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Abstract

In this paper we are interested in studying multiple decision pro-
cedures for k (k=2) populations which are themselves unknown but
which one assumed to belong to a restricted family. We propose to
study a selection procedure for distributions associated with these popu-
lations which are convex-ordered with respect to a specified distribution
G assuming that there exists a best one. The procedure described here
is based on a statistic which is a linear function of the first » order
statistics and which reduces to the total life statistics when G is ex-
ponential. The infimum of the probability of a correct selection and
an asymptotic expression for this probability are obtained using the
subset selection approach. Some other properties of this procedure are
discussed. Asymptotic relative efficiencies of this rule with respect to
some selection procedures proposed by Barlow and Gupta [3] for the
star-ordered distributions and by Gupta [8] for the gamma populations
with known shape parameters are obtained. A selection procedure for
selecting the best population using the indifference zone approach is
also studied.

1. Introduction

In many problems, especially those in reliability theory, one is in-
terested in using a model for life length distribution which is not com-
pletely specified but belongs, for example, to a family of distributions
having increased failure rate (IFR), or increasing failure rate on the
average (IFRA). Such distributions form special cases of what are now
commonly known as restricted families of probability distributions. The
idea of using such families stems from the fact that in many cases the
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experimenter cannot specify the model (distribution) exactly but is able
to say whether it comes from a family of distributions such as IFR,
IFRA. Families of probability distributions of these types have been
studied by several authors, see, for example, Barlow, Marshall and
Proschan [4], Barlow and Proschan [5], [6] and Barlow and Doksum
[1].

In this paper we are interested in studying multiple decision pro-
cedures for k (k=2) populations which are themselves unknown but
which are assumed to belong to a restricted family. We now give some
definitions of interest to us (see Barlow and Gupta [3]).

(i) F is said to be convex with respect to G (written F<G@G) if

and only if G"'F(x) is convex on the support of F.
(ii) F is said to be star-shaped with respect to G (written F<G)
*

if and only if F(0)=G(0)=0 and G~ !'F'(x)/x is increasing in =0 on the
support of F.

If G(x)=1—e", =0, then F'<G is equivalent to saying that F has
increasing failure rate (IFR). Again if G(x)=1—e*, =0, F<G is
*

equivalent to saying that F has increasing failure rate on average
(IFRA).

In the statistical literature, selection problems for restricted families
were first investigated by Barlow and Gupta [3]. Some further results
in this direction and a review of some important results concerning
inequalities for restricted families and problems of inference for such
families have been given by Gupta and Panchapakesan [10], [11] and
Patel [16].

In Section 2, we propose and study a subset selection rule for dis-
tributions which are < ordered with respect to a specified distribution

G assuming there exists a best one. Some properties of this rule are
discussed. The infimum of the probability of a correct selection is ob-
tained and an asymptotic expression is also given. We also study the
asymptotic relative efficiencies of this rule with respect to some selec-
tion procedures. Section 3 deals with selecting the best population
using the indifference zone approach.

2. Selection rules for distributions < ordered with respect to a
specified distribution G

Before discussing the selection problem, we give some preliminary
known results for sake of completeness. Let & be the class of abso-
lutely continuous distribution functions ¥ on R such that F(0)=0 with
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positive and right-(or left-)continuous density f on the interval where
0<F<1l. For FeY, we take F'(1) to be equal to the right-hand
endpoint of the support of F and we define F~Y(0)=0. For F, Ge &,
consider the following transformation (see Barlow and Doksum [1])

F1

2.1) Hi ()= So C G Fu)de, 0st<l1,

where g denotes the density of G. We assume that G is always fixed.
Since H;' (the inverse of Hj) is strictly increasing on [0,1], H; is a
distribution. Barlow and Doksum [1] have shown that F'<G if and only

if H, is convex on the interval where 0<H,<1. Since G is assumed
known we can estimate H;' by substituting the empirical distribution
F, of F'; that is

Fol
0

2.2) HAO=H0=|"" g6 F.)du

@3) H(L)={"" g6 Fwdu=5 ¢| ¢ (1) [ (Xin—Xis
n 0 i=1 n
where X, is the ¢th order statistic in a sample of size n from F and
X, .=0.
If G(x)=1—e* for £=0, then (2.3) can be written as

(204) Hn_l<%> Z%[Xl,n'{_ e +Xr—1,n+(n_,r+ 1)Xr,n] .

