiable region. From the very definition of the random sequen-
tial packing, these regions should be treated one at a time. Namely,
at every step of the addition of a particle, the areas of all the occupi-
able regions have to be calculated in order to select one region with a
probability proportional to its area. However, if all the regions are
isolated from one another in the sense that the addition of particles
into an occupiable region does not affect the addition into others, then
the order of selection of regions will be irrelevant. Thus, if the loca-
tions of such regions are detected one by one, we can place particles
in the regions by generating relatively small number of test particles
and can obtain a random complete packing. We give below a method
of finding the location of an occupiable region and present an algorithm
for complete packing in case of random sequential addition of discs.

3.1. Detection of an occupiable region

We assume that in a rectangular container a certain number of
dises of unit diameter are already placed by the simple rejection scheme
employing the second stopping rule. Moreover, we assume from now
on that the residual space thus obtained is separated to a certain num-
ber of simply connected regions, i.e., occupiable regions, whose sizes
are small compared with the area of a disc. The second assumption
will hold if a properly large value is chosen for N,. Figure 2 illus-
trates how an occupiable region is detected. Each solid circle represents

a disc K, already placed and each dotted circle K, is the circle which
is concentric with K, and whose diameter is twice of K;’s. We call each
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Fig. 2 Illustration for finding the location of an occupi-
able region. Shaded region R is an occupiable region
found nearby the disc K.

K, a large disc. The regions which are not covered by large dises in
the set S, the inner parallel set of the rectangle at the distance 1/2,
are occupiable regions. Generally, such a region is surrounded by a
certain number of arcs of large discs. Therefore, the space is a “ con-
cave polygon” whose definition is given in Appendix. In the figure, R
is an occupiable region and it is surrounded by four ares, each of which

is the arc of K, K,, K,, or K,. For each vertex of the occupiable
region, we draw the common chord extended outside the discs. Next,
we obtain a cross point of two such chords which are drawn for a pair
of adjacent vertices and then inspect whether it is covered by at least
one of large dises or not. If the cross point is not covered by any
large dise, it is inside an occupiable region. According to the proposi-
tion given in Appendix, such a cross point certainly exists among the
cross points obtained for all the pairs of adjacent vertices. Thus we
can find out the position of an occupiable region. Two lines I, and I,
in Fig. 2 are above-mentioned lines drawn for the vertices A, and A,,
respectively, and the cross point C of I, and [, is contained by R. In
the neighbourhood of the edges of S, the occupiable regions may be
truncated by the boundary of S. These regions, however, can be con-
sidered as the concave polygons in which some of the arcs are recti-
linear. Therefore, the method just given is also applicable to this case.
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3.2. Complete packing algorithm (CPA)

Under the assumptions of the previous subsection, a complete pack-
ing algorithm, abbreviated as CPA, searchs for the locations of occupi-
able regions one by one by the method given above and places dises
there by random sampling. The CPA is composed of essentially two
steps:

(I) Picking out one of the discs already placed and the detection of
occupiable regions in the meighbourhood of the disc

Let K, be a disc we picked out. We register all the large discs,

K.’s, which intersect K,. Let its number be p. If p<38, for any con-

figuration of the intersecting large discs (if any), K, is certainly adja-
cent to the residual space. Then, we jump into the step (II) (p<3 case)
and, if p=3 is attained there, we return here.

If p=3, we draw, for each K, which intersects K;, a line which
connects the two point common to K; and K,. Then we get a cross

point of two such lines which are drawn for a pair of K,’s whose cen-
tres are adjacent to each other if we look at them from the centre of

K,. We inspect whether a cross point thus obtained is covered by at
least one of the existing large dises in the container. If it is not cov-
ered by any large disc, the point is surely inside an occupiable region
and we go to the step (II) (p=8 case). Otherwise, we inspect other
cross points and jump into the step (II) if necessary. If all the cross

points obtained for K, are covered by some large discs, then we ask
if all the discs including those added in the step (II) have been picked
out. If it is true, the CPA stops and otherwise, we return to the start
of this step.

