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Summary

Assuming only the existence of a universe and a frame that iden-
tifies its members (ultimate sampling units), and a minimum number
of necessary but nonrestrictive assumptions, the writer derives a basic
proposition which shows that for sample surveys any form of inference
about any universe characteristic must depend on the sampling distri-
bution of estimates generated by randomization, and, by direct impli-
cation, the sampling design. Unbiasedness is validated by this proposi-
tion, but likelihood appears to be in conflict with it, and by implication
with randomization. The relation between high or low variance and
correspondingly low or high probability for an estimator is also investi-
gated in the paper. Finally it is argued that restrictions on random-
ization may be injurious to normality.

1. Introduction

Randomization, replication and control are the cornerstones of
Fisher’s [1] work, The Design of Experiments. Indeed, both the theory
and practice of sample surveys and experimental designs have these
three fundamental principles in common. In sample surveys control is
usually exercised in the way of stratification, clustering and multistage
sampling, and both Bowley [2] and Mahalanobis [3] regarded these pro-
cedures as restrictions on randomization. We note that Neyman in his
1934 paper [4] advocated support for all three principles; see also Fisher’s
comments in the discussion following this paper.

The early work of Gini and Galvani [56], which is commendably
frank, points to the imperative need for proper randomization in order
that selective bias may be avoided. Yates [6] discussed the rationale
for randomization and replication in his 1946 paper.

This writer is of the view that for statistical inference in sample
surveys the underlying role and the consequences of randomization,
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replication, and restrictions on randomization still need to be investi-
gated. Furthermore, Kempthorne’s [7] recent remark that “there is
a partial logical basis for accepting randomization,” and that he does
not understand this problem in the context of a finite population, adds
justification for this investigation.

Except for a few necessary assumptions like the existence of the
finite universe and the frame, no prior restrictive assumptions and ap-
peals to superpopulation models are made. Recent work on estimation
problems based on superpopulation models is adequately summarized in
the book by Cassel, Sirndal and Wretman [8].

We shall not be concerned with problems relating to the properties
or the choice of estimators already dealt with by Midzuno [9], [10],
Horvitz and Thompson [11], Koop [12], Godambe [13] and others who
have avoided the use of model assumptions, regarding which, inference
is impugned to the extent that such models are inappropriate. Specifi-
cally, the objectives of this paper are given in its summary.

2. Definitions, notation and explanations

To make this paper consistent with its objectives, and self-contained,
it will be necessary to restate some of the terminology, definitions and
notation given elsewhere (e.g., Godambe [13], [14], Koop [12], [15]).
Some brief notes on aspects of randomization that have so far remained
unnoticed will also be necessary. We shall also consider whether the
probability of realizing a distinct sample, viz. p(s) as defined later, can
qualify as a likelihood function. Effectively, the entire section consti-
tutes a form of basic theory needed for the development of the remain-
ing sections.

2.1. Definitions and notation

There is a finite universe U (Bowley [16]) consisting of N different
identifiable units where u; is the ith unit, i.e.,

2.1) U={u,;: 1=1,2,---, N},

with a set of N corresponding vectors of [ real-valued components (z,
Y, 2,--+) for each unit, i.e.

2.2) {(xs Yiy 2y -+): 1=1,2,---,N} .

We shall assume that all these l-component vectors can be observed
without error.

The frame F (United Nations [17]), which substantively exists in
the way of lists and maps, identifies the units of U. We assume that
F is perfect, i.e. through it every u, € U can be identified as an wlti-
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mate sampling unit.
Denote by s’ a sequence of units from U formed through F' accord-
ing to some rule H. Remark 2 in Subsection 2.2 explains this rule.
The total number of units in s’ will be denoted by n(s').
Now we make the following

AsSsUMPTION 2a. The rule H shall be such that every unit is con-
tained in at least one ¢'.

A typical sequence s’ that is realized by applying H may be given
by

(2.3) 8= {u;, usy5- s Uiy}

in which the numbers 1, 2,.-., n(s") attached to the unit identification
labels 1, 7,- -+, m, respectively, indicate the order in the sequence. We
shall call these numbers marks of order.

Conceptually, and apart from the question of randomization, barring
the complete census of N units, that is the set (2.1), there are at most

(2.4) JN=N+ N+ .-+ N¥= (NIN"'—1)}/(N—1)

sequences of units with n(s’) varying from 1 to N—1 that could qualify
as samples, in the usual sense of the term, for making inferences about
U. However, because of restrictions on the way in which the units can
be identified through F, like for example, the division of F itself into
disjoint parts (resulting in strata for U), only a smaller collection of
the number in (2.4) will qualify as possible samples when H is applied.
Let us denote this collection of logically possible sequences by &', i.e.,

(2.5) S'={s': (F, H)} .