We say that X;,+:--+X,_,,+(n—r+1)X,, is the total life statistic
until rth failure from F.

(A) Seletion procedure and its properties

Let m,,---, 7, be k populations. The random variable X, associated
with =, has distribution function F;, ¢=1,2,.---,k, where F,e . Let
Fi;, denote the cumulative distribution function (c.d.f.) of the “best”
population. We assume that (a) F(x)=Fuq(x) for all , 1=1,--.,k and
(b) there exists a distribution G such that F;<G, i=1,---, k, where <
denotes a partial ordering relation on the space of probability distribu-
tions. We are given a sample of size » from each =, (1=1,---, k).
Our goal is to select a subset from the k¥ populations so as to include
the population with Fi,;. Let 2={F=(F,,---, F}): 35 such that F(z)
=F,(x) for all « and +=1,2,---,k}. Let

(2.5) T.=3a,X,;. for i=1,---,k
j=1

and
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(2.6) T= jgl a,Y;.

where X, ;, is the jth order statistic from F), Y,, is the jth order
statistic from G, r is a fixed positive integer (1=<r=n), a;=gG (7 —1)/
n)—gG~'(j/n) for j=1,---,r—1 and a,=gG ' ((r—1)/n).

For selecting a subset containing F|.;, we propose the selection rule
R, as follows:

R,: Select population =; if and only if
2.7 T:zcimax T,

1sjsk

where ¢,=c¢,(k, P*, n, r) is the largest number between 0 and 1 which
is determined as to satisfy the probability requirement

(2.8) inf P[CS|R]z P*

where CS stands for a correct selection, i.e., the selection of any sub-
set which contains the population with distribution Fi,,. For a given
e (0<a<l), we assume each F; has a unique a-quantile. Let Fi;(x)=
Fi;; denote the cumulative distribution function of the population with
ith smallest a-quantile. Let T, be associated with F}; and let Wyx)
be the c.d.f. of T,.

LEmMMA 2.1. Let Fy, F, be two distribution functions such that Fy(x)
2Fy(x) ve and T,=3 b,X,.,, 1=1,2, where b,>0 for jed, 4c{1,2,
jed
---,m} and X, ;. 18 the jth order statistic from F,, i=1,2, then P[T,
=2]zP[T.=x].

ProOOF. Let
1 if T.=zx
(/’(Xil [ Xin): .
0 otherwise
where X,,---, X, are n observations from F; (¢=1,2). Since ¢(X,,

.-+, X;,) is nondecreasing in each of its arguments, it follows by in-
duction (Lehmann [15] p. 112) that E¢(Xy, -+, X)) SEH( Xy, - -, X5).
That is P[T,=x]<P[T.,=x]. This proves the lemma.

We now state and prove the following theorem which is more gen-
eral than that of Patel [16].

THEOREM 2.1. If F,, GeF, F(x)=2Fuy(x) v and 1=1,2,--, k,
F.:<G, a;20 for j=1,2,--+,7, g(0)=<1 and a,=c,, then

(2.9) inf P [CS|R,]= S:’ G’;*‘(%)dGT(x)
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where Go(x) 1s the c.d.f. of T.
PROOF.
P [CS|R1]:P [Tw=e:Tew, 1=1,---, k—]-]

=S°° T Wi<£>de(x)
0 i=1 Cl

gg'” W:-*<£)de(x) (By Lemma 2.1)
0 ¢

=P [ZkgCIZj, j=1, sy, k“‘l]

where Z,,---, Z, are i.i.d. with c.d.f. Wi(x). Let ¢(x)=G'F;y(x). Note
that ¢(x) is nondecreasing in x. Also we can write

(2.10) Zi=a,X¥. i=1-k,

st j=1

where X% , is the jth order statistic in a sample of size n from Fi,;,
i=1,---, k.

