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1. Introduction

An n-ary block design is an arrangement of v treatments in b blocks
of the jth block size k, (7=1,2,---,b) such that the ¢th treatment

occurs r; times (1=1, 2,---, v) and the ith treatment occurs in the jth
block n;; times, where n,, can take any of the values, 0,1,---, or n—1.
When n=2 (r,=7,=---=7,), the design is said to be binary (equirepli-

cated). Otherwise, it is called nonbinary (unequal-replicated).

There are some discussions about the expression of lower bounds
on the number of blocks for a block design. However, almost all of
them are given for equireplicated block designs (cf. Kageyama and
Tsuji [4], [6]). Some of them are presented for unequal-replicated block
designs with special structure like a variance-balanced design or a par-
tially variance-balanced design (cf. Kageyama [2]). Little attention has
been given to discussions in the form of including unequal-replicated
block designs. In this paper, we aim at a systematic management of
bounds on the number of blocks for an n-ary block design by use of
one idea. A mathematical expression of a bound on the number of
blocks is successfully presented for an m-ary block design which is of
the most general type. The approach is mainly based on properties of
the C-matrix which plays an important role in a block design. The
bound derived here will lead to a number of inequalities known for
various block designs of binary and nonbinary cases.

Since a design uniquely determines its incidence matrix and vice
versa, both a design and its incidence matrix are denoted by the same
symbol throughout this paper. The designs considered here are assumed
to be connected (cf. Bose [1]). For convenience, the following notations
are used: I, is the identity matrix of order s. E,,, (O,y,) is an sXt
matrix all of whose elements are unity (zero). As a special case, E,,,
is denoted by G,. A’ is the transpose of the matrix A. D,=diag {r,,
Ts,++, 7.} Which is a vXv diagonal matrix with diagonal elements r,,
Tyyo ooy 1. Dy=diag{ky, ks, -+, k). Dyg=diag{vk, Vb, -+, vk }.
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Ds=diag {Vr,Vry,- -, v/1,}.

2. Bound on the number of blocks

We consider an m-ary connected block design N with parameters

v, b, r; and k; (:=1,2,---,v; 7=1,2,---,b) whose C-matrix is given by
C=D,—ND;'N',

in which case rank (C)=wv—1, since the design is connected. Further-

more, it is known (c¢f. Yamamoto and Fujikoshi [7]) that the minimum

eigenvalue, 0, of D-CD7+ is simple and other eigenvalues, 6,, say,

satisfy 0<6,<1. Thus, as a spectral expansion of D/+CD,- we can
put

2.1) DACDA=I,—DAND'N'DA=>6,P,+0P,
=1

where P, and P, are the projections corresponding to non-zero distinect
eigenvalues 6, (0<6,=<1) and 0 (zero), respectively, and ¢<v—1 and
i‘, rank (P,)=v—1.
i=1

Remark. (i) When the design N is equireplicated, we can choose
P, as (1/v)G,, since D;+CD7- and G, are orthogonal to each other. (ii)

The non-zero eigenvalues of D7/-CD7 and of CD;! are identical with
the same multiplicities.

Now let 8 be the multiplicity of the maximum eigenvalue 1 of
CD;'; =0 if it does not exist (i.e., §,<1 for all I). From (2.1) we
have

2.2) DAND;N'DE =Pyt 3 (1—6)P,
l=1
which implies that
v—pB=rank (D7 ND;'N'D7;)=rank (ND;'N')=rank (N)<b ,

i.e., an inequality b=v—p holds. Furthermore, since D7-ND;!N'D/;-=
(D ND7)(D/-ND%), we get, from (2.2), a spectral expansion of D7i
-N'D;*ND7; as

+33(1—0,) =L~ (DAN'DIHP.

: (D::—ND;;—)} +0Q, ,
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where @, is the projection corresponding to 0 (zero), the summation
> extends over all the integers m satisfying 1—6,>0 for m=1,2,---,¢q

(=v—1), and rank (@Q)=b—(v—p). Furthermore, it follows that b=v—p
if and only if @,=0,,,, in which case,

DiN'D7-PD?NDT+ 35 1= (DA N' D) Pu(D7-NDH) =1,

or

1

N'DP,D;x N=D, .

N'DP DN+

m

Thus, we can establish the following.

THEOREM A. For an m-ary block design N with parameters v, b,
r, k;, i=1,2,..-,9; 5=1,2,--.,b) @n which C=D,—ND;'N', the fol-
lowing imequality holds :

b=v—3,

where B 1is the multiplicity of the maximum eigenvalue, 1, of the matrix
D+CDv. Especially, the equality sign holds if and only if the projec-
tion corresponding to zero eigenvalue of D/-CD/- is a zero matrixz. In
this case,

1

D,=N'D}:P,D;i N+ 0 N'DAP,DAN,

m

where the summation extends over all the integers m satisfying 1—60,>0
Jor m=1,2,.-.,q (Sv—1).