Although theoretically admissible, it is utterly impracticable, unless
N is very small, to enumerate all members of S’, then assign nonzero
probability measures to each of them in order to select one or more
of them, by a randomization procedure.

All that is needed for selecting any s’ is to prescribe, in the con-
text of the frame F and the rule H, sets of (nonzero) selection (or
sometimes rejection) probabilities for the relevant units specific to each
draw, and the appropriate physical randomization procedure R (e.g.
devices such as fair dice and tested random numbers) to implement
these probabilities. Such a finite collection of sets of probabilities, say
P, may be called a probability system following an earlier terminology
(Yamamoto [18]). It is easy to see that the number of such probability
systems is unlimited. When P is given in detail then the probability
of selecting a sequence ¢, i.e.,
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(2.6) qa(s)>0, for all & ¢S,

can be computed for all relevant sequences.

Underlying the physical randomization procedure R there is the
principle of randomization, which we shall denote by R. Thus in some
sense there is a connection between R and the probability system P
through R. We have gone into these details because there is a need
to distinguish between acts of physical randomization in selecting ¢,
which may or may not be carried out with the probabilities prescribed
by P, from the principle itself. We shall recur to this point in Sec-
tion 3.

The choice of P is in some way restricted or influenced by F and
H so that we may express it as an abstract function

2.7 P=P(F, H) .
We can now say that the combination
(2.8) (P, R)

defines the sampling procedure for selecting samples from U with the
object of estimating some function of the values in (2.2), e.g., =+, +
--++2xy. Without getting unduly involved, both in terminology and
its underlying technicalities, let us say that there is a class of sampling
procedures denoted simply by {(P, R)}.

In the context of (2.6), (2.7) and (2.8), s’ as a realization specified
by (2.3) is called a particular sample.

The collection §’, now viewed in the context of (2.8), may be par-
titioned into a finite number of different subcollections, such that each
subcollection say s*, consists of one or more particular samples each
having the same set of distinet units designated as s.

Any two subcollections are deemed to be different if and only if
their respective constituent particular samples have at least one unit
that is not common.

AsSsuMPTION 2b. To avoid trivialities, we shall assume that there
are at least two different subcollections in &’'.

Following Hajek [19], the relation between s and s’ may be ex-
pressed by the abstract funection

2.9) s=s(s) , for all s’ €s*.

The set s may be called a distinct sample, i.e., a sample in which
repeated units and/or marks of order associated with the formation of
', through the sampling procedure (P, R), are disregarded.

The number of distinct units in s, denoted by w(s), is called the
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effective sample size.
The entire collection of s is designated &S, i.e.,

(2.10) S={s: scU}.

In view of (2.9), the total probability of realizing s, denoted by p(s),
is given by p(s)= > q(s’), for all se S. We may also regard p as a

function defined on S such that ZS p(s)=1. Godambe [20] calls p a
s€
sampling design; we shall follow his terminology.

2.2. Explanatory and critical remarks

Remark 1. In Godambe’s work the notion of frame is almost totally
ignored and appears to be completely ignored in all other papers which
follow his approach. On the other hand, Basu [21] and Rao [22], each
in his own way, recognizes this concept. It is the units identified by
the frame that are randomized so that without a frame no sample sur-
vey based on probability can take place. Furthermore, in my view, any
discussion of randomization without incorporating the frame as part of
the logical set-up is, to say the least, unrealistic.

Remark 2. The rule H for the formation of sequences may incor-
porate one or more draw mechanisms such as the selection of units
one at a time, either without replacement, with replacement, or both
so that repeated units are allowed in the formation of s’. The rule
may also include rejection procedures, for example, leading to what
Hajek [23] describes as rejective sampling.

Remark 3. Without Assumption 2a, which is in the nature of a
condition, the possibility of some units of U remaining unselected could
arise, and this could vitiate the primary objective of sampling because,
for example, we would not be able to estimate meaningfully the mean
value of the units for some specified characteristic.

Remark 4. If F and H are completely specified then the number
of sequences comprising &’ can be computed. For example, if F' shows
that U is divided up into L strata each having N, units (=1, 2,---, L),

for which N=‘L2, N,, and H is the rule which specifies that n, (<N,
but >1) units slhall be drawn one at a time without replacement from
stratum h, for which n=$ n,, then the number of possible sequences
is 97'=T N\(Ny—1)-(No—m—1). Thus in the context of the given

F and H, sequences other than this set of JI’ sequences are logically
impossible and are naturally not members of the &’ in question. It is
easily seen that JI>JV.
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Remark 5. It is important to mote that each distinct sample s can
only be realized through a selected particular sample s' that is an out-
come of randomization which ts the physical component of the sampling
procedure (P, R).

