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Summary

Consider a normal population with mean g and variance ¢*. We
are interested in the estimation of population variance with the help
of guess value ¢; and a sample of observations. In this paper, a double
stage shrinkage estimator ¢} based on the shrinkage estimator ks?+
(1—k)a} if sie€ R and the usual estimator s'= (my —1)si+(ny—1)s} if si¢

0 1 1
Nny+n,—2
R, where R is some specified region, have been proposed. The expres-
sions for bias and mean squared error have been obtained. Comparison
with the usual estimator s’ have been made. It was found that though
the largest gain is obtained for k=0, we can use ¢; with 0<k<1/2
even when ¢* is very close to o;.

1. Introduction

Consider a normal population with mean g and variance ¢*. Sup-
pose that our a priori knowledge about the population variance ¢* is in
the form of an initial estimate o;. Let =z, @, ---, 2, be a random
sample of size » from a normal population with mean x and variance
¢’. The minimum variance unbiased estimator for ¢° is s*. We are in-
terested in estimating ¢ with the help of ¢ and a random sample of
observations. Thompson [5] considered a method of shrinking the mini-
mum variance unbiased estimators towards the natural origin by multi-
plying it by a shrinkage factor c¢. He considered the estimation of
population mean g and propose the estimator

(57-#0)s
(@ — ) +8°[m
The above estimator have higher efficiency when x is very close to g,
Similarly the shrinkage estimator for population variance will be
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which have higher efficiency when ¢’ is very close to ¢2. This suggest
that we have to use ks*+(1—k)o; instead of s* when ¢* is very close to .
Therefore we can propose a preliminary test estimator

ks’+(1—k)a; if ¢* is close to o}
op=
! s? if ¢* is not close to .
The above estimator have been discussed in [4]. Here to test whether
g; is close to ¢ or not, we apply the test statistic (n—1)s*/s?, which
follow the chi-square distribution with (n—1) degrees of freedom. Let
r, and 7, be such that

Plris(n—-1)sai=r]=1l—a.

Therefore we can say that ¢} is close to ¢ if s*€ B. Hence the prelim-

inary test estimator is
ks*+(1—k)o; if seR
st if ¢R.

2 —
Op=

Katti [2] have considered a double stage scheme for estimating the
mean g when variance ¢* is known and when an a priori estimate is
given as y. The estimator considered by Katti [2] is

z if Z, ¢ R,
EZ) n@itn® g % ¢ R,
m+n,

where

Rz[ - 4——% ,
O v 2n,+n, #°+~/2n1+n2 [oy @]

and is obtained by minimizing MSE (z/p). Similarly if we consider a
double stage scheme for estimating the population variance ¢?, when
an a priori estimate is given as ¢, the estimator will be

s? if e R,

7= (n,—1)si+(n,—1)s} if s$¢R,
ny+n,—2

where
Ry= [a§<1 — \/

Arnold, J. C. and Bayyatti, Al. H. A. [1] have considered the estima-

), ag<1+\/
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tion of population mean p on double stage. They attempt to weight
t and x, by a constant £, 0=<k=1, such that the estimate is kz,+(1—Fk)u,
if £, ¢ R. k is a constant specified by the experimenter according to
his beliefe in g. A value of k£ close to zero implies a strong belief
that g, is near the true mean g and a value near one causes the double
stage estimator to be based essentially on the sample alone. The double
stage estimator proposed by them is

M=) m@imd pgop
(T (%)

Similarly the double stage shrinkage estimator for population variance
will be

kst +(1—k)a? if sseR

%) (DS Hm—DE e R
ny+n,—2

where R can be obtained by minimizing the MSE (¢}/s?).
In this paper we have also proposed a double stage shrinkage
estimator 2. We take a sample of size n, and compute
1 ™ _ I !
> (o —2,), T=——2%.

nm—1 i=1 ny i=1

If s implies that our a priori estimate was reasonable, we stop sam-
pling and shrink s’ towards . If not so, we take additional sample
of size m, and compute the pooled sample variance

= (n,—1)si+(n,—1)s}
Ny+n,—2

where

1m0
1 E(xi—xz) ’ L= 2% .

