NONEXISTENCE OF ESTIMATES WHICH MINIMIZE $x'V^{-1}x$ IN AN EXPONENTIAL TYPE OF STATIONARY TIME SERIES

TOSHINAO NAKATSUKA

(Received Dec. 23, 1976; revised May 8, 1979)

In estimating the structural parameters $\boldsymbol{\theta} = (\theta_1, \dots, \theta_n)'$ of a spectral density $f(\lambda) = (\sigma^2/2\pi)g(\lambda|\boldsymbol{\theta})$ of a stationary time series one often (e.g. [2], [3]) uses the estimates which minimize $\boldsymbol{x}'V^{-1}(\boldsymbol{\theta})\boldsymbol{x}$ where $\boldsymbol{x} = (x_1, \dots, x_n)'$ is a sample vector and $\sigma^2V(\boldsymbol{\theta})$ is the variance matrix. The purpose of this paper is to show that there are, unless $\boldsymbol{x} = \boldsymbol{0}$, no such estimates in the exponential model of spectrum

$$f(\lambda) = \frac{\sigma^2}{2\pi} \exp\left(\sum_{s=1}^p \theta_s \cos s\lambda\right)$$

which was proposed for fitting a stationary time series by Bloomfield [1]. This fact directly follows from the following theorem.

THEOREM. In the exponential type, for any fixed sample $\mathbf{x} = (x_1, \dots, x_n)'$ there is a sequence $\boldsymbol{\theta}_j$ such that $\lim_{j \to \infty} \mathbf{x}' V^{-1}(\boldsymbol{\theta}_j) \mathbf{x} = 0$.

PROOF. Let's consider the case that $\theta_1 > 0$ and $\theta_j = 0$ for $j \ge 2$. Then, the minimum eigenvalue of $V(\theta)$ is

$$\begin{split} \min_{\boldsymbol{\xi}'\boldsymbol{\xi}=1} \boldsymbol{\xi}' V(\boldsymbol{\theta}) \boldsymbol{\xi} = & \frac{1}{2\pi} \min_{\boldsymbol{\xi}'\boldsymbol{\xi}=1} \int_{-\pi}^{\pi} \left| \sum_{t=1}^{n} \xi_{t} e^{it\lambda} \right|^{2} \exp\left(\theta_{1} \cos \lambda\right) d\lambda \\ \geq & \frac{1}{2\pi} \exp\left(\frac{1}{2} \theta_{1}\right) \min_{\boldsymbol{\xi}'\boldsymbol{\xi}=1} \int_{-\pi/3}^{\pi/3} \left| \sum_{t=1}^{n} \xi_{t} e^{it\lambda} \right|^{2} d\lambda \; . \end{split}$$

It is easily found that $\min_{\boldsymbol{\xi}'\boldsymbol{\xi}=1}\int_{-\pi/3}^{\pi/3}\left|\sum_{t=1}^{n}\boldsymbol{\xi}_{t}e^{it\lambda}\right|^{2}d\lambda$ is positive. Hence, $\lim_{\theta_{1}\to\infty}\min_{\boldsymbol{\xi}'\boldsymbol{\xi}=1}\boldsymbol{\xi}'V(\boldsymbol{\theta})\boldsymbol{\xi}=\infty$. This completes the theorem. Q.E.D.

TOKYO METROPOLITAN UNIVERSITY

REFERENCES

[1] Bloomfield, P. (1973). An exponential model for the spectrum of a scalar time series, *Biometrika*, **60**, 217-226.

- [2] Hannan, E. J. (1960). Time Series Analysis, Methuen, London.
 [3] Walker, A. M. (1964). Asymptotic properties of least-squares estimates of parameters of the spectrum of a stationary non-deterministic time-series, J. Aust. Math. Soc., 4, 363-384.