Remark 6. Godambe ([14], p. 249) notes that sampling designs or
methods of randomization can be considered just different functions p
defined on S. However in the context of the foregoing discussion it is
really g, given at (2.6), rather than p which is directly connected with
the physical randomization procedure R. We may say that these ob-
servations relate to one aspect of randomization. An account of other
related aspects follow in the next subsection.

2.3. The extent of randomization

Because randomization underlies much of sampling theory and prac-
tice, it is fitting in a paper such as this to at least define the extent
of randomization and also consider the effect of restrictions on random-
ization, both of which are of deep significance to inference as will ap-
pear in Sections 3 and 4. Furthermore, the interplay of these three
basic principles of randomization, replication and control will be evident
in the notes which follow. There is no claim to originality. What
appears to be interesting is their interplay in a different form in sample
surveys culminating in the use of the fundamental concept of cardinality
to deseribe the extent of randomization.

One aspect of the cardinality of a given & is that it is a compar-
ative indicator of the extent of randomization. With a given type of

L
restricted randomization, e.g., stratified random sampling, it is [ (11\[”>
1 h

whereas with more extended randomization, e.g., simple random sam-
pling of an equal number of units from the undivided universe it is <I:{ )

Merely as a convention we shall say that in the entire class of sam-
pling procedures {(P, R)}, unrestricted or U-randomization is achieved
by a subclass of sampling procedures appropriate to any form of ran-
dom sampling with replacement with n(s) varying from 1 to N—1.

Almost in polarity with U-randomization, minimal or m-randomiza-
tion is achieved by another subclass of sampling procedures usually de-
scribed as “controlled selection” (Goodman and Kish [24]); systematic
sampling in all its ramifications may be included in this subclass as also
the methods investigated by Sukhatme and Avadhani [25] and Jessen
[26]. The twin characteristics of m-randomization are that (i) the car-
dinalities of the respective S corresponding to the constituent sampling
procedures are relatively very low and (ii) by and large, assumption free
unbiased variance estimation is not possible with a single sample for
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linear as well as nonlinear estimators.

Needless to stress there are many more subclasses of sampling pro-
cedures characterized by various levels of randomization.

Note that purposive sampling might have been considered as con-
stituting a degenerate subclass with cardinality one if it had not been
excluded by Assumption 2b.

2.4. Does p(s) qualify as a likelihood function?

At least for the purpose of this paper it is necessary to examine
this question even at the risk of arguments appearing to be facile.
Godambe [13] in his 1966 paper initiated this line of thinking in the
estimation of the population total T=x,+x,+---+xy. He says that the
likelihood takes the value p(s), for all populations corresponding to points
in Euclidean space Ry, of which z=(x,, ,, -+, zy) is an element, which
could have given rise to the sample data {s, z;: ¢ €s}, and zero other-
wise. Later on page 312 of this paper he remarks that “this by itself
is of no avail from the point of view of estimating the population total
T.” Obviously this is because p(s) is not a function of 7.

Much earlier Fairfield Smith ([27], p. 29) said: “If single elements
are ‘sampled with equal probability ’ the probability distribution is

1

N ’ x:XIy”"XN-”

p(x)=

Then on page 32 he states: “Since neither the specific parameters nor
that single function of them (‘variance’) to be estimated, enters into
the probability function, p(x), the method of maximum likelihood canmnot
be used to indicate a preferred parameter ....” This contrasting view-
point appears to have escaped notice; the italics are mine.

Clearly also p(s) which is quite independent of parameters, or other
universe values of interest, cannot be viewed as a likelihood function
in the sense explained by Barnard, Jenkins and Winsten [28] on pp.
321-322 of their 1962 paper.

In contradistinction to this attempt to endow p(s) with likelihood
status, it is a recognizable fact in sample surveys that every member
of the entire set of probabilities, {p(s): s € S}, is calculable as a numer-
ical value. As such, at least in principle, the p(s)-values qualify as data
that are to be used for the purpose of inmference until it can be proved
that such values are irrelevant for the same purpose.

These considerations rule out likelihood as a principle for techmical
use regarding inference about any characteristic of the universe U.
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3. A basic proposition on inference

Sample surveyors are concerned most of the time with the estima-
tion of means, totals, and other simple real functions of the multivari-
ate values of the u,’s, viz. those values given by (2.2). As the concern
of this paper is with principles and their consequences, it is appropriate
to consider inference about some gemeral real valued function A(U), that
is a function of all the values in (2.2) and which subsumes all the esti-
mands considered in the literature of sample surveys.

