ON A LACK OF MEMORY PROPERTY OF THE EXPONENTIAL DISTRIBUTION

R. SHIMIZU

(Received Apr. 6, 1979)

Summary

Let X be a positive random variable with the distribution F and let G_0 be a monotone non-decreasing function such that $E\{G_0(X)\}$ exists and is positive. Then under some additional conditions on F and G_0 , $E\{G_0(X-x)|X>x\}=E\{G_0(X)\}$, $x\geq 0$ implies that F is exponential.

1. Introduction

We consider a positive random variable X with the distribution F. Suppose y is a positive number such that F(y) < 1. We say that the distribution F lacks memory (in the strong sense) at y if the condition

(1)
$$\Pr\{X > x + y \mid X > y\} = \Pr\{X > x\}, \quad x \ge 0,$$

is satisfied. In terms of the distribution function F(x), the distribution F lacks memory at y if and only if

$$(2) 1-F(x+y)=(1-F(x))(1-F(y)), x\geq 0$$

It is known that F satisfies (2) for two values of y, y_1 and y_2 , say, such that y_1/y_2 is an irrational number if and only if F is the exponential distribution (Marsaglia-Tubilla [7]). Introducing the condition

(3)
$$\Pr\{X > Y + x \mid X > Y\} = \Pr\{X > x\}, \quad x \ge 0.$$

where Y is a random variable independent of X, Ramachandran [8] generalized this characterization. He showed that if the distribution G_0 of Y is non-lattice and if $G_0(0)=0$, then (3) implies the exponentiality of X. His result, originally proved under the assumption of existence of the moment generating function of X, was also obtained by Huang [4], Shimizu [11], and Ramachandran [9] without the assumption. Huang pointed out that the condition $G_0(0)=0$ can be relaxed but only to the extent that $G_0(0)<\Pr\{X>Y\}$. Ramachandran's theorem is much more

310 R. SHIMIZU

reaching than it appears. For one thing it contains some other characterization theorems such as " $|X_1-X_2|$ has the same distribution as X_1 if and only if X_1 is exponentially distributed, where X_1 and X_2 are i.i.d. variables." And for another it is easy to generalize it further. In fact (3) is equivalent to (if $G_0(0)=0$)

$$(4)$$
 $\int_0^\infty (1-F(x+y))dG_0(y) = (1-F(x))\int_0^\infty (1-F(y))dG_0(y)$, $x \ge 0$

which in turn implies

(5)
$$E\{G_0(X-x)|X>x\} = E\{G_0(X)\},$$

for all $x \ge 0$, and it is clear that G_0 need not be a distribution function. We shall say that X lacks memory (in the weak sense) at x with respect to G_0 if $E\{G_0(X)\}$ exists and the condition (5) is satisfied. Now, we can ask "to what extent can we relax the condition on G_0 in order that the fulfilment of (5) for all $x \ge 0$ implies the exponentiality of X?" In the next section we shall give a fairly general sufficient condition. The result contains the ones obtained by Laurent ([6], $G_0(x) = x^2$), Azlarov-Dzamirzaev-Sultanova ([1], $G_0(x) = x^2$), Dallas ([2], $G_0(x) = x^2$), and Sahobov-Geshev ([10], $G_0(x) = x^k$, $k \ge 2$).

A similar result was obtained by Klebanov [5] under somewhat different conditions using a different method.

Our result depends on the following theorem which can easily be obtained from Theorems 1 and 2 of Shimizu [11].

THEOREM 1. If G(x) is a distribution function on $(0, \infty)$ such that

(6)
$$\int_0^\infty e^{ix} dG(x) < \infty \quad \text{for some } \delta > 0$$

and if H(x) is a non-negative right-continuous function defined for $x \ge 0$ and satisfies the condition

$$(7) H(x+y) \leq e^{\lambda y} H(x) x, y \geq 0$$

where λ is a positive constant, then the equation

(8)
$$H(x) = \int_0^\infty H(x+y)dG(y)$$

is satisfied if and only if H(x) is a periodic function with period ρ for every point ρ of increase of G.

2. A characterization theorem

Let X be a positive random variable with distribution F, and let

 $G_0(x)$ be a right continuous monotone non-decreasing function which satisfies the following conditions

- (i) $G_0(-0)=G_0(+0)=0$
- (ii) $\mu \equiv \mathbb{E} \{G_0(X)\}\$ exists and is positive, and
- (iii) there exists a positive number ξ such that

$$\mu < \int_0^\infty e^{-\xi x} dG_0(x) < \infty$$
.

We shall prove

THEOREM 2. Suppose the conditions stated above are satisfied. Let Ω be the set of all points of increase of the non-decreasing function G_0 . If the equality

(9)
$$E\{G_0(X-x)|X>x\}=E\{G_0(x)\}, x\geq 0$$

holds, then F can be put in the form

(10)
$$F(x) = 1 - H(x)e^{-\lambda x}, \quad x \ge 0$$

where λ is a positive constant and H(x) is a periodic function with period u for all $u \in \Omega$. In particular (9) implies the exponentiality of X if G_0 is not concentrated on the lattice points $0, \rho, 2\rho, 3\rho, \cdots$ for any $\rho > 0$.

PROOF. We first show that

(11)
$$\mu(x) \equiv \int_{x}^{\infty} G_{0}(y-x)dF(y) = \int_{0}^{\infty} (1-F(x+y))dG_{0}(y) \leq \mu(0) = \mu ,$$
 for all $x \geq 0$.

