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Abstract

Among several widely used methods of nonparametric density
estimation is the technique of orthogonal series advocated by several
authors. For such estimate when the observations are assumed to have
been taken from strong mixing sequence in the sense of Rosenblatt [7]
we study strong consistency by developing probability inequality for
bounded strongly mixing random variables. The results obtained are

then applied to two estimates of the functional 4( f)=S fx)dx where

strong consistency is established. One of the suggested two estimates
of 4(f) was recently studied by Schuler and Wolff [8] in the case of
independent and identically distributed observations where they estab-
lished consistency in the second mean of the estimate.

1. Introduction

Among the widely used methods of nonparametric density estima-
tion is the method of orthogonal series. Several authors discussed this
method, among them Cencov [2], Kronmal and Tarter [6], Schwartz [9],
and Watson [10]. Assume that f(x) is a square integrable probability
density function (p.d.f.). Thus f(x) can be expanded by orthogonal
series, viz.,

(1.1 F@)=316,4/@) ,
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where 0,-=S f(@)p,(x)dz, 7=1,2,---. We need the following definitions:

DerFINITION 1.1. Let {X,} be a sequence of random variables and
let F'(m, n) denote the o-field generated by X,,,, -, Xn,. for all m, n
=1. Let AeF(1,m) and Be F(m+n, ) and let @« be non-negative
function of positive integers such that a(n)—0 as n—oco. Then {X,}
is said to be strong mixing sequence with mixing numbers a(n) if

|P(AB)—P (4) P (B)|=a(n) .

DEFINITION 1.2. A sequence {X,} of random variables is said to
be stationary (in the strict sence) if the joint distribution of (X, .,
Xoyir*+*» Xa1i) does not depend on k, for any integer k.

Remark 1.1. If {X,} is a stationary strong mixing sequence of
random variables with mixing numbers a(n) and if we set 7y =¢x(X,)
for a sequence of functions {¢y} defined on the real line, then the array
{7y} is also stationary row-wise strong mixing with mixing numbers
a(n); see Section 18.5 of Ibragimov and Linnik [5].

Strong mixing sequences of random variables include many other
dependent forms as special cases and the reader is referred to Ibragimov
and Linnik [5] for further details.

Suppose that {X,} is a strong mixing stationary sequence of ran-
dom variables with marginal p.d.f. f(x) which is square integrable.
Let X,,---, X, denote the first n observation in the sequence and let

F(x)=n"! Xn‘, I(z, X,) denote the marginal empirical distribution function
i=1

(d.f.). An unbiased estimate of ¢;,, j=1 is given by
(1.2) b,=n" 314,(X) -

Consider the estimator of f(x) given by,
A a(n) A
(1.3) F@=2 bip(a)

where q(n) is an integer-valued function of 7 such that g¢(n)— oo as
n— oo,

In Section 2 a basic lemma on probability inequalities for stationary
strong mixing bounded random variables is presented. The result is
an extension to dependent variables of Theorem 2 of Hoeffding [4]. In

Section 3 we give conditions under which sgplf'(x)— f(x)| and S[ f‘(x)—

f(x)]’dz converge to 0 with probability one (w.p. 1) as n— oo, and re-
duction of these results to the independent case is discussed. Finally
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in Section 4, applications of the results of Section 2 to estimating 4(f)
=S f¥x)dx are presented.

2. Basic lemma

The following lemma is an extension of Theorem 2 of Hoeffding
[4] to stationary strong mixing r.v.’s.

LEmMMA 2.1. Let {X,} be a stationary strong mixing random vari-
ables such that |X,|<C, w.p. 1, and EX,=p,, n=1,2,---. Set p=(1/n)

é ti, and let m=m(n) and p=p(n) be two positive integers such that
m—oo and p— oo as n—oo. Then for all t=0, and all n=1,

(2.1) P[X—pzt]<2{exp (—pt/2C")}[1+ Ka(m)]?,

where K=2,/e¢.

PrOOF. Let m and p be such that n=2mp. If this is not the case
the proof may be easily altered but the result remains valid. Set

@j-1m

Uj:
i=(2j-2)m+1
and
2im
Vj: > Xi ’
i=(2f—1)m+1
7=1,2,...,p. Note that with probability one |U;|<mC and |V,|<mC,
i=12,---,p. Set §;,=EU, and 7,=EV,, j=1,2,---, p. Then we have

2.2) P[X—p2t]=P [2 X,.—n,ugnt]

P[ 31 U—0)+3 (V,—r)znt]
=P [é (Uj—ﬂj);mpt] +P [é (Vj—n)zmpt] .