We have as survey data the variate values (z;, %, 2;,---) for each
of the m(s’) members of the particular sample s’ selected through the
sampling procedure (P, R) with probability ¢(s’). In general, the pos-
sibility of repeated units in s’ cannot be excluded. To estimate A(U),
suppose we construct an estimator b(s’), defined for all s’ € §’, as a real
function of all the variate values of s, recognizing order and multi-
plicity as information which cannot be ignored until it can be proved
that both are irrelevant; this function will have a certain number of
undetermined constants. Then using the same method of proof followed
by Koop [15] it can be shown that, say

b=E (bs)Is} = 2, ¢)o(s)] 2 a6

has a mean square error which is smaller or at most equal to that of
b(s'), and in this sense an improvement on b(s').

Therefore, in estimating A(U) we choose a real function a(s), defined
for all se S, that is a function of all the variate values of the distinct
sample s and with a certain number of undetermined constants, and
also such that a(8)n <AU)<a(8)mx- Examples of such estimating fune-
tions for which constants have already been determined by some prin-
ciple or theory are means and regression coefficients. This function
cannot be improved since its conditional expectation, given the distinct
sample® s, is still a(s).

By definition, the sampling distribution of a(s), i.e., the distribu-
tion generated by the randomization procedure R, is given by the entire
set of such values with their corresponding p(s)-values, viz.

3.1) {(a(s), p(s)): s€S and a(8)nw<A(U)<a(8)mex} -

Unlike its classical analogues, it is not characterized by parameters,
unless by convention we choose to regard A(U) as a parameter. Note

1 The writer in his 1963 paper ([12], p. 201) viewed the concept of the distinct sample
as the primitive analogue of the concept of sufficiency. However, it should be reported
that Sir Ronald Fisher told him in 1961 that he did not think sufficiency applied to finite
populations, but only to populations with distributional forms specified by parameters.
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that the p(s)-values are automatically recognized as data in (3.1). De-
spite its structural difference from the conventional density funections,
(3.1) in principle, has all the necessary elements for the expression of
probabilities respecting A(U); following Fisher [29], [30] it may also be
called the reference set.

It should be noted that if the randomization component R in (2.8)
is compromised, then the probability system P will also be compromised,
so that for a given s we will not have p(s) but some other value p(s)
+ 4p(s) where 4p(s) is unknown; this would impugn the claim that a(s)
is distributed according to (38.1). The extent to which the claim is
impugned would depend on the extent to which R is compromised. All
that can be done in the context of real world applications is to ensure
that the devices comprising R, and equally the persons involved, per-
form faithfully, and this amounts to the adoption of the assumption
that the principle of randomization is not violated.

To initiate inference about A(U) we need in principle a direct prob-
abilistic criterion. We have already ruled out likelihood on technical
grounds in Section 2. We shall keep an open mind about the principles
of unbiasedness and minimum variance and comment on them later, but
we cannot use them now because they are not criteria which can be
directly applied to the general estimating function a(s) in order to yield
immediate inferential results respecting A(U).

The principle of the criterion advocated by Pitman ([31], p. 212) is
reasonable and naturally qualifies as a direct probabilistic criterion.
Given an estimator a(s), we want to be able to estimate its constants
and/or obtain guidance for the choice of P such that as many as pos-
sible of the a(s) in (8.1) are as close as possible to A(U). Needless to
elaborate, this is the dominant practical requirement in sample surveys.
Therefore consistent with this requirement, for some real positive num-
ber ¢ we require

(3-2) P {la(s)—A(U)|=c}

to be always nonzero and as close as possible to 1. A little later we
shall evaluate (3.2).

By statistical inference or simply inference, we shall mean any state-
ment consistent with the principle embodied by (8.2); this includes esti-
mation of A(U) and probability statements about A(U).

Note that the statements leading to (3.2) carry two significant
implications, viz.,

(i) The requirement at (3.2) is just a simple probability statement
about the closeness of a(s) to A(U).

(ii) Additional to (i), the estimating function a(s) may be chosen so
that its corresponding probability can be made larger relative to
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the choice of another function.
These implications are crucial to the developments which now follow.
Let us obtain an evaluation of (3.2) in the sense of implication (i)
and then follow its logical consequences. According to the sampling
distribution (3.1), the (2r)th moment of a(s) about A(U) is given by

3.3) E {GL(S)—A(U)}”=S.§S o) {a(s)—AO)}", (r=1,23,---).

The motivation for choosing the (2r)th moment is because it has a(s)-
A(U) as an argument and it is positive like (3.2).

Consider the division of & into disjoint parts ., S, and &, such
that

Se={s: a(s)—AU)< —c},
(3.4) S,={s: la(s)—A{U)|=c}, and
S,={s: a(s)—A(U)>c} .

