Ann. Inst. Statist. Math.
31 (1979), Part A, 299-308
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Abstract

We extend the well known transformation technique for order sta-
tistics to get less restrictive conditions for the Bahadur representation
of sample quantiles.

1. Introduction and summary

Let Xi, X;,--- be a sequence of independent and identically distri-
buted random variables with common distribution function F. Fix pe¢
(0,1) and suppose F({,)=p. Let F,(x) be the empirical distribution
function based on (Xi,:--, X,); i.e. nF,(x)=number of X, less than or
equal to # (1=<7<n). Let Y,, be the sample p-quantile based on (X,,
.-+, X,); take e.g. Y,, the [np]th order statistic among (X,---, X,).
Bahadur [2] proved that if F' is twice differentiable in a neighbourhood
of {,, F'" is bounded there and F’({,)>0, then

(1.1) Yp:n:Cp'l'(Gn(Cp)_Q)/Fl(Cp)'*'Rn

where R,=0(n"**logmn) a.s. as n— oo, with G,(x)=1—F,(x) and ¢=
1—p. An exact order of R, has been given by Kiefer [8]. Sen [9]
extended Bahadur’s result to a sequence of dependent variables.

Instead of the exact p-quantile Y, one can take an approximate
p-quantile Y, , with p, close to p. We will assume throughout that
np, is an integer. J. K. Ghosh [4] obtained the representation

Y, in=Cp,+(Gn(C) — ) F'(C,) + R,

with the weaker result that n'?R,—0 in probability as n—oco for
n**(p,—p) bounded as m— oo under the weaker assumption that F’(,)
exists and is strictly positive. M. Ghosh and S. Sukathme [5] proved,
under the assumption

Hm [F(C+h) = F @GR =M
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for some p>0, M >0 and n"%(p,—p) bounded as n-»oco that

(1.2) M|Y,,n—Col 880 (Y0 —C0) =Gul(C) —q+ R,

where n'?R,—0 in probability as n—oco. Under the assumption
|[F(C+h)—F(C)=M|hP1+0(R))  as h—0

and n**(log n)~'(p,—p) bounded as n— oo they also obtained an exten-
sion of (1.1) namely:

(1-3) MI an:n_cplp sgn (Ypﬂ:n_cp)an(sz)_Q'l'Rn

where R,=0(n"'*7log n) a.s. as n—oo and y=min (1/4, 1/2p).
In Section 2 we will prove the following result.

THEOREM 1 (weak convergence result). Suppose lim n'*(p,—p)=0
and p>0. There exists a sequence of positive constants n{:::} such that
(1.4) - 7Y =Gl sgn (Y, —8)=Gu(C,)— g+ R,
with n'*R,—0 in probability as n— oo if and only if

o Ftat)—F&,) ..
(1.5) ltlll? F(E,,-{-t)—F(C,,; |z]r sgn 2 Jor all x+0.

Here a,~F (p+n")—F~Y(p): =inf {z|F((,+2)—F(,)=n"""} as n— .

COROLLARY. This shows in particular that for J. K. Ghosh’s rep-
resentation the condition F'({,)>0 is mecessary as well.

Note that Theorem 1 gives a necessary and sufficient condition for
a more general version of (1.2).
In Section 3 we will prove

THEOREM 2. Suppose (nflog log n)**(p,—p) bounded as n—oo. If
(1.6) |F(+h)—F(@C)|=M|hP(1+O|RP?)  with M>0, p>0
then
MY, »—Cl" sgn (Y, —C) =Gu(C)—a+ R,
with (n/log log n)**R, bounded with probability 1 as n— co.

Comparing this result with that of Ghosh and Sukathme, one sees
that if p<2 our statement is slightly stronger, but our conditions are
weaker. If p>2 both our result and our condition on F' are stronger.

COROLLARY. Suppose F' exists in a metghbourhood of (, and
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Iy {F'(C,+y)—F'(,)} is bounded, then the conditions of Theorem 2
are fulfilled with p=1. In particular this is the case if |F"'({,)|<oo
(¢f. Bahadur’s condition requiring boundedness of F" in a meighbourhood
of Cyp)-

2. Proof of Theorem 1

We use the following lemma

LEMMA 1. Let {V,} and {W,} be two sequences of random variables
satisfying the following conditions:
a) For all 3>0 there exists A=2A(8) such that P {|{W,|>2}<8 for all n.
b) For all &k and ¢>0

i) limP{V,.<k; W,=k+¢e}=0

n—oo

ii) limP{V,=k+¢; W,=<k}=0.

n—oo

Then V,—W,—0 in probability as n— oo.
For a proof of this lemma we refer to J. K. Ghosh [4].