(@11)  PlZze max Z,]:P[¢<%-Zk)_>__¢(zi), i=1,---,k—1] :

1

Since éa,:g(O)él, a;=20 vj=1,---,r, and ¢(0)=0, by Lemma 4.1 of
j=1
Barlow and Proschan [5] and (2.10), then

(2.12) #Z)= ,Zl a;$(Xi%5,.) -

Since (1/c)a, =1, (l/c,)éajgl for i=1,---,r, and ¢(0)=0, by Lemma
j=1
4.3 of Barlow and Proschan [5] and (2.10), we have

(2.19) o(Lz)zL Sagxs) .
Cy st Gy Jj=1
(2.14) X =Yg

where Y;,, is the jth order statistic from G, i=1,2,--+, k. Thus from
(2.11), (2.12), (2.13), and (2.14),

P[Z.=c, max Z]=P [ 30, Vo2 0r 310, Yisgmy i=1, -, k——l]
1sisk j=1 j=1
- S“’ G';-l(i)dGT(x) .
0 cl

This completes the proof.
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The constant ¢;=c,(k, P*, n, r) satisfying (2.8) is the largest num-
ber between 0 and 1 determined by

S:G;*(_Z)dGT(x)gP* and ¢G- (’"nl)>c1.

We now consider two specific distributions G(x). If G(x)=1—¢7,
=0, then we have following result which slightly generalizes the re-
sult of Patel [16].

COROLLARY 2.1. If Fyx)=F(x) V& and 1=1, -, k, Fi;<G, G(x)
=1—e7", >0 and n=max {r, (r—1)/(1—e¢,)}, then

(2.15) inf P [CS| R]= S‘” H"‘1<-§—>dH(x)

where H(x) is the c.d.f of a ¥ random variable with 2r d.f.

Proor. If G(x)=1—e™* then a,=1/n for j=1,2,---,r—1 and a,=
A/n)(n—r+1). Also (1/c)a,=1 iff n=(r—1)/(1—c,). By Theorem 2.1
and the fact that 2nT is distributed as y»* with 2» d.f., the result fol-
lows.

If G(x)=x for 0<x<1, then we have the following result which
is a special case of Theorem 2.1 of Barlow and Gupta [3].

COROLLARY 2.2. If Fyx)=Fuy(x) v and 1=1,.--, k, F;<G and
G(x)=x for 0<x<1, then )
waw eriesmi=a{;) | [3 (1)) -2 ]
21—z "dx .

Actually, the condition F[,;<G in Corollary 2.2 can be relaxed to
F;,<G.
*

We state and prove the following theorem about the asymptotic
evaluations of the probability of a correct selection associated with the
rule R, in the case where » is so chosen that r=(n+1)a<r+1, 0<a
<1. This amounts to selecting populations with large values of the
a-quantile for « (and r) as defined above. In this case, r/n—a as n—
oco. Note that the result holds for all a.

THEOREM 2.2. If F;,, Ge Y for all i=1,---,k and
(i) Fi(m)zF[k](x) Vfl), izl,"‘,k, F[k]<G,

(ii) G(x) has a differentiable density g in a meighborhood of its a-quan-
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tile 7., g(n.)#0, and
(ili) gG™' 1s umiformly continuous on [0,1], G™'(x) is convex and there
exists a &, 0<&<1, such that for £<y<1, gG~(y)/(1—y) s mondecreas-
ing in Y, then as n— oo

e X 1—
2.17) P[CS[R,]_Z_S 0 [..+

1 ¢y

% .92 ) | doe)

where a=1—a and O(x) is the standard mormal c.d.f.

PrOOF. We note that

(2.18) PICS|R]=P[Z,=¢, max Z}]
1=jsk

where Z,,---, Z, are i.i.d. with c.d.f. W,(x) and W,(x) is the c.d.f. of
Tu,. By Theorem (2.2) of Barlow and Van Zwet [7] and condition (iii),
then we have (see Barlow and Doksum [1]), for = large,

(2.19) Z~Yirn
st
where Y, , is the rth order statistic from HFm and HF‘[‘,c ) (the inverse

of Hy,) is defined in (2.1). Now Fi,y<G if and only if Hy, is convex.