For (3.2) itself to be nonzero and in view of Assumption 2b, we must
assume that for any given a(s) the number ¢ is chosen such that S,
has at least one member and so also S, and/or S,. We have

(3.5) P p(s)[1—{a(s) — A(U)}*[c"]
=2 2(8)[1—{a(s)— A(U)}*"[e*]

s€Se

+ 3 p(s)[1— {a(s)—A(U)}*[c"]

Seg

> p(s)[1—{a(s)—AU)}/[c"] .
S € S_f

On the right-hand side of (8.5) each of the first two expressions relat-
ing to summations over S, and &S, are clearly negative; the term

— 2 p(s){a(s)— A(U)}¥ /¢ is either zero or negative. Let us factor
seSy

out —1 in each of these three expressions and denote their sum, which
is a positive valued polynomial of degree 2r in the entire set of a(s)-
values, with ¢ and appropriate p(s)—values playing the role of constants,
by 2,,.

Then we have

(3.6) 1—-E {a(s)- AU)}"[c¢"= 3 P(8)— A -
s€Sy

Furthermore noting that 1,, is positive, we find from (3.6) that 0<2,,
<E{a(s)—A(U)}*[c**. Thus in the sense of implication (i), for r=1,
2, 3, Tty
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(3.7) g"?s 2(s)=P {la(s)— A(U)|=c} =1+4,—E {a(s)— A(U)}*/[c™ .
s€Sy

We note that every specialization of the r-values in (8.7) always
gives a statement of probability about the closeness of a(s) to A(U),
that still functionally depends on all the variable elements of (3.1).
Thus we arrive at the following

PropPoSITION. For sample surveys, any inference about A(U), either
by way of an estimate or by a statement of probability, must depend
on the sampling distribution of estimates, and, by direct implication,
the sampling design.

The statistician’s traditional reliance on these two basic elements
of sample survey methodology is therefore justified by this proposition,
which so far, to my knowledge, has not been derived by anyone.

Incidentally, it may be noted that if we assume E {a(s)} =A(U) and
set r=1 in (8.7) we will obtain almost immediately the Bienaymé-
Tchebycheff inequality. Other analogues of this inequality immediately
follow by setting r=2, 3,---, including Karl Pearson’s [32] generaliza-
tion which was derived in a very different context. However, in order
not to distract attention from the considerations which follow, these
exercises are left to the reader.

The bearing of the proposition on the concepts of unbiasedness,
variance and likelihood will now be considered.

Unbiasedness. Viewed in historical perspective unbiasedness is an
independent principle of considerable utility; the entire theory of k-
statistics invented by Fisher and its extensions to a finite universe by
Irwin and Kendall [33], Tukey [34] and Wishart [35] rests on this
principle. Still it is sometimes said that the principle, (i) is arbitrary
and (ii) that it is not invariant under non-linear transformations. Now
in sample surveys, to my knowledge, non-linear transformations of var-
iables in (2.2) have not been used, and if at all used, such use must
be extremely rare so that the criticism under (ii) is not really of prac-
tical significance. In regard to (i) the classical theory of sample sur-
veys shows that the application of this principle in the estimation of
polynomials always yields estimators whose functional forms are depend-
ent on the sampling design. Therefore, on the basis of the proposition
just stated inference through unbiasedness is justified so that the prin-
ciple itself can mo longer be considered arbitrary for a finite universe
for which a meaningful A(U) always exists. It is in this sense that
the proposition validates the principle of unbiasedness giving it added
significance for sample survey theory.

Variance. Next let us consider implication (ii) in respect to the
choice of a(s) hinging on the magnitude of the variance. Assuming
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that a(s) is unbiased, for a given sampling design p and for any two
sets of estimators {a,(s): s€ S} and {axs): s€ S}, or for simplicity a,
and a, we find in an obvious notation, after putting =1 in (3.7) with
respect to each of these estimating functions, that

(3.8) P{la;—A|=c}—P {|lay;—A|=c} = {V (a:) =V (@)} /c*+ Ao(a)) — A(as)

Hence if P{ja;,—A|<c¢} =P {|la,—A|<¢}, then V(a)<ZV(a,) if and only
if Ay(ay)=2(a,). The converse is also true with the A-condition reversed.
Note that the A’s will remain indeterminate. (Note also that this prop-
osition and its converse are still true if instead of p we had p, and
p, corresponding to a, and a,.) The point to be made here is that, it is
only true that lower variance implies a relatively higher probability for
the closeness of the estimate to the estimand and vice wversa, only with
the corresponding conditions on the 2’s. Similar conclusions hold for the
mean square error (and indeed for all higher moments), when unbiased-
ness for the a’s is no longer assumed. Some of these results are per-
haps known in other contexts, but for sample surveys, this is an im-
portant clarification and provides further evidence for the value of the
criterion (3.2). In practice all that can be done is to choose a(s) so
that its variance is as low as practicable or possible, hoping at the
same time that the appropriate i-condition is favorable for the achieve-
ment of a high probability. For linear estimators this objective is per-
haps achieved by methods of sampling with probabilities proportional to
known measures of size, but for nonlinear estimators appropriate meth-
ods have yet to be investigated.