The lemma will be proved if we show that each of the two terms of
the last upper bound of (2.2) is bounded above by {exp (—pt}/2C)}[1+

Ka(m)]*. Set 0=p‘1zp]0,. Thus,
Jj=1

P [ 33(U,— ) zmpt| <lexp (—hmpt+ ) E [exp (h 31U, -

But as in Hoeffding [4], Theorem 2
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2.3) E ﬁ T < g [%CC%@& g-hom y 0_,2-{%& e;c,.]
=e "% (1—p,;+p;€v) ,

where p,=(4,+Cm){2Cm and h,=2hCm, j=1,---,p. Let

(2.4) f(hy)=—h;p,+log 1—p,+p,e) .

Then as in Hoeffding [4], Theorem 2, we get

(2.5) E ¢* U5t < ghoms

Now,
26)  I=E][ev%=E {ﬂ &<UP[E (V52| Uy, - -, U,_,)
j=1 j=1
-1
—_ (U =0, (U ;~6;) AU »—0,)
Eerr "]}+EJ_U10 7% K eMUp~% |

But |e"i|geMVi'<e™C with probability one, thus ¢*’/~* <¢"° with prob-
ability one. By Lemma 5.2 of Dvoretzky [3] we have that the RHS
of (2.6) is no greater than

2.7 E {Qﬁl enwj—oj)[zenmca(m)]} +E ’-ﬁl U0 ghCmI?/2
j=1 j=1
T 5T hU-0p (o me (RCOmY2/2
=E L[le =% {2e"™Ca(m)+e 1
ée(hCm)zp/Z {1 +a(m) [2ehm0—(h0m)2/2]} P

where the last inequality is obtained by successive application of Lem-
ma 5.2 of Dvoretzky [3] to U,_,,---, U;,. Since

2ehmc—(hm0)z/2=2,/?-e_l/Z(l_th)zsz\/_e—zK y

say, then we arrive at,

(2.8) E ﬁ eh(U/—ﬁj)—S_e(th’)zp/Z[l+a(m)]17 .
j=1
Hence
(2.9) P [ ,i (U,—o,);mpt] < g-tmrancor[] L o(m)KT? ,

where K=24¢. Let
2
f)=—hmpt+PMCY p

thus f(k) is minimized at A=%/mC? and thus
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@10 P| p3 (U,—0,) Zmpt| < {exp (—pt2CH} {1+ Ka(m)}?
Similarly we can establish that for all ¢=0,
@11) B[ 3 (V,—7)zmet] S (exp (—pt12CH) {1+ Ka(m))

Hence (2.1) follows from (2.10) and (2.11).

Remark. When the X,’s are independent a(n)=0 for all n, thus
in the above Lemma 2.1 if we take p(n)=n for all n then it reduces
to Theorem 2 of Hoeffding [4].

The next Corollary gives an indication of some possible choices of
m and p.

COROLLARY 2.1. Let 2>0 be real number and let [x] denote the largest
integer less than or equal to x. Then for all t=0,

(2.12)  P[X—pzt]s2[exp (—[n""1tY2C*) {1+ Ka([n])}¢->?

ProoOF. In the above lemma take m=[%n"] and p=[n""?].

3. Strong consistency of f(x)

In this section we shall use Lemma 2.1 and its corollary to give

sufficient conditions for strong consistency of f(z). The main results
are Theorems 3.1 and 3.2. Assume that |¢,(z)|<C for all j=0.

THEOREM 3.1. If m(n), p(n) and g(n) are integer-valued functions
such that for any >0,

3 e @14 Ka(m(m)P®<oo , then
(3.1) sup | /(@) f(@)| -0 w.p. 1 as n—co.
PrOOF. Note that
sup| f(2)— f(x)| Ssup | f(#)—E f(2)|+sup |E f(2)— f (@) .
But
(32  swlEf@—f@l=sup| 5 0p(x)| >0 as noroco.

Thus we need only to show that suplf(x)——E f‘(:v)|—>0 w.p. 1 as n— oo,
To this end let
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q(n)
(3'3) ¢n(xr Zl)ijgo ¢J(m)¢1(y) .
Then f (z) can be written as follows:
(3.4) Fay=n" 2 0,fs, X)) .