Since G~!(x) is increasing and convex, it follows that G“IHFm(x) is con-
vex. Since HFm<G and G7'(0)=0, then HFm<G. In a manner similar
c *

to Theorem (2.1) of Barlow and Gupta [3], we have
(2'20) P [Yk:r,ngcl ma)}f :Yi;r,n]_Z_P [kar,ngcln);kr,n, 'l«#:k]
1gis

where Y%, is the rth order statistic from G, 1=1,---, k. From (2.18),
(2.19), (2.20) and using the fact that

2.21) Y~ N, 2L,
ng*(n.)
the theorem follows.

Before we discuss some properties of the selection rule R, we in-
troduce some definitions (see Santner [17]).
Define Py (1)=Py[7, is selected|R] where =, is associated with Fy;;.

DEFINITION 2.1. (i) A rule R is strongly monotone in =, if
1 in Fy; when all other components of F are fixed
PE('L) is
| | in F};; (§+#1%) when all other components of F are fixed.

That means, P (1)=Prx(7) when E'[i]%F[ﬁ and Pp, (J)<Pr;(j) when
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FUJ%FE% for j#1, where Fi=(Fyy,-+, Fuy,+++, Fg), F¥*=(Fpy,- -+, Fh,

S|

M) FEk])’ Fz=(F[1],' M) F’[jjv' ) F[k]) and Fz*:‘(F[l]!' ) F’[’}‘],' c F[k])'

(ii) A rule R is monotone means Pr(1)<Pr(j) for all Fe 2 with
Fr(2) = Fi ().

(ili) A rule R is unbiased if Pr(7)<Pr (k) for all F ¢ 2 with F;(x)
= Fyy().

(iv) A rule R is consistent with respect to £ means iI;fP[CS | R]

—1 as n—oo.

Using arguménts similar to those in the proof of Lemma 2.1, we
can prove the following theorem.

THEOREM 2.3. If a,=0 for i=1,.-.,r, then R, is strongly mono-
tone in i)

Remark 2.1. (1) If a rule R is strongly monotone in =, for all
1=1,---,k, then R is monotone and inf P[CS |R]=i21fP[CS | R] where
2 o

‘QOZ{F:(FU"',F‘,)GQ: F1="'=Fk} .

(2) If R is monotone, then it is unbiased.

(3) If F(x)=F(x,0,), i=1,---,k and T, is a consistent estimator
of 6,, then R, is consistent with respect to 2={F=(F},---, F;): 33
such that Fi(x)=F,(zx) for all « and ¢=1,-.-, k}.

(4) If F,, GeY, F;<@G, i=1,---,k and the condition (iii) of The-

orem 2.2 is satisfied, we can show that R, is consistent with respect to 2.

The selection of the population with largest F; (i=1,---, k) can be
handled analogously. We assume Fp(2)<Fyy(x), t=1,---,k, and F;;<

G. The rule for selecting the population with Fj,; is R,: Select pop-
ulation =, if and only if

(2.22) ‘ T, <min T,

1sjsk

where ¢, (0<c;<1) is determined so as to satisfy the basic requirement.
In a manner similar to the proof of Theorem 2.1, we have

THEOREM 2.4. If F;,, GeY, F()SFu(x) ve and i=1,---,k,
F,<G, a;=0 for j=1,---,r, g(0)=1 and a,=c,, then

(2.23) inf P [CS| R.]= S” G (ey)d G ()

where Gp(x)=1—G,(x) and 2 ={F=(F,,---,F): 3] such that F(z)<
Fi(x) for all x and 1=1,---, k}.
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(B) Efficiency of procedure R, under slippage configuration