Minimum variance. The reader may now ask: What is the status
of the Gauss-Laplace principle of minimum variance vis-a-vis the prop-
osition just proved? Koop [36] showed that when this principle is
applied in linear estimation the resulting estimators depend both on the
sampling design and the unknown universe values. Godambe and Joshi
[37] showed that except for the uni-cluster sampling design (which is
achieved by m-randomization), minimum variance unbiased estimators
do not exist. The sense in which these best estimators do not exist
was explained by Koop [15] in his 1974 paper for the more realistic
problem of estimation when observations are subject to measurement
and/or response errors. It is that the estimators depend both on the
sampling design and unknown universe values. What we may usefully
say is that this principle, in some sense, supports the foregoing pro-
position, because the results of attempted applications of the principle
in the papers cited above all show that the sampling design is in no
way redundant. We shall see later that this is contrary to what the
likelihood principle asserts.

Likelihood principle. For the sake of argument let us accept likeli-
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hood and the resulting likelihood principle. We reproduce the definition
of this principle given by Barnard, Jenkins and Winsten [28] on page
323 of their paper. “The result x from (S, 2, f) and the result y from
(T, 2, g) will give equivalent likelihood functions f(x, 6) and g(y, 6) if a
number ¢ exists independent of 4, such that

Sz, 0)=cg(y,0), (1.6)

and the likelihood principle says that, in this case, the inference from
x about 4 would be the same as the inference from y about 6.” Here
S and T represent the sample spaces of 2 and ¥y respectively and 2 the
parameter space of 4; f and g are the relevant likelihood functions.
After announcing this principle the three authors hasten to sound a
note of caution regarding its unecritical use. In the last three lines of
this page we find Barnard’s famous statement which forms the nucleus
of Godambe’s 1966 argument: “... before the experiment is carried
out - - - probabilities are relevant, after the experiment likelihoods are
relevant.” It may be noted that E. S. Pearson has questioned this
reasoning on page 365 of the same paper. This contrary viewpoint also
appears to have escaped notice. In regard to our sample survey prob-
lem, for any two sampling designs p, and p,, yielding an identical dis-
tinct sample s, the ratio of the likelihoods, p(s)/p.(s), is a value depend-
ing only on F, H and P and obviously independent of A(U). Nonetheless,
according to the likelihood principle, as interpreted by Godambe [13]
in his 1966 paper?, inference about A(U) should not depend on the
sampling design thus contradicting the foregoing proposition, which is
founded partly on randomization. This would seem to imply that the
principles of likelihood and randomization are in conflict as far as sample
surveys are concerned. However, as we have mot admitted likelihood
status for p(s) im Section 2, this disconcerting result does not really
arise. It is interesting to note that Fisher did not mention likelihood
in his exposition of estimation problems in The Design of Ewxperiments,
one of the cornerstones of which is randomization.

Finally, as a conclusion we may say that any theory of statistical
inference for a finite universe, which has places within its logical struc-
ture for the two elements generated by randomization, viz., (a) the
sampling distribution of estimates, (b) the sampling design, and (¢) the
established principle of unbiasedness and (d) the notion of the distinct
sample, is acceptable. Of course to any such theory other desiderata or
principles, like for example consistency, admissibility, conditionality and
ancillarity, which are not in logical contradiction to (a), (b), (c) and (d)
and among themselves, can be admitted ; note that (a), (b), (¢) and (d)

# It should be noted that he still has serious reservations on this question as evi-
denced by his vigorous reply [38] to Basu [39].
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are necessary though not sufficient for a viable theory of statistical in-
ference for sample surveys that would include rules for the making of
probability statements about any estimand. Such a theory remains to
be formulated, and the considerations which follow in the next section
will indicate that it is really needed.

4. Effect of restrictions on randomization

Despite Cochran’s note of caution ([40], pp. 38-43) the traditional
view persists that because many hundreds of ultimate sampling units
are observed in most sample surveys, the distribution of an estimate,
particularly when linear in the variates involved, will be somewhat like
the normal distribution thereby justifying its use, for example, in set-
ting confidence limits.

Regarding this traditional view, for complex large-scale sample sur-
veys (considered in the logical framework of Section 2) the problem of
n(s) and N tending both to infinity, to provide the desired conditions
for the generalized estimator a(s) to achieve asymptotic normality, is
complicated by the initial restrictions implicit in ¥ and H and the re-
sulting restrictions on randomization the nature of which was described
in Subsection 2.3. In the writer’s view it appears to be very difficult
to derive central limit theorems within this framework.

The work of Hastings [41] for one-stage stratified sampling, and
Koop [12] for two-stage sampling, both with equal probabilities without
replacement, shows that normality can be seriously disturbed, as judged
by the values of the skewness and/or kurtosis coefficients of the esti-
mates involved for varying first-stage and second-stage sample sizes.
Thus even from this evidence the effect of restrictions on randomiza-
tion cannot be ignored.