gi=
2 =
2 Ny i=1

Therefore the proposed double stage shrunken estimator is

2 2
kst +(1—Fk)ot if % _<gg Tl
n,—1 n—1

(n,—1)si+(n,—1)s} if s 7105 2 704
—_ and .
Ny+n,—2 si< n—1 5> n—1
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2. Bias and mean squared error

The proposed estimator is

@2.1)

where

ksi+(1—k)a? if seR

A1 =D+ =18 i a.p
ny+n,—2

R= [ 710% 7105 ]
= , ———1.
nl_ 1 nl— 1

The expected value of ¢} can be written as

(2.2)

E @)=\ si(et, spisipsidsids;

- SR (st + (1 —k)at} p(sd)ds?

+{7] s e sttt

my+m;
where m;,=n,—1, 1=1,2 and
2) 1 ’m/,'S? m;/2—
p(sh)= < P )mi " <ﬂ> exp (——2;2-5) (smir-t,
m; 2
Now,
(2.3) Bias (63)=E (¢})—0o*
= (k=" o+ (1—K)iR —— R
m, + m, m, + m,
where
2 2
' I( 7205 m) _ 1( iy ﬂ)
< 24° 2 20? 2
R'=I< 07 My __1> —I( 710% _m_L_1>
2 2 2% 2
and
I(x, p—1)=~—1— SI e~tPIdt (Incomplete Gamma Integral).
I'(p) Jo

If k=0, the proposed estimator is
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at if ek
&4 N2) msrmst g
my+m,
Now,
(2.5) Bias (5)=——"™__¢'Q' +aR'—— ™ R’
my+m, m+m,

If k=1, the proposed estimator is

s if sseR

#0) M=) mettmst g gop
my+m,
Now,
@.7) Bias (6)=—"%" @ __ M9 pr
m;+m, m;+m,

Again we have,
(2.8) MSE (a;)=E (a; —d*)*

={{ Gi—orst, siptsypispasias:

= thsi+(1—Ryoi—ot) plsi)dst

+ S: SM {W*OZ } Pe)plst)dsidst
1 2

After simplification we get

2.9) MSE (5})= 2:‘ +{k2 mi }m1+2 P!

my T+ my _(ml—i—mz)z m,
2mist
ka'(o2— %) — 2kala? ___.__'__}
+{2 (sh—0)—2hole’ + e @
+ f(a%—az)z+kza;-—2kgz(ag_gz)_ (mi+2my)o* } R
(m1+mz)2

which will be equal to
(2.10) 24 _ (’m1+2)’m; P’ 2mio'Q’ g
my+m, (m,+my) (m,+my)

2 o\e (mi+2my)d* }R’ for k=0
iy e o
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and

@.11) 27 mi }ml+2 AP

2 {1_
ml + m, (ml + m2)2 ml

2mic* mi+2m,
+ {—-‘ - 20‘} Q@+ {o‘——‘ d a‘} R for k=1
(m+my)? (my+m,)*

respectively. Now differentiating (2.9) with respect to %k and putting
the derivative equal to zero, we get

(2.12) kMt 2 4Pt (A koA 4 o't R+ (%0l — 2ka'ot— Y@ =0
my

which gives
(oh—d*a)) R’ + (o' — d’a})Q’
mt2 a*P' 4+ 'R —25%'Q

m,

(2.13) k=

Again differentiating (2.12) with respect to k we get

(2.14) M+2 pr i AR — 25

my
which will be always positive. Hence the value of k£ obtained in (2.13)
will give the minimum mean squared error. The value of k depends
on the unknown values of ¢%, which can be estimated by s. Therefore
the estimated value of k, on the basis of first sample will be '

(2.15) ke = o (M1 1+ 2) {00 — S°a5} B + [m;8]—si(m, + 2)at]Q”
0 (m1+2) [3:P"+03R"———28f03Q”]

where

P"=I< 7300 , my 1>—I< 719, , my 1)
2 + 2s} 2 +

Q,,z_,(m% ﬁ)_I<'fﬂ§ m)

2st ' 2 2st 2
2 2
R"=I< 7300 , m, _1) —I< 7100 , m, __1> i
2s? 2 28! 2

Therefore the proposed estimator will be

ksi+(1—k)o}  if sie R
(2.16) =1 msitms if ¢R.
m+m,
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The expressions for bias and mean squared error can be derived. It
will involve complicated algebra.