Under the same notations and conditions of Theorem 2.2 and the
comments above Theorem 2.2, we consider slippage configuration Fi;(x)
=F(x/d), 1=1,2,---,k—1, and Fy(x)=F(x), 0<d<1l. Let E(S|R) de-
note the expected subset size using the rule B. Then E (S|R)—P [CS|E]
is the expected number of non-best populations included in the selected
subset. For a given ¢>0, let nz(c) be the asymptotic sample size for
which E(S|R)—P[CS|R]=e¢. We define the asymptotic relative effi-
ciency ARE (R, R*, 9) of R relative to R* to be the limit as ¢e—0 of
the ratio ngz(e)/nz.(e) i.e. ARE (R, R*;a):li_rzl (nz(e)/ng.(e)). Under the

slippage configuration we have,

(2.24) E(S|R)=P[CS|R]+(k—1)P[T,=c, Htlflx Tl -

If » is large, then from an argument similar to the one in the proof
of Theorem 2.2, we have

(2.25) P[Tyze YTilaX Tw]=P[Yize ntlax Y]
#1 #1
where Y;,-.-, Y, are independent and Y; is the rth order statistic from

HFm for ¢=1,-.., k. The right-hand side of (2.25) is asymptotically
equal to

(2.26) S:@<%—a,,h(a,,)(1—i) (i)m)

Cy aa

. Q)k-?(_f:—a,h(aa)(l—%) (i_)m)d@(x)

1 ao

where ¢, is the constant used in defining R,, a, is the (unique) a-quan-
tile of Hpm(a:) and h(x) is the density function of HFm(x). For k=2

and n large,

(2.27) E(S|R)—P[CS|R/]
1/2 2\ —1/2
oo {12 2 (1 £) ).
Let

g :, o+ <_cx: +(1—e)n.9(7.) cll (-&%) I/2>d(p(x) —p*.

Now setting the right side of (2.27) equal to ¢ and using ¢,~1—2Y*D/
n'?, where D=0 (P*)(c2)"*/7.9(».), we obtain

(2.28) g () =[—(a@)" 0 '(e)(1+8)"*+ v 2 Dia.h(a.){aih¥(a.)(1—0)T™" .
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Comparison with Barlow-Gupta procedure

Barlow and Gupta [3] propose a procedure R;, for the quantile
selection problem of star-ordered distributions which is,
R;: Select population #; if and only if

(2.29) T, .zcmaxT,,

157k

where ¢; (0<¢;<1) is chosen to satisfy P[CS|R;]=P* and T, is the
rth order statistic from F; where r<(n+1)a<r+1. They derive an
expression for np(c) as follows:

Ng(e)=[—(a@)* D~} (e)(1+8Y)"2+v 2 Dot f ()16, (6) 1 —0)]™"

where f is the density of F' with unique a-quantile, &,.

e £
(2.30) ARE (R, Bos )=l 2 A S = widay)

If G(x)=1—e", >0 and Fj(x)=1—e"*" and Fp(xr)=1—e"*, =0, 0<
<1, we have,

(2.31) ARE (R, R,; 0)=1"%log"1—a) o4
a
and the ARE=0.4803, a=1/2 .

Comparison with Gupta procedure

Gupta [8] gave a selection procedure for gamma populations z,’s
with densities (1/I'(a)6?)x* ‘e« £>0, 6,>0, ©=1,2,---, k. The pro-
cedure R, is

R,: Select population =, if and only if
(2.32) X, =¢, max X

1sjsk

where X, is the sample mean of size n from =, and ¢, is the largest
constant (0<e¢,<1) chosen so that P[CS|R,)J=P*. For k=2, 6,;=4 and
;=1 (see Barlow and Gupta [3]), we have

9.3 ARE (R,, R,: 8)=1i nzye) _ a(log 3)'ea(1+3) .
(2:33) B, B o) = & 21— 0)Te.fET

Hence

(2.34) ARE (R,, R,; 3)=ARE (R,, Ry; 3) ARE (R, R,; 9)

_ { va log v aavV1+5 }2
V2 (1-d)a.h(a,) )

If G(x)=1—e™ for x>0 and a=1,
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2.35 ARE (R,, R,; 9)={1=2)(1+) log*d
(2.35) (Ry, R.; d) T
(2.36) ARE (R, R,; 31 1)=12¢2

a

Comparison of R, and R; from uniform distribution

Suppose =; and =, are two independent uniform populations with
distribution functions F; (1=1, 2).