An investigation of the kurtosis of the distribution of the general-
ized estimator a(s), given by (8.1), throws considerable light into the
nature of the problem for large-scale surveys where the effective sam-
ple size n(s) is usually large, but certainly nowhere near infinity.

By the identity of Lagrange,

(4.1) 3 p(s) 3 p(s)(a(s)—E (a(s)))
ses ses

={ = e ae)-E@@)]
sesS

2 {(als) —E (a())(p(s)p(s)) "
—(als;)— E (a(s)))(p(s))p(s))"}* .

In (4.1) we have attached subscripts ¢+ and 7 to s; these subscripts
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should run from 1 to the value of the cardinality of S which will de-
pend ultimately on F and H. If this cardinality is C then the sum-
mation indicated by 5_,; is over C(C—1)/2 terms.

On the right-hand side of (4.1) the second term is zero if and only if
(4.2) (a(s)—E (a(s)))*=a constant for all se S .

Dividing both sides of (4.1) by the square of the variance of a(s)
we find on simplification that the kurtosis of a(s) is given by

@3 BE) =1+ {3 peps)a6)—al)!
- (a(s)+a(s)~2 E @)Y} [V* (a0} -

Note that the term following unity in (4.8) is always positive ex-
cept when (4.2) holds in which case B.{a(s)} =1; this result is certainly
not trivial. For example when (i) the cardinality of S is 4M for which
M is a very large integer, (i) every p(s)=1/4M, (iii) M of the a(s)-
values are each equal to h, (iv) M of them are equal to k>h, (V) M
of them are equal to h+(k—h)/g, g>1 and (vi) the rest are each equal
to k+(k—h)/g, then (4.2) holds when g— o and the required computa-
tions will show that g,=1.

Generally (4.3) shows that the value of §, will depend on the sam-
pling design p and the estimator a(s), both of which are at choice.
One is hard put to it to specify the conditions under which the second
term of (4.8), say B,, is equal to 2 in order that one of the prime re-
quirements for approximate normality is achieved. At any rate it must
be admitted that in the class

4.4) {U, (P, R): (%;, ¥:, #;,---) is fixed for +=1,2,---, N}

there must be many members for which g;=2. On the other hand there
must also be many members for which 1<8;<2 or 8;>2, and for this
subclass we may say that it is the restrictions on randomization, result-
ing from the initial restrictions on F and H, which prevent the attain-
ment of one of the conditions for approximate normality. Thus, even
if the effective sample size relevant to (4.3) is very large, restrictions
on randomization may very well prevent the attainment of normality
for the estimator a(s).

Acknowledgement

I thank Professor D. J. Finney, Dr. John W. Pratt, U Khint Maung
and Professor William H. Kruskal for an exchange of correspondence



268

J. C. KOOP

over the last few years all of which was most helpful and encouraging.
The term U-randomization was suggested by Professor Finney in order
to avoid derogatory implications respecting sampling procedures with
severe constraints. Finally, I am very grateful to the editor and the
referee for comments which improved the original paper and stimu-
lated the discussion presented in Section 4.

RESEARCH TRIANGLE INSTITUTE, NORTH CAROLINA

[1]
[2]

[31]
[4]

[51]
[6]
[7]

[8]
[9]
[10]
[11]

[12]

[13]
[14]
[15]

[16]
7]

(18]
[19]

{20]

REFERENCES

Fisher, R. A. (1935). The Design of Experiments, Oliver and Boyd, Edinburgh.
Bowley, A. L. (1926). Measurement of the precision attained in sampling, Bull. Int.
Statist. Inst., 22, 6-62.

Mahalanobis, P. C. (1944). On large-scale sample surveys, Phil. Trans. R. Soc., B, 231,
329-451.

Neyman, J. (1934). On the two different aspects of the representative method: the
method of stratified sampling and the method of purposive selection, J. R. Statist.
Soc., 97, 588-625.

Gini, C. and Galvani L. (1929). Di una applicazione del metoda rappresentativo all’
ultimo censimento italiano della populazione, Annali di Statistica, 4, 1-107.

Yates, F. (1946). A review of recent statistical developments in sampling and sam-
pling surveys, J. R. Statist. Soc., 109, 12-43.

Kempthorne, O. (1973). Inference from experiments and randomization, A Survey of
Statistical Design and Linear Models (ed. J. N. Srivastava), North Holland, Amersterdam,
303-331.

Cassel, C.-M., Sirndal, C.-E. and Wretman, J. H. (1977). Foundations of Inference in
Survey Sampling, Wiley, New York.

Midzuno, H. (1950). An outline of the theory of sampling systems, Ann. Inst. Statist.
Math., 1, 149-156.