3. Comparison

The relative efficiency of o2 with respect to s* is defined as

(3.1) REF (o}, s")= MSE (s%)

MSE (o})
= [14— <k2_ mi ) (my+my) (m,+2) P’
(m+m,)? 2m,
+ { k(i —d*)(m+m,) _ k(m+m,)a; + m} }Qr
a’ a m,+m,
(m+my) (05 —0°)* | (my+my)a}
+ { 204 + 204
_ k(m+my)(ai—0"a} _ mi+2m, } R’] - )
a* my+m,

The numerical calculations of the relative efficiency have been shown
in the following tables.

Table 3.1 «a=.20, o?=0}=4
k
.1 2 .3 .5 .8 1.0

ni Ny

5 10 275.09 254.57 226.45 167.28 129.85 75.19
8 12 221.86 215.51 205.66 184.80 136.91 112.33
15 10 230.20 219.62 203.97 170.52 109.97 84.00
20 15 196.09 190.73 182.51 160.31 123.61 102.05
31 40 188.38 185.97 182.10 170.82 148.41 132.36

The above table shows that the relative efficiency is a decreasing func-
tion of k. The proposed estimator is better than the usual estimator
gt if 05k<.8.

Table 3.2 a=.05, ¢*=0j=
k

ng Ny
.1 .2 .3 .5 .8 1.0

5 10 687.37  472.00 310.17 147.86 64.91 36.91
8 12 585.59 542.18  357.56 171.09 85.64 49.67
15 10 509.45 432.08  344.97 209.60 107.15 73.85
20 15 924.40  404.21 325.29 200.19 103.30 71.41
31 40 952.36  614.30  412.63 170.07 72.84 47.68

The proposed estimator is better than the usual estimator s* if 0<k<.6.
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Table 3.3 a=.01, o®=0i=4

k

ny N2
.1 .2 .3 .5 .8 1.0

5 10 1495.44 1341.35 319.38 123.65 49.99 31.83
8 12 1907.51 1109.40 453.92 152.13 58.03 36.96
15 10 1424.05  869.56 527.61 233.52 98.99 64.64
20 15 1605.46  903.73  523.03 222.76 92.74 60.34
31 40 356.49 291.15 222.98 127.49 62.37 42.39

The proposed estimator is better than the usual estimator s* if 0=<k<.5.

Hence from the above tables we can say that the relative efficien-
cy is a decreasing function of @ and k and the largest gain is obtained
for k=0.

Table 3.4 a=.05, g}=4, ¢*=5
k
.1 .2 .3 .5 .8 1.0

5 10 231.55 188.80 167.28 133.14 87.68 80.38
8 12 159.38 155.12 146.96 123.92 88.19 69.29
15 10 237.11 169.03 154.33 147.16 82.38 63.56
20 15 104.90 105.44 106.08 103.97 95.96 87.39
31 40 106.78 106.56 104.45 95.99 77.98 65.82

Table 3.5 a=.05, oi=4, d2=5

k

ny ny
.1 .2 .3 .5 .8 1.0

5 10 146.72 153.35 143.99 104.84 54.37 36.22
8 12 110.38 121.48 125.57 109.29 66.56 45.93
15 10 81.01 90.31 98.60 107.59 94.65 76.28
20 15 61.69 70.49 79.40 93.49 90.31 74.25
31 40 34.64 39.97 45.52 67.37 53.33 43.38

The above tables show that we can use the proposed estimator with
0<k<.5 even when ¢ is close to ¢

Table 3.6 a=.01, g}=4, ¢2=16

k

5 10 41.80 43.78 45.88 50.07 50.19 57.79
8 12 43.45 45.63 47.94 56.52 61.34 67.47
15 10 69.07 70.68 72.30 75.55 80.37 83.47
20 15 79.20 80.49 81.51 83.90 87.65 90.27
31 40 93.67 95.34 97.24 98.63 101.25 106.34
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The above table shows that the proposed estimator ¢! is worse than s?
if there is vast difference in ¢ and o°.
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