Let {np,} be a sequence of positive integers such that p,=p+o(n=?)
and let Y, ,, be a sample p,-quantile. For the proof of (1.4) we use
the lemma and set
Yp ;'II_Cp

n

V.= "sgn <_anm" & )

an

an

to=+ 1 {F(,+a.|t]”” sgnt)—F((,)}
Z,n=NNA{GC,+a.|t]’ sgn t)—G({,+a.|t]’” sgn t)}

with G(x)=1—F(x), G (x)=1—F,(x) and W,=v/7 {G.(,)—G(,)}. We
have n'*R,=V,—W, and it is sufficient to show that V, and W, satisfy
the conditions of Lemma 1.

As in Ghosh [4] we have

2.1) V.St Z, <t + v (p.—p)

and

ta= /T (F(C,+anlt]’ sgn t)— F(C,)} ~L (Cp; t(zcl _ti‘: fig_n Fsz—)F(Cp)

as n— oo, since the function F({,+2)—F({,) is regularly varying as
z | 0. Hence

2.2) lim {t,+ v (p.—p)} =t .
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Furthermore, since n(Z,,—W,) has a binomial distribution we have
E(Z.n—W.)'=pun(1—pun)

where p,.,=|F((,+a,|t]"" sgnt)—F(,)|—0 as n—oco. So

2.3) Zy—W,—0 in probability as n— oo .

We verify that the conditions of Lemma 1 are fulfilled. Condition a)
is true by the asymptotic normality of W,. For condition b,i) note
that with ¢t=k for sufficiently large n (using (2.1) and (2.2)) V,.<t=
Zyw StV m(pa—p)=Z,,<t+e/2. Hence by (2.3) imP{V,<t; W,=t+

n—oo

e} =0. Similarly one verifies b,ii). Hence (1.4) is true.

It is clear that for this part of the proof the boundedness of
V7 (p,—p) is sufficient.

Next we prove the converse i.e.: If for some p>0, some sequence
{a.} and yn(p,—p)—0 we have n"R,—O0 in probability, then (1.5)
holds. By the asymptotic normality of W, and n"*R,=V,—W,—0,
Vou=1(Y,, n—Cp)a.l sgn ((Y,,.n—Cp)/a,) asymptotically has a normal distri-
bution. Hence the sequence (Y, .—(,)/a. converges weakly to the dis-
tribution of UY? sgn U, where U has a N(0, p(p—1)) distribution. From
Smirnov’s [10] necessary and sufficient conditions for the convergence
of the normalized Y, . we then have (1.5).

3. Proof of Theorem 2

Theorem 2 has been formulated in this way because of the relative
simplicity of its result and conditions. Before proving Theorem 2 we
wish to prove a more general representation with less appealing con-
ditions. Theorem 2 will turn out to be a special case.

THEOREM 2. Suppose (nflog log n)*(p,—p) bounded as n—oo. If

n 4 1 [ Ulx(v/(log log n)/n))
@-1) ( log log n ) vn { UQ/v/n)

1s bounded uniformly for all |x|=p(1—p) with

—zx+log log n]

U) :=|F(p+x)—F (p)sgnz, p>0;
then

an:n_ F—l(p) i

=p—F.(()+Rx
2

g0 (¥, = F7P) =

with a,=F Y p+1/yn)—F(p) and (nfloglog n)**R) bounded with prob-
ability 1 as n— oo.
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Let Z,, Z,,--- be i.i.d. random variables with a uniform distribu-
tion on [0,1]. Let H,(x) be the empirical distribution function based
on (Z,,-+-,Z,) and let V,, be the samlpe p-quantile corresponding to
(Zi,-++,Z,) and 0<p<1l. We define

(D)= (Vyn— D)+ (Ho(D)—D) .
We know (Kiefer [8]) that

Iim r,(p) (2943 (p(1—p))*-n~¥(log log m)"¥] =1

with probability 1.