Midzuno, H. (1952). On the sampling system with probability proportionate to the
sum of sizes, Ann. Inst. Statist. Math., 3, 99-107.

Horvitz, D. G. and Thompson, D. J. (1952). A generalization of sampling without
replacement from a finite universe, J. Amer. Statist. Ass., 47, 663-685.

Koop, J. C. (1963). On the axioms of sample formation and their bearing on the con-
struction of linear estimators in sampling theory for finite universes I, II, III, Metrika,
7, 81-114 and 165-204.

Godambe, V. P. (1966). A new approach to sampling from finite populations I, J. R.
Statist. Soc., B, 28, 310-319.

Godambe, V. P. (1969). A fiducial argument with applications in survey sampling,
J. R. Statist. Soc., B, 31, 240-260.

Koop, J. C. (1974). Notes for a unified theory of estimation for sample surveys tak-
ing into account response errors, Metrika, 21, 19-39.

Bowley, A. L. (1920). Elements of Statistics, King, London.

United Nations (1948). Recommendations for the Preparation of Sample Survey Reports,
Series C, No. 1, United Nations, New York.

Yamamoto, S. (1955). On the theory of sampling with probabilities proportionate to
given values, Ann. Inst. Statist. Math., 7, 25-38.

Hajek, J. (1959). Optimum strategy and other problems in probability sampling, Cds.
pést. Math., 84, 387-423.

Godambe, V. P. (1960). An admissible estimate for any sampling design, Sankhya,



[21]

[22]
[23]
[24]
[25]
[26]
[27]
(28]
[29]
[30]
[31]
[32]
(33]

[34]
[35]

[36]

1371

[38]
(391

[40]
[41]

STATISTICAL INFERENCE IN SAMPLE SURVEYS 269

22, 285-288.

Basu, D. (1971). An essay on the logical foundations of survey sampling, part one,
Foundations of Statistical Inference (ed. V. P. Godambe and D. A. Sprott), Holt, Rine-
hart and Winston, Toronto, 203-242.

Rao, C. R. (1975). Some problems in sample surveys, Suppl. Adv. Appl. Prob., 17,
50-61.

Hajek, J. (1964). Asymptotic theory of rejective sampling with varying probabilities
from a finite population, Ann. Math. Statist., 35, 1491-1523.

Goodman, R. and Kish, L. (1950). Controlled selection—a technique in probability
sampling, J. Amer. Statist. Ass., 45, 350-372.

Sukhatme, B. V. and Avadhani, M. S. (1965). Controlled selection a technique in
random sampling, Ann. Inst. Statist. Math., 17, 15-28.

Jessen, R. J. (1970). Probability sampling with marginal constraints, J. Amer. Statist.
Ass., 65, 776-796.

Smith, H. F. (1955). Variance components, finite populations, and experimental in-
ference, N. C. Inst. Statistics Mimeo Series, 135.

Barnard, G. A., Jenkins, G. M. and Winsten, C. B. (1962). Likelihood inference and
time series (with discussion), J. R. Statist. Soc., A, 125, 321-372.

Fisher, R. A. (1956). Statistical Methods and Scientific Inference, Oliver and Boyd,
Edinburgh.

Fisher, R. A. (1959). Mathematical probability in the natural sciences, Meirika, 2,
1-10.

Pitman, E. J. G. (1937). The “closest” estimates of statistical parameters, Proc. Camb.
Phil. Soc., 33, 212-222.

Pearson, K. (1919). On the generalized Tchebycheff theorem in the mathematical
theory of statistics, Biometrika, 12, 284-296.

Irwin, J. O. and Kendall, M. G. (1944). Sampling moments for a finite population,
Ann. Eugenics, 12, 138-142.

Tukey, J. W. (1950). Some sampling simplified, J. Amer. Statist. Ass., 45, 501-519.
Wishart, J. (1952). Moment coefficients of the k-statistics in samples from a finite pop-
ulation, Biometrika, 39, 1-13.

Koop, J. C. (1957). Contributions to the general theory of sampling finite populations
without replacement and with unequal probabilities, Ph.D Thesis, N. C. State Univ.
(Also in N. C. Inst. Statistics Mimeo Series, 296, 1961.)

Godambe, V. P. and Joshi, V. M. (1965). Admissibility and Bayes estimation in sam-
pling from finite populations: I, Ann. Math. Statist., 36, 1707-1722.

Godambe, V. P. (1975). A reply to my critics, Sankhya, C, 37, 53-76.

Basu, D. (1969). Role of sufficiency and likelihood principles in sample survey theory,
Sankhya, A, 31, 441-454.

Cochran, W. G. (1963). Sampling Techniques, Wiley, New York.

Hastings, W. K. (1974). Variance reduction and nonnormality, Biometrika, 61, 143-149.



