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DOUBLY TRUNCATED EXPONENTIAL DISTRIBUTION

P. C. JosHi

(Received Aug. 16, 1978)

Summary

In a recent paper [2], the author has obtained some recurrence
relations between the moments of order statistics from the exponential
and right truncated exponential distributions. In this paper, similar
relations are derived for a doubly truncated exponential distribution.
It is shown that one can obtain all the moments by using these recur-
rence relations. ‘

1. Introduction

Let X be a doubly truncated exponential random variable with dis-
tribution function F'(x) and density function

(1) f@)=e7/(P—Q), —log(1-Q)sr=—log(1-P),

where Q is the proportion of truncation on the left and 1—P is the
proportion of truncation on the right of the standard exponential dis-
tribution. The proportions @ and P, with Q< P, are assumed to be
known. Let X, ,<X,,<..-<X,, represent an ordered sample of size
n from (1). Denote the ith moment of kth order statistic X, by af,
1£k<n.

For Q=0, this distribution reduces to the right truncated exponen-
tial distribution, which has been considered in detail by Jeshi [2] and
Saleh et al. [3]. Saleh et al. provide exact finite series expressions for
first and second order moments of X, , by direct integration, while Joshi
has obtained some recurrence relations for a{’, and has tabulated the
third and fourth order moments. If P is also equal to 1 then X follows
the standard exponential distribution, which has been studied in con-
siderable detail. These truncated and untruncated exponential distri-
butions have been used as a model in the life testing data. For these
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distributions, order statistics and their moments play an important role
in estimation, testing of hypothesis and related problems.

Although it is possible to proceed along the lines of Saleh et al.
[3] for the double truncated case also, yet the expressions for moments
become extremely complicated. On the other hand, the results given
by Joshi [2] can be immediately extended. These relations link the
higher order moments in terms of lower order moments and also give
the results for left truncation by setting P=1.

2. Recurrence relations
Throughout this section, we shall follow the convention
ag:?)n:]- ’

and denote —log (1—Q) by @, —log (1—P) by P;, (1—Q)/(P—Q) by @,
and (1—P)/(P—Q) by P,. Now the probability density function of X,
(1k<n) is given (David [1], p. 8) by

Fen(®)={Bk, n—k+ 1} {F (@)} {1-F(@x)}*f (@) ,

where B(-,-) stands for the complete beta function. Substituting for
f(x) and F(zx), this can be written as

fen(@)={B(k, n—k+1)}(P—Q)™"(1—Q—e ")
- (P—1+e?)y %, @Q=z=P.

Consequently
. Py
(2) a=|" 2 fun(e)dz .
Q
ReLATION I. For 121,
(3) a}=QiQ;— PP, +iaf® .
PROOF. Setting k=n=1 in equation (2), we have
) Py
= (P—Q)™ SQ wle~vde .
1

Integrating by parts by treating x¢ for differentiation and e¢=* for in-
tegration, the result follows.

RELATION II. For n=2, and 1=1,
(4) aB=a$2, Qe — Pi P+ (i/n)alz? ,
(5) a=QiQ,—a_ P+ (i/n)as;? .
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Proor. To prove (4), note that
) P
agzr=n(P-Q | a1-Q—eyteds .
Q

Integrating by parts, but now treating x*~' for integration and noting
that

d —z\n—1,—x
%{(I_Q_e ) le™}
=—n(l—-Q—e ) e+ (n—1)1—-Q)(1—-Q—e*)" % *,

we get

Py

a0 = (n0) (P— Q) {#(1—Q—ey e~

1

+n Spl r(1—Q—e ) 'e"dx
Q
—(n-1)(1-Q) SQ 21~ Q—ey~te-ds)

=(n[i) [PiP+ai—a:2,,Q] -

Rewriting in terms of a$),, the result (4) follows. The proof of (5) is
similar.

RELATION III. For »n=3, 2<k=<n-—1, and =1,
(6) aP=af2, . . Q—al Pyt (i/m)afiz? .

Proor. Now

a§t;9=(B(k, n—k+1)}"(P— Q)™ S:‘ - h(z)da ,
1
where
Mr)=1—Q—e ) Y(P—1+4e~*) %=,

The result (6) is obtained by integration by parts and using that

4 pia)= —n(l— Qe P—1-+e-yFe~

dx

+(k—1)(1-Q(1—Q—e ) (P—14e ) e =
—(n—k)(1—P)(1—Q—e ) (P—1+e )+ e

In order to calculate af’,, the Relations I, II, and III are applied
successively. For example, for i=1, af is first obtained from equation
(3), the moments of largest and smallest order statistics are then eval-
uated from equations (4) and (5) respectively, and finally equation (6)
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is used to obtain other moments. Next the moments for ¢1=2 are eval-
uated in the same order, and so on.

As pointed out in Joshi [2] for the right truncation case, here also
the moments can be obtained by means of a simple computer program
without introducing serious rounding errors, at least for small values
of n. Further, any particular pattern of truncation can be handled.
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