(II) Addition of a disc into the occupiable region obtained in the
step (1)

i) p<3 case. In this case, contrary to our initial assumption in

3.1, the occupiable region adjacent to K, may be large in size compared
to the size of a single disc even if the region is simply connected in
accordance with its definition. Therefore, we must consider that the
value of N, was not large enough to meet the assumption, and we con-

tinue again the simple rejection procedure until p=3 is attained for K.

il) p=3 case. In this case, test particles are sampled at random
in a square whose centre is at the cross point just obtained in the first
step. Let the size of the square be sufficient to cover the occupiable
region entirely. The region in the square will be hit by a test particle
after generating a relatively small number of test particles. Let M,
be a given number. If the region is not hit by M, test particles
successively, we reduce the size of the square by half keeping its centre
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unchanged and again we sample test particles in the reduced square.
The process is continued until a disc is placed. If the number of times
of the reduction exceeds a given number M, we place a disc at the
centre of the square. Then we return to the step (I).

It is easily seen from the argument in 3.1 that we can detect all
of the occupiable regions by inspecting all the disecs including those
added in the step (II). Therefore, for any configuration of discs whose
residual space is composed of a certain number of simply connected
regions, the CPA makes the residual space strictly null. On that ac-
count, our method assures the completeness of random packing. As
for the randomness of this complete packing, on the contrary, the re-
sulting configuration of discs in the residual space may be an approxi-
mation to the very sense of the random sequential packing. Firstly,
in the step (I), the occupiable regions are selected in an order irrespec-
tive of their area, while it may happen that some regions are not iso-
lated from one another. Secondly, in the step (II), there is a possibility
that, in some occupiable regions, the sampling of test particle is not
performed uniformly over each region. Nevertheless, we note here that
the number of disecs which can be accommodated in the residual space
depends less on the way of sampling than the configuration of them.
Therefore, the approximation of the packing density is always better
than that of configuration.

The randomness of the configuration of discs in the strict sense,
however, can be attained approximated closely if a suitably large value
is chosen for N, in the simple rejection scheme and for the constants in
the CPA. In practice, we have determined N, by fixing the constants
M, and M in the CPA at 50 and 10, respectively.

4. Monte Carlo simulation for random complete packing of discs

In order to obtain the random packing density of discs, we carried
out a Monte Carlo simulation using the algorithm proposed in the pre-
vious section. The programme consists of two parts, namely, the simple
rejection scheme and the CPA. The rectangular container is chosen in
such a way that it entirely encloses a system of hexagonally close packed
disecs and that at the same time its form is as close to a square as pos-
sible. Use of such a container allows one for each admissible size of
container to compute a random packing fraction, i.e., the ratio of the
added discs to the hexagonally close packed discs. The random packing
fraction is a useful quantity as well as the random packing density.

4.1. Estimation of N, and the justification of the CPA
In order to make the programme most efficient without hurting its



ON RANDOM COMPLETE PACKING BY DISCS 359

validity, we must choose an appropriate value for N,, the number by
which the first part of the programme is stopped. To make the resid-
ual space small enough as assumed in Section 3, N, should be as large
as possible. From an economical point of view, however, a smaller N,
is favourable. To estimate an efficient value of N,, we performed some
experiments in case of the container size x X y=31.000x32.177. Figure
3 shows a relation between N, and the number of added discs obtained
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Fig. 3 Relation between the total number of [test particles, N;, and
the number of added discs in case of the rectangle x x y=31.000
%x32.177. Open circles represent i{) obtained by N, test particles
and closed circles represent i,, obtained by means of CPA. Error
bars are their 95% confidence intervals. Dotted lines indicate
95% interval of ¥, obtained for 50 trials in case of N;=4x10¢%

by the simulation for the seven N,’s, to which we have referred in
Section 2. The abscissa is scaled as the inverse of N,. Open and closed
circles represent ) (sample mean of 1) and v, (sample mean of v,)),
respectively, where 1{} is, as before, the number of discs added in the
first part of the programme and v,, is »{; plus the number of discs added
in the second part. Error bars are 959 confidence intervals of the
mean for each of ten trials. Two parallel dotted lines represent the
95% confidence interval of v,, obtained by an independent simulation
of 50 trials for N,=4x10'. The figure shows that although »{} increase
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with N,, v,, scarcely changes within the range of the error. Therefore,
we conclude in this case that the CPA gives a good value of v,, for
N,>2.5x10'. Consequently, as a suitable choice of N, we take a value
such that the number of test particles generated per added disc in the
first stage, i.e. N,/V$), amounts to about 40 or more. We set its value
to be about 60 for the sake of reliability. In case of the container size
used in this experiment, accordingly, N,=4x10* (N,/v$’=63.9) would
be favourable.