In fact, if A>x, integration by parts gives

$$\int_{x}^{A} G_{0}(y-x)dF(y) = \int_{0}^{A-x} G_{0}(y)d_{y}F(y+x)$$

$$= -(1-F(A))G_{0}(A-x) + \int_{0}^{A-x} (1-F(x+y))dG_{0}(y) .$$

But as $\mu = \mu(0) = \int_0^\infty G_0(y) dF(y)$ exists we have

$$0 \leq (1 - F(A))G_0(A - x) \leq (1 - F(A))G_0(A) \leq \int_A^\infty G_0(y)dF(y) \to 0 ,$$
 as $A \to \infty$.

It follows that

$$\mu(x) = \lim_{A \to \infty} \int_{x}^{A} G_0(y-x) dF(y) = \int_{0}^{\infty} (1 - F(x+y)) dG_0(y)$$

312 R. SHIMIZU

as claimed. The inequality in (11) follows from the monotonicity of F. As the conditional distribution function $F_x(y)$ of X given X > x is

$$F_x(y) = \frac{F(y) - F(x)}{1 - F(x)}, \quad y > x,$$

we have in view of (11)

$$\begin{split} \mathrm{E}\left\{G_{\scriptscriptstyle 0}(X\!-\!x)\,|\,X\!>\!x\right\} &= \!\int_x^\infty G_{\scriptscriptstyle 0}(y\!-\!x) d_y F_x(y) \\ &= \!(1\!-\!F(x))^{-1} \int_x^\infty G_{\scriptscriptstyle 0}(y\!-\!x) dF(y) \\ &= \!(1\!-\!F(x))^{-1} \int_{\scriptscriptstyle 0}^\infty (1\!-\!F(x\!+\!y)) dG_{\scriptscriptstyle 0}(y) \;. \end{split}$$

It follows from the condition (9) of Theorem 2 that the equation

(12)
$$\int_{0}^{\infty} (1 - F(x+y)) dG_{0}(y) = \mu(1 - F(x)), \quad x \ge 0$$

holds.

On the other hand by the assumption (iii) we can find the unique positive number λ such that $\lambda > \xi$ and

$$\int_0^\infty e^{-\lambda x} dG_0(x) = \mu .$$

Let G be the distribution function defined by $dG(x) = \mu^{-1}e^{-\lambda x}dG_0(x)$. Introducing $H(x) \equiv (1 - F(x))e^{\lambda x}$, (12) becomes

$$H(x) = \int_0^\infty H(x+y)dG(y)$$
, $x \ge 0$.

Note that the condition (6) is satisfied with $\delta = \lambda - \xi > 0$ and that G and G_0 have a common set Ω of points of increase. The desired result follows from Theorem 1. Q.E.D.

Remark. The condition (iii) is satisfied if

(13)
$$\int_0^\infty e^{-\iota x} dG_0(x) < \infty \quad \text{for every } \varepsilon > 0.$$

In fact, if we take A sufficiently large, we can make

$$\mu_1 \equiv \int_0^A dG_0(y) > \mu = \int_0^\infty (1 - F(x)) dG_0(x)$$
.

Let $\xi > 0$ be so small that $\mu_1 e^{-\xi A} > \mu$.

Then

$$\mu < \mu_1 e^{-\xi A} \leq e^{-\xi A} \int_0^A dG_0(x) \leq \int_0^A e^{-\xi x} dG_0(x) \leq \int_0^\infty e^{-\xi x} dG_0(x) < \infty$$
.

In particular if $E|X|^r$ exists for some positive γ , then

$$E\{|X-x|^r|X>x\} = E\{|X|^r\}, \quad x \ge 0$$

implies the exponentiality of X.

THE INSTITUTE OF STATISTICAL MATHEMATICS

REFERENCES

- [1] Azlarov, T. A., Dzamirzaev, A. A. and Sultanova, M. M. (1972)*. Characterization properties of the exponential distribution and their stability, Sluchain. Proc. i Statist. Vyvody, 2, Tashkent, Fan, 10-19 (in Russian).
- [2] Dallas, A. C. (1975)*. On a characterization by conditional variance, *Manuscript*, Athens University, Greece.
- [3] Galambos, J. and Kotz, S. (1978). Characterizations of Probability Distributions, Lecture Notes in Mathematics 675, Springer-Verlag.
- [4] Huang, J. S. (1978). On a "lack of memory" property, University of Guelph Statistical Series, 1978-84.
- [5] Klebanov, L. B. (1977). Some results related to characterization of the exponential distributions, Pre-print in Russian, to appear in *Theory Prob. its Appl.*
- [6] Laurent, A. G. (1974). On characterization of some distributions by truncation properties, J. Amer. Statist. Ass., 69, 823-827.
- [7] Marsaglia, G. and Tubilla, A. (1975). A note on the "lack of memory" property of the exponential distribution, Ann. Prob., 3, 353-354.
- [8] Ramachandran, B. (1977). On the strong Markov property of the exponential laws, Proceedings of the Colloquium on the Methods of Complex Analysis in the Theory of Probability and Statistics, Debrecen, Hungary, Aug-Sept., 1977.
- [9] Ramachandran, B. (1979). On the "Strong Memoryless property" of the exponential and geometric probability laws, Pre-print, Indian Statist. Institute, New Delhi, India.
- [10] Sahobov, O. M. and Geshev, A. A. (1974)*. Characteristic properties of the exponential distribution, *Natura Univ. Plovidiv.*, 7, 25-28 (in Russian).
- [11] Shimizu, R. (1978). Solution to a functional equation and its application to some characterization problems, Sankyā, A, 40, in press.

^{*} These papers were not available to the author at the time of writing this paper (c.f. Galambos-Kotz [3]).