We now use the well-known transformation technique for order
statistics (cf. e.g. de Haan [6]). Let F be a distribution function with
F(,)=p. Let X,:=FYZ) for 2=1,2,... then X, X;,--- are i.i.d.
random variables with distribution function F. Let Y, be the sample
p-quantile from (X, X;,--+, X;) then Y, ,=F-V,,). Furthermore

nF,({,)={number of X; less than or equal ¢, (1<i<n)}
= {number of Z, less than or equal p (1<1<n)}
=nH,(p) .

PROOF OF THEOREM 2'. Define R :=sgn (Y, .—F ' (p))1/v7)|(Y,
_F_l(p))/anlp+Fn(cp)—p- Then

F~(p) |

R, —r,=sgn (an;n l(p)) \/— pn _(Vp;n_p)

with (n/log log n)¥*r, bounded a.s. as n— oo.
For the proof of Theorem 2’ it is sufficient to prove that (n/log
log n)*(R3—r,) is bounded a.s. as n— co.

LEMMA 2. If p.=p+O0(n *(log log n)**) and V,., a sample p-quan-
tile based on (Z,,:--, Z,) with {Z;} a sequence of independent uniformly
distributed random variables, then

{———] Vo, in—=Vipin) bounded a.s. as n— oo .
log log n %

The proof of this lemma can be found in the appendix, due to W.
R. van Zwet.

From the result of this lemma we conclude that our representation
holds if the following expression can be shown bounded with probabil-
ity 1.

_ e (Y FUD) | 1
(3.2) [W] [sgn (Yo,n—F (D)) a. v
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~(Vya=p)] -
Substituting U(x)=|F*(p+x)—F'(p)|f sgn x, we can write (3.2) as

0w T 1 Pt (V) —F D)
[loglogn} [Sgn(V”"‘" P i ‘ Fip+1/Vn)—F(p)

P

~(Vyu—D)]
(3-3) =[ log ;(b)g n ]M. s/lﬁ[ U(S}(’f;&%'?;) —‘/%(Vp"m_p):l )

According to the law of iterated logarithm (Bahadur [2]) and Lemma 2

lim SUP V1 Vyn—D) _ +p(1—p)
e I0f T Tog log n —p(1—p)

Hence (3.3) is bounded with probability one if (3.1) is bounded uniformly
for all |z|=<p(1—p) as n—> oo.

with probability 1.

Remark. We point out a necessary condition for (3.1). With
x=v/vIoglogn and v>0 constant (3.1) implies [n/loglog n]**-v/v n -
[(U(w/vn)vU1/¥ n))—1] bounded. From this it follows that U(v/v n)/
vU(1/¥n)—1 as n—oco and hence (Uw/v n)pUQ/V n))—1)~log (U(v/
VUV n)). So with @(t)=log (U®t)/t) (3.1) implies for all v>0
n*/(log log n)**{¥T(v/]¥yn )—¥F(1/¥n )} bounded (n— o). According to
Ash, Erdos and Rubel [1] this implies Itlg‘l (U@®)/t) exists and is finite and

positive, i.e.

lim @+ —F'(p) _ 1
t10 t M

Hence a necessary condition for (3.1) is

3.4) lim [F G+ —F@) _
n—0 |kl

Now we turn to the proof of the representation of Theorem 2.

ProOOF OF THEOREM 2. We adapt the previous proof. From (1.6)
it follows clearly

@5 e ‘l(p+ﬁl“F “(p)l -TH is bounded for £—0 .

Defining
Rn : =MI an;n_ Cplp sgn (an;n'— Cp)"‘ Fn(Cp) —p
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we have

R,,—’I‘,.=M| anm_cplp sgn (Yp,,:n_cp)_(Vp;n_p) .
It is sufficient to prove that [n/loglog n]*(R,—7,) is bounded a.s. as
n—oc,

Using Lemma 2 once again it is clear as in the proof of Theorem
2’ that it is sufficient to prove

n 3/4
[W] [MU(Vp"m_ p) - (Vl’n;n_ p)]

bounded with probability 1 as n—oco. In view of the law of iterated
logarithm for uniform order statistics it is sufficient to prove

n R [loglogn \ _ [loglogn
[ log logn :| [MU(“;\/ n > w\/ n ]

bounded for all |z|<p(1—p). This follows from (3.5) by substituting
t=x+(log log n)/n.

Remark. Under the condition of Theorem 2 also the condition of
Theorem 2’ is valid. This can be seen if one substracts (3.5) with {=
1/¥n from (3.5) with t=x+/(log log n)/n.