0 <0
(2.37) Fyz)= % 0<e=0,
i
1 x>0,

where 0=60;,;<0,;=1. A sample of » independent observations is drawn
from each of the two populations. Let T* be the total life statistic
until rth failure from =, (i=1, 2) where r<(n+1)a<r+1. The pro-
cedure R; is given by

R, : Select population =; if and only if

(2.38) *¥=c;max T*
1<j<k

where c¢; is chosen so that P[CS|R,J=P*. Let T be associated with
0[i]o

2.39)  E(S|R)—P[CS|R]=P[T#=c,T]=P [T{z%n']

where T/, T,/ are two independent total life statistic until »th failure
from uniform distribution over (0,1). By Gupta and Sobel [12],

(2.40) T—% _,No0,1) as n—oo,
ag

where u=na@n—an+1)/2n+1)=u'=na(2—a)/2, i*=An and A=oa(l—
a)(2—a)}/4+a’/12. Hence wufo=~u'lc=Byn where B=a(2—a)/2VA .
From (2.39), we have

E(S|R;)—P[CS|R]~P [zlg%azzq-(%q)wﬂ]
where Z,, Z, are i.i.d. with N(0, 1).

E (S| Ry)—P [CS[R5]=S: q)[—;’—x— (1-%)34%]@(@

- 5
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=0 (1= )8V 1+(3) ]
Let E(S|R;)—P[CS|R;]=¢>0, we obtain
Note that il;lf P[CS|R|=P[T!=¢cT/],
z¢[—<1—l)3ﬁ/«/ﬁ-_l—/c‘§}
Cs

where TY and 7/ are defined as above. Setting irgf P[CS|R;]=P* and

using ¢,=1—v 20 Y(P¥)/¥Yn B and 1/e;=14++4/2 0 (P*)/Vn B, from
(2.41), we obtain

(2.42) N (€)= { ¢'1(5)J¢B?3:;—g2-3¢—1(P*) }z .

From (2.28) and (2.42),

. Mg (e) aaB?
2.43 ARE (R,, R;; 9)=1 b A .
( ) (R:, Rs; 9) ‘13‘1 an(e) a’h¥a,)

If we assume that G(x)=2 for 0<x<1, then

ARE (R, R;; 8) is a decreasing function of @ and for a=1/2, it is equal
to 0.931. Note that in (2.44), R, is based on rth ordered statistic and
R; is based on the total life statistic until rth failure.
(C) Selection procedure for distribution < ordered with respect to Wei-
bull distribution
Assume that the specified distribution G(x) is given by

1—e " for =0
G(x)=
0 for <0

where 1>0 and attention is restricted to a=1 which is assumed known.
In this case, we use T.* as our statistic where

Ti*=1§ Xil:j,n+(n'—’r+1)Xil§‘r,n ’ 'i:1,' * k.
i=1

As before, X, denote the jth order statistic from F,, i=1,---,k.
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Since G(x) is convex with respect to the exponential distribution if
a=1 and since the convex ordering is transitive, the family of distri-
butions which are convex with respect to Weibull (e=>1) will have IFR
distribution. Thus our interest here is in a special subelass of IFR dis-
tributions. The rule for selecting the population which is associated
with Fy,, is as follows,

R;: Select population =, if and only if
(2.45) *=c; max T

1sjsk

where ¢; (0<c;<1) is determined so as to satisfy the basic probability
requirement. Using the fact that if F<G and F(0)=G(0)=0 then

F.<G, or a=1, where F, is the c.d.f. of X*, F(x) is the c.d.f. of X,

G, is the c.d.f. of Y* and G(y) is the c.d.f. of Y. Also, G;'F,(X7,) is
stochastically equivalent to the ith order statistic from G*(x)=1—e7,
for x=0, where X,,<..-=<X,, are order statistics from F. In a man-
ner similar to the proof of Theorem 2.1, one can prove the following
theorem.