Furthermore, letting =0 in Theorem A, we obtain the following.

COROLLARY A. For an m-ary block design with parameters v, b,
r, and k, (1=1,2,---,v; 7=1,2,---,b) having 6, (I=1,2,---,q) as non-
zero eigenvalues of D/ -CD7r, if 6,<1 for all 1=1,2,---,q (Sv—1), then
an inequality b=v holds.

The theory developed here is the most general regarding Fisher’s
inequality, b=wv, first known for a balanced incomplete block (BIB) de-
sign with parameters v, b, 7, k and 2, in the sense of including bounds
on the number of blocks for unequal-replicated block designs. Of course,
Theorem A and Corollary A include a number of the results known for
various block designs. Thus, the mathematical expression of an in-
equality derived here appears to be the best for a wide class of block
designs.
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3. Derivations of known main results

As far as the author knows except for block designs with special
structure, all the known results regarding bounds on the number of
blocks have been given only for equireplicated block designs. We shall
consider various special cases of the results in the preceding section.
These cases are important especially when n=2 (i.e., a design is bi-
nary). Two cases of incomplete block designs are considered here.

Case I. Equireplicated n-ary block designs (i.e., ri=r,=---=7r,=7,
say).

As mentioned in the remark, we can get P,=(1/v)G,. Furthermore,
from (2.1) the eigenvalue 6, can be replaced by p/r for 1=1,2,..-,¢
(£v—1), where p,’s are non-zero distinct eigenvalues of the matrix C
(=rI,—ND;'N'). Hence, 8 is equal to the multiplicity (=a, say) of the
maximum eigenvalue, 7, of the matrix C. In this case, Theorem A
yields the following main results of Kageyama and Tsuji [5].

COROLLARY 3.1. For an equireplicated m-ary block design N with
parameters v, b, r and k; (7=1,2,---,b) in which C=rl,—ND;'N'=

é o0.P;, the following inequality holds :
i=1

b=zv—a,

where P;’s are projections corresponding to the eigenvalues p.’s of C and
a is the multiplicity of the maximum eigenvalue r of C. In particular,
the equality sign holds if and only if the projection corresponding to zero
eigenvalue of D7 N'ND7Vi is a zero matrixz. In this case,

=L NGN+3 L
r m T Pn

N'P,N,

where the summation extends over all the integers m satisfying r—p,>
0 for m=1,2,---,q (Zv-1).

On the other hand, Corollary A yields the following.

COROLLARY 3.2. For an equireplicated n-ary block design with pa-
rameters v, b, r and k; (7=1,2,---,b) having p, (I=1,2,---, q) as non-
zero eigenvalues of C, if p,<r for all 1=1,2,---,q (Sv—1), then an in-
equality b=v holds.

For further discussions relating to the bounds on the number of
blocks of equireplicated n-ary block designs including g-resolvable de-
signs, we refer to Kageyama and Tsuji [5].
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Case II. Equireplicated and equiblock-sized n-ary block designs
Gi.e., my=r,=:..=r,=r, say, and k=k,=---=k,=k, say).

We consider an n-ary block design with parameters v, b, » and k
in which C=rI,—(1/k)NN’. Since it is clear that the multiplicity of
the eigenvalue r of C coincides with the multiplicity of zero eigenvalue
of NN’, Theorem A yields, from Case I, a generalization of Theorem
1.1 of Kageyama and Tsuji [4] as follows.

COROLLARY 3.3. For an n-ary block design N with parameters v,
b, r and k, an inequality b=v—a holds, where o is the multiplicity of
zero eigenvalue of NN'. In particular, the equality sign holds if and
only if the projection corresponding to zero eigenvalue of N'N is a zero
matrixz. In this case,

L=1g+x—1

———N'P,N,
b m k(r_pm)

where the summation extends over all the integers m satisfying r—p, >
0 for m=1,2,---,q (Ev-1).

Note that if all the eigenvalues of NN’ for a block design N are non-
zero, then Fisher’s inequality b=v holds. Sufficient conditions for the
validity of Fisher’s inequality for various block designs are recently
treated in Kageyama [3] and Kageyama and Tsuji [6].

Note that Case II includes well-known BIB designs and partially
balanced incomplete block designs. Further discussions can be referred
to Kageyama and Tsuji [4] in detail.

The approach adopted here is based on the spectral expansion of
D/CDyy. This consideration succeeds the general derivation of an in-
equality and a condition of attaining the bound, even for unequal-repli-
cated block designs. The author believes that the expression of Theo-
rem A includes all the known results of bounds on the number of blocks
for a block design.
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