4. Appendix*
Let U,.y<U,y<-++<Upy.x be uniform order statistics.
LEMMA 1. For N=1,2,--.- and k=1,2,-.-,N, P(U,x22k/N)=<

e—(k+2)/4.

PROOF. For k=N/2 the lemma is trivial. For k=1, P (U,.,=2/N)
=(1—2/N)"<et. Consider therefore the case 2<k<N/2. Let S be
the number of values in [2k/N, 1] among U,.y,: -, Uy.y. Clearly S has
a binomial distribution with parameters N and p=1-—2k/N. By Bern-
stein’s inequality (see Hoeffding [7])

P (U2 2) =P (S2N-k+)=P (S —pz FEL <o,

where
1o A=p)(k+1)/N) __k+1 - N(E+1)/N) _ (k+1)N
p(1—p) N—2k '’ 1-p 2k’
3
W)= 2(3+2) '

* Communicated by W. R. van Zwet.
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so that

=3 N (k1) -1
M= Nk(3N—5k+1) =z k+2).

Note that for k=1, Hoeffding’s condition ¢<b is violated.
For N=1,2,---, define Uy,y=0 a.s. and Uy,;.x=1 a.s.

LEMMA 2.
For N=1,2,.-- and 1k<m<N4+1,

P ( Unv—Us:n > 2(m—k) )ée—m—mzm :
Um:N m—1

for N=1,2,..- and 0Zk<mZN,

P < Upnv—Us:w > 2(m—k) )ée—(m~k+2)/4 .
1—Ue.x N—-k

PrOOF. Immediate from Lemma 1 because the random variables
involved are distributed as U,_ym—; and U, _.x—; respectively.

THEOREM. Let {ky} and {my} be sequences of integers with 0=ky<
my=<N+1 for N=1,2,.--.. Then, with probability 1,

. N
1
S me—kn)valog N

(UmN:N—UkN:N)éz .

Here x\/y denotes the larger of x and y; xAy will denote the smaller
of * and y and [x] the integer part of x.

Proor. We split up the natural numbers into three disjoint sub-
sets A={N:my—ky=N/2}, B={N:my—ky<N/2, my=N/2} and C=
{N:my—ky<NJ2, my<N/2} and consider the lim sup over N in these
subsets separately. Because U, .y—U,:»<1 a.s., the lir}rvlest is cer-

tainly <2. Next we consider the set B. Choose ¢>0 and define, for
NeB, ki=kyN[my—(4+¢)log N] so that my—ki,=(4+¢)log N but

1<li my—ky <1+5 .
S S k) VAlog N=" 4

For sufficiently large N e B, we have 1<k, <k, because my<N/2 and
ky>my—Nj2=0. Hence
N

41 i U, o—TU... s(l e
( ) lrzrs}eSBup (mN_kN)v4 log N( ¥ UkN’N)—— + 4>
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NeB my—kjy

(Um,,:zv— - Uk;v:zv) .

Because my—ki=(4+¢)log N, the first part of Lemma 2 and the Borel-
Cantelli lemma ensure that

—”—1\,—(Lfml,,:N_"I]lcfvzl\l)'(_,rnl—v:__ﬂl-v‘é2 a.s.

my—kiy my:N
Since my/N=1/2, (my—1)(NU,,.»)'—1 a.s. by the Glivenko-Cantelli
theorem and as >0 is arbitrary, (4.1) and (4.2) imply that

: N
1
Y me—ky)Valog N

4.2) lim sup
NeB

(UmN:N—UkN:N)éz a.s.

Finally lirﬁ sup may be handled in a similar way with the aid of the

second part of Lemma 2, or even easier by a simple symmetry argu-
ment replacing (Un,.v—Us,:x) BY (Uy-ty:x—Uy-my.v). The proof is com-
plete.

Note that we have been overly careful in the proof of the theorem
not to increase the constant 4 in the denominator which originates from
the constant 1/4 in Lemma 1. Further improvements would have to
come from sharpening Lemma 1. We note that the proof will still
work for triangular arrays U because we use the joint behavior for
different N only when applying Glivenko-Cantelli and that remains valid
for arrays.

An alternative way of proving the theorem is by using results of
M. Csorgoé and P. Révész [3] on the approximation of the quantile pro-
cess by Brownian bridges.
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