THEOREM 2.5. If F,(x)ZF[k](x) V& and i:].," ',k, F[k](0)=0, F"[]ﬂ
<G, Gx)=1—e*, >0, 2>0 and a (=1) is known and n=max{r,

(r—1)/(1—cq)}, then

(2.46) inf P [CS| Ril= S: Hk-l(%’_)dﬂ(x)

where H(x) is the c.d.f. of a ¥* random variable with 2r d.f.

(D) Selection with respect to the means for Gamma populations
Let =, -, 7, be k populations with densities

ft(x)=%x”i“e"”, 220, >0, a;=1, i=1,---, k.
)

Let Fy(x) be the distribution function of =,, 7=1,---,k. We are given
a sample size of n from each =,. Let T* be total life statistic until
rth failure from =,. Let o= :=<ay; be the ordered values of «,’s.
We are interested in selecting the population with the largest value
arxy (unknown). Since the mean of =, is «,/8, selection of the population
with largest mean is equivalent to selecting the population with largest
value, ay;. The subset selection rule based on T}* is:

R,: Select population =; if and only if
(2.47) T*zc,max T},

1sjsk
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where ¢; (0<¢;<1) is the largest value chosen to satisfy P [CS|R;]=P*.
Since the rule R, is scale invariant, we can assume g=1.

Case 1. All a; are unknown and =1. Let 2,={a=(a;, -, a): a;
=1 vi}. In this case, by Corollary 2.1 and F;<G(z)=1—e"%, 20, 1=
1,---,k, we have the following result. If ncgmax {r, (r—1)/1—c))},
then ilr)mf P[CS[R7]=S°°H"”‘(x/q)dH(x), where H(x) is the c.d.f. of a ¥*
rv. with 2r d.f.

Case 2. @, are unknown but assume 1<e,<4, 1=1,---,k and 4 is
known. Let Fi(x) be the c.d.f. of X with density function f,(x)=(1/
I'(4))xz*'e™*, x>0. Let H(x) be the c.d.f. of a »* r.v. with 2r d.f. and
let h(x) be its density function. The following theorem gives a lower
bound for the probability of correct selection without any condition
on 7.

THEOREM 2.6.

(2.48) P[CS|R12 S“’ H"“(zc—’: @%ﬁ’)‘y) o
where
y=F;'(1—e™).
PRrROOF.

P [CS|R7]=P [T(t)zﬁ max T(t'f‘)] ’
1sjsk-1

where T is associated with e, ¢1=1,---, k. Since F,(x)<Fy(x)<G(x)
=1—e77,
(2.49) P[CS|R]=P[T¥*=c; max T}*]
1=jsk-1
where T;** is the total life statistic until rth failure from G(x) and

Tx* (j=1,---,k—1) is the total life statistic until »th failure from
F,(x). Since 4=1 then F,<G. Let ¢(x)=G'Fx)

(2.50) P[T¥*=¢e,T}*, j=1,---,k—1]
=P [¢( 1% )29 (ATr*) G=1,- k—1] .
n n

By Lemma 4.1 of Barlow and Proschan [5] with a,=---=a,_;=c¢/n,
a,=(n—r+1)e/n, a;=0 for 1=r+1 and ¢(X)=Y where X(Y) is a r.v.

with distribution function F,(G) respectively, we have
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o0 o) s

P[¢< T**) LY, =1, k—1]

where Y, (j=1,-.-,k—1) is a r.v. with ¥* with 2» d.f. From (2.49),
(2.50) and (2.51), we have

P [CS|R]= S“’ H""(z—na;>dB(x) ,
0 C;
where B(x)=P [¢((1/n)T*)<x]. Since B(x)=H[2nF;'(1—e*)], then
® IrE-1 2_" —\7 ge 2_'"/ 2nh(2ny) e=*d.
SO H < o x)dB(x) So H < o x>_——_f4(y) x .
This completes the proof.