Next, we investigate whether such a choice of N, works well for
other container size. We examined the patterns of residual space for
three trials of the simulation in which #Xy=41.000x42.569 and N,/v$)
=64.3. For each pattern which was drawn by means of the XY-plot-
ter, we estimated by hand how many more dises could be placed to
entirely cover the residual space which remained after the generation
of N, test particles. Let us denote its minimum and maximum number
by 4., and 4,..., respectively. The result is

trial 5y dnin Aoy 4 Yay
a 1084 105 108 107 1191
b 1078 107 112 111 1189
c 1073 122 125 125 1198 .

Here we also listed the values of v,, and 4=v,,—1(; obtained by employ-
ing the CPA. The result shows that by such a choice of N, all the
occupiable regions are well isolated from one another in the sense de-
scribed at the beginning of Section 3. At the same time, this guaran-
tees the validity of all the settings in the programme of the CPA
which were given in the last part of the previous section. For these
settings, including N,, the case i), i.e., p<8 case in the step (II) of
the CPA never appeared and took between one half and two thirds of
the time required for the simple rejection part of the programme.
Thus, it may be said that the CPA method is very accurate and its
employment proves to be economical.

4.2. Random packing density of discs

On the basis of the discussions so far, we performed simulations
for ten container sizes for the purpose of obtaining the random pack-
ing density of dises in the limit of the infinite container size. Table I
presents the results of our simulations. In the table the number of
hexagonally close packed discs, v, is also given. For the data pro-
cessing, we make the following assumptions: firstly, the random pack-
ing density p,,=v,,|K|/xy, |K| being the area of a packed dise, obeys
a normal distribution; secondly, it can be expressed using the limiting
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Table I. Results of simulations for random packing density of discs

Xy oNfu?;&el: N, Vhex Pzy S'E;”Of
11.000x 11.392 100 5x 108 137 0.51580 0.01439
16.000x 16.589 100 104 295 0.52504 0.01051
21.000x 21.785 50 2x10* 513 0.52957 0.00761
31.000x 32.177 50 4% 104 1129 0.53479 0.00543
41.000x 42.569 50 7x10* 1985 0.53901 0.00385
51.000x 51.230 50 108 2980 0.54072 0.00278
61.000x 61.622 40 1.5%x10° 4296 0.54134 0.00253
81.000x 82.406 20 3x10% 7648 0.54380 0.00176

101.000 x 101.459 20 4x103 11759 0.54381 0.00118
201.000 x 201.918 10 1.8x108 46717 0.54525 0.00069

packing density p=lim p,, in the form

&, Yy—oo
py=p+au+ou™),

where u'=2"'4y7!, and finally the standard deviation of p,, is propor-
tional to #~!. Each of these assumptions was also made by Akeda and
Hori [11] in case of homothetic packing of squares. In Fig. 4, we give
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Fig. 4 Relation between #~! and p»y. Closed circles are p-y and error bars are their
95% intervals. Solid line is obtained by a weighted regression analysis of ten
data points. The analysis gives 0.5473+0.0009 for p and —0.179+0.014 for a.
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the relation between p,, and w™'. Each closed circle is p,,, the mean
of p,,, and each error bar represents its 95% confidence interval. As
can be seen from the figure, the linearity of p,, with respect to ™!
holds well. The solid line is obtained by a weighted regression analysis
of ten data points. The analysis gives for the limiting packing density
p=0.5473+0.0009 (95% int.) and for the coefficient a=—0.179+0.014
(95% int.). This value for p is significantly larger than Solomon’s re-
sult, p=0.4756. This difference is probably due to the smallness of the
system size and to the incompleteness of packing in Solomon’s simula-
tion. As for random packing fraction, 7.,,=v./vnx, its limiting value
»=1lim 7,, can be obtained, using the value of p just obtained, as p

Z,y—oco

-/12/r=0.6035, where z/+12 is the regular packing density. This value
should be compared with »=0.6036+0.0010 (95% int.) obtained by the
regression analysis similar to p.

5. Discussion

The complete packing algorithm, CPA, proposed in this paper can
be directly extended to the random sequential packing of higher dimen-
sional spheres. Moreover, as can be inferred from the proposition in
Appendix, the algorithm may be generalized to be used not only for
the random packing of any identical convex objects such as cubes and
ellipsoids but also for that of non-identical convex objects.