Now it follows from Remark 1.1 that random variables {@.(z, X.)}i.,
are stationary strong mixing such that

10,2, X)| =3 #,@,(X)| s am)C.
Thus, for any ¢,2>0,
(3.5) Psup|f(@)—Ef(@)lze]
=P [sup [n(a(n) + DI 33 0,(x, X)—(a(m)+ 1) E0,(x, X))

Ze(a(m)+1)]

IA

P[(atw)+1)" 33 sup 10,(@, X)~E (s, X)|Zea(m)+1)" |

<P [lam+17 5 164X —E s Xz emiClaltm) +D)| -

i=1 j=0
Let
q(n)
Y.=[g(n)+1]" Ea |p(X)—E ¢,(X))|
and set #,=EY,, i=1,2,---,n. Note that g,=-.-=p,, and hence

A A a4 e _
(3.6) Plsup|f()—E f@)zal<P 1 3 (Yum )2 s =] -

Choosing e,=e+C(q(n)+1)p,/n for any e>0 we get that the upper
bound of (8.6) is equal to

P b3 (Yo i) Z1e/Cla(m) +1) | -

Now, it follows from Remark 1.1 that {Y}:, are stationary mixing
and hence by Lemma 2.1, the above upper bound is majorized by

(3.7 2{exp (—p(n)t'(n)/4C*)} {1+ Ka(n)}™ ,
where t(n)=en/C(qg(n)+1). The Borel-Centelli lemma yields the result.

COROLLARY 3.1. If for some real number 1>0, and for all >0,
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37 g PV (14 K[ < oo ,
n=1
then (3.1) holds.
PrROOF. In Theorem 3.1 take m(n)=[n'] and p(n)=[n"""].

Remark. If {X,} are independent identically distributed then in
view of the remark following Lemma 2.1 we only need to assume that
for any >0,

i g/ £ o
n=1

in order to achieve the conclusion in (3.1).

THEOREM 3.2. Under the conditions of Theorem 3.1 it follows that,
(3.8) S[f(x)—f(x)]zdx—»O w.p. 1 as n— oo .
ProOOF. Note that
| @) f@dsssup | F @) - f@) | 1) - £ (o)l do
thus it follows from Theorem 8.1 that we need only to show that
S]f(x)—f(x)ldm—»w.p. 1 as m— oo,
Now,
(3.9) S | (@)—E f(z)|do< S ‘n“ 310,(s, X)~E 0z, X,)|dx
=5010,~0,<(@m)+1) 2 Yar,
where
Yo=(@m)+ ) 3 I8, X)-Eg(X)l, =L, m.
Set p¢,=EY,;,. Then for any ¢,20,
(3.10) P || 1/@)~E f(@)ldsze,]
<P (170 33 (Y pi) 260/ Cla(m) + 1) —pas

Thus as in Theorem 3.1 we conclude that
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| 1f@-Ef@)dz—0 wp. 1 as nco.
Next,

(3.1) [Ei@-f@ldes 5 0, {Ip@)ds,

where the last upper bound converges to 0 as n— oo since ¢,(z) is ab-
solutely integrable. The theorem is now proved in view of the in-
equality

| 1f@—f@)ldas| 1/ @—E f@)lda+ | [E f@)—f@)lds .

4. Application to density functional estimation

In this section we are interested in estimating the functional 4(f)
=g Sfix)dx. A recent work Schuler and Wolff [8] suggests the esti-

mator 4( f)=g f *z)dx, where F (x) is the orthogonal series estimate of
f(x) given by (1.3). Alternatively one might suggest to estimate 4(f)
by ﬁ(f):g F(x)dF.(x) where F,(x) is the empirical distribution function.

This second estimator has the advantage of simplicity and it is asymp-

totically equivalent to 4(f). It is possible to show that E|4(f)—4(f)
—0 as n— oo exactly as in Schuler and Wolff [8]. Using Theorem 3.1

we shall prove that both ﬁ( f) and A f) are strongly consistent.
THEOREM 4.1. Let the condition of Theorem 3.1 be satisfied. Then

(4.1) l4(f)—4(f)]—0 wp. 1  as n—oo,
and
(4.2) [4(f)—4(f)|—0 wp. 1 as n—oco.

PrOOF. Let us prove (4.1) first.
@3 i -4Is| 1@ - r@de+2 | 1@ — @ f@)da
=| V@ -r@rds+2su 1 /@) s
The first term of the last upper bound of (4.3) converges to 0 w.p. 1

as n—oo from Theorem 3.2, while the second term converges to 0 w.p.
1 as n— oo from Theorem 3.1. Next, let us prove (4.2),
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(4.4) () - 4()1< | 1/(@)— B F@)|dF ()
+|| E fario)- | f@ir@)|

+ || r@iF @ - s@iF@)
=J,+L+J;, say .

By the strong law of large numbers, J;—0 w.p. 1 as n—oo. While
(45) 55| [E @)~ f@IdF@)Ssup |E fiz)— f(@)]
since SdF,,(m)zl, and we have J;,—0 w.p. 1 as n—oco. Finally,

(4.6) Ji<sup | f(@)~E f(@)|,

which converges to 0 w.p. 1 as n—oo by Theorem 3.1. This complete
the proof.

Remark. Using the remark following Lemma 2.1 we have that
in the i.i.d. case 4(f) and 4(f) both strongly consistent estimates of

A(f) if for any e>0, i exp (—en/[g(n)])) < co.
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