Let S denote the size of the selected subset. The expected value
of S when R; is used is given by

(2.52) E(S|R)=3P[Tx*=¢, max T7]
i=1 1=sjs

Let 2 ={a=(ey, -+, a,): 15,54, 1=1,---,k}. For ac 2 since Fy(x)<
F(x)<G(x)=1—e"", then

E(S|R) <k P[T}**=c, max T}*]
2sjsk

where T** is the total life statistic until rth failure from F,(x) and
T}* (j=2,---,k) is the total life statistic until rth failure from G(x).
Thus

(2.53) sup E (S| R)=k S‘” H"“(-ZC—m-)dS(x)

where H(x) is the c.d.f. of a »* r.v. with 2» d.f. and S(z) is the c.d.f.
of the total life statistic until rth failure from F(X).

Remark 2.2. (i) We can show that the lower bound for Case 2
in Theorem 2.6 is less than or equal to the lower bound for Case 1.
(ii) Now we are dealing with the problem in Case 2. Let

Sw H*Yx/c;)dH(x)=P*, then ¢, can be determined. If n=max {r, (r—
0

1)/(1—e¢;)}, then we should use the lower bound for Case 1. If r=n
<(r—1)/(1—¢,), then the lower bound for Case 1 cannot be applied. In
this case, we can use the lower bound for Case 2.

(iii) Sometimes, the distribution function S(x) which is defined
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above Remark 2.2 is hard to compute. Using E(S|R)<kP[T**=c,T}*,
j=2,---,k] where T** is the total life statistic until rth failure from
F, and T}* (j=2,---, k) is the total life statistic until »th failure from
G(x) and employing similar arguments as in the proof of Theorem 2.6,
we can get

E(S|R)<k S: Hk-l[%’im-la —e"/z")]dH(w)
7

where H(x) is the c.d.f. of a »* r.v. with 2r d.f. In this case, the up-
per bound of E(S|R;) can be computed.

3. Selecting a best population—using indifference zone approach

Let =,,---, 7, be k populations. The random variable X, associated
with =, has an absolutely continuous distribution F;,. We assume there
exists an F(x) such that Fi,(x)=F(x/3) for all z, :=1,-..,k—1 and
3 (0<3<1) is specified. Let

3.1) 20)={F=(, -+, F): 3j such that Fy(x)=F,(x/d) vi#Jj}.

The correct selection is the choice of any population which is associated
with Fi,;. We propose the selection rule Ry: Select population =; if
and only if

(3.2) Ti:ma)g T, where T, is defined as in (2.5).
15js

We want the P[CS|R,]=P*, for all F ¢ 2(3), where P* is specified.

THEOREM 3.1. If F,, Ge <, i=1,---,k, F;yw<G, a,=0, j=1,---, 7,
9(0)<1 and a,=0, then

(3.3) inf P[CS| Ry = S“’ G;-l(ﬁ)dGT(x)
23) 0 3
where Gp(x) is the c.d.f. of T defined in (2.6).

Proor.

P[CS|Rg]=P [T =max Tl .
1s/sk

Since F{4(dx)=Fuq(zx), 1=1,---,k—1 and by Lemma 2.1, then

.

PCSIRI=P [ Twzs L v j#k|2P[TwzoTs vi#h

where T*,...,T*,, Ty are i.i.d. with c.d.f. W, (x). Using the same
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argument as in Theorem 2.1, we have our theorem.

For given k, 4, P* and G(x), we can possibly find the values of
the pair (n, r), (n=r) which satisfy

(3.4) 4,23 and SjG’;“(%)dGT(x);P*.

If G(x)== for 0<x<1, we can always find the values of the pair
(n, r), (n=7r) which satisfy

D ()02 T e amarsear,

If G(r)=1—e™" for =0, we can find the smallest integer r, say r,,
which satisfies Sm H* Y (x/d)dH(x)= P* where H(x) is the c.d.f. of a »*
0

random variable with 2r d.f. Since (1/9)a,=1 iff n=(r—1)/(1—38), we
can find the minimum % satisfying »=max {r,, (r,—1)/(1—3)}.
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