As we have mentioned in the last part of Section 3, the resulting
configuration of discs in the residual space obtained by the CPA is in-
evitably an approximation to that for the true randomness, though it
can be made almost exact. It can be seen, however, as we have also
noted, that the packing density is more accurate than the configuration
of discs, which confirms the validity of our result.

Recently, Noguchi and Hori [13] computed the random packing
density of dises by an algorithm whose idea is on the same line as ours.
Their result is p=0.5474+0.0007 (95% int.). It is very close to our
result.

We are now carrying out simulations of the random sequential
packing of spheres employing the CPA extended to three dimensions.
Preliminary simulations indicate that the random packing density of
spheres amounts to 0.351 or more, which should be compared with
Solomon’s result for spheres, p=0.280. Those results for discs and
spheres strongly suggest that the random packing densities of higher
dimensional spheres will be also greatly improved by employing the
CPA.
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Appendix

We present below a proposition which assures the validity of our
method for searching occupiable regions. As a preliminary, we define
the following concepts:

DEFINITION 1. A concave m-gon is a simply connected open set
whose boundary is a simple closed curve which is composed of n arecs
each of which is concave with respect to the set.

DEFINITION 2. A line which goes through a vertex of a concave
polygon is said to lie inside the concave angle about the vertex if in
every neighbourhood of the concerned vertex the line meets the inte-
rior of the polygon.

With these definitions, the proposition is stated as follows;

PROPOSITION. Let P be an arbitrarily givem concave polygon and
suppose for every wvertex of P a line is drawn through the vertex and
inside the concave angle about the vertex. Then, among these lines, at
least one patr which belong to an adjacent pair of vertices intersect each
other imside P.

ProOF. Let A,, A,,---, A, be the vertices of concave n-gon P as
shown in Fig. 5 A. We shall prove the proposition by deriving to a
contradiction, assuming that the condition does not hold. Namely, we
assume all of the » pairs of lines, each pair going through an adjacent
pairs of vertices and being inside the respective concave angles, do not
intersect inside P. Let A,B, and A;B, be any such a pair of lines drawn

Fig. 5A “Concave n-gon” P. Ay, As,+++, An
are its vertices. C;: is a cross point of
of two lines A;B; and A:B; and is located
outside P.
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for an adjacent pair of vertices, A,, and A,, respectively. For simplic-
ity, let B, and B, be the points at which the respective lines at first
interseet with the boundary of P. In what follows we define B; (1=
3,4,---,n) similarly to this. The segment A,B, divides P into two con-
cave subpolygons, A,B, itself being the arc common to both polygons.
Let P, and P/=P—P, be such polygons, where P, includes A, as one
of its vertices. Since, by the assumption, the cross point C, of the
two lines A;B, and A,B,, if it exists, lies outside P, it is obvious that
the segment A,B, lies in P, and does not meet AB,. Similarly, the
segment A,B, divides P, into two subpolygons P, and P/=P,—P,, where
P, is defined as to include A;. Therefore, by the assumption, any line
segment A,;B; which goes through A; and is inside the concave angle
about A; must lie in P, and must not meet A,B,. The number of ver-
tices of P, is less than that of P, by at least one. If we continue the
same procedure, since the number of vertices of subpolygon P, which
contains A, decreases by at least one with each increase of 7, we shall
arrive, for some k (<), at the situation where the subpolygon P, in-
cluding the vertex A,,;, and determined by a line segment A.B, is a
concave triangle as shown in Fig. 5B. In this situation, it is obvious

Ak+l

Fig. 5B An ultimate situation in the proof of the
proposition. Broken line certainly intersects the
segment AxBy.

by the concavity of ares A.A,,, and A,.,B, that any line which goes
through A,,, and is inside the concave angle about A,,; has to meet
the segment A,B,, whence the meeting point of the line with A,B, is
inside P. This contradicts the assumption, which proves the proposition.

The conclusion of the proposition can be extended under the same
conditions. We give a more general conlusion in the following;

COROLLARY. Under the same conditions of the proposition, at least
two pairs of lines which belong to two distinct adjacent pairs of wvertices
intersect pairwise inside P.
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PROOF. It is almost self-evident if we use the same idea in the
proof of the proposition for another subpolygon P/ determined by the
line segment A,B,.
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