Ann. Inst. Statist. Math.
31 (1979), Part A, 207-213

CALCULATION OF ZONAL POLYNOMIALS OF 3X3
POSITIVE DEFINITE SYMMETRIC MATRICES

RAMESHWAR D. GUPTA AND DONALD RICHARDS

(Received Apr. 27, 1978; revised Mar. 30, 1979)

Abstract

A zonal polynomial identity is derived and is used to construct
algorithms for the calculation of the zonal polynomials of 2x2 and
3x 3 positive definite symmetric matrices.

1. Introduction

Many multivariate distributions involve functions which can be ex-
panded in series of zonal polynomials. Examples of these are the non-
central distribution of the latent roots in multiple discriminant analysis,
and the distribution of the canonical correlation coefficients, both of
which were derived by Constantine [1]. The expository paper by James
[3] and also the book by Johnson and Kotz [5] provide a large number
of additional examples together with the definition and various proper-
ties of zonal polynomials. Thus, we see that explicit formulae or algo-
rithms to calculate zonal polynomials are of extreme importance in
multivariate analysis. So far there are three kinds of methods devel-
oped for calculating the zonal polynomial coefficients for general orders
and degrees: (i) the method using the Young symmetrizer, James [2];
(ii) the method using the orthogonality relation satisfied by the zonal
polynomial coefficients, James [3]; and (iii) the method using Laplace-
Beltrami operator, James [4]. Parkhurst and James [6] have tabulated
zonal polynomials of order 1 through 12. However, explicit formulae
are available only for the special zonal polynomials corresponding to the
highest and lowest partitions and for the case of order 2, see James
[31, [4]

In this paper, we obtain a zonal polynomial identity which is used
to construct algorithms for the calculation of zonal polynomials of 2x2
and 8 X8 positive definite symmetric matrices.
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2. A zonal polynomial identity

Throughout the paper, we shall use the following notation: S is a
pXp positive definite symmetric matrix with latent roots 2, 2,,---, 2,;
s;=A+---+2, (7=1,2,---) are the power sums of the latent roots;
C(S) is the zonal polynomials of S corresponding to the partition r=
(ki kz,- -+, k) of an integer k such that k,=---=k,=20 and k,+---+k,
=k. Also,

(@)=ala+1): - -(a+k—-1),

and for each partition « of k,

@.=]T (a—21-(—1))

i=1 k;

THEOREM. For any real (or complex) number a,

@)  S@o®)=k 3 len) (a2, (as/k

vy 2ugt ootk =k yll y2! V!

where the sum on the left-hand side of (2.1) s taken over all partitions
x of k, while the sum on the right is over all mon-negative integral v,,
<, v, such that v +2v,+ .- -+ kv, =k.

Proor. Consider the generating function
oo k
(2.2) a)=52L 5 @.0(9) .
=0 k! =

The series converges if the maximum of the absolute values of the
characteristic roots of ¢S is less than one. Then, Constantine [1] has
shown that

(2.3) 9@)=|L,—tS[™",

where I, denotes the identity matrix of order p. Therefore,
1ng(t)=—a1n|1—tS|=a{t tr (S)+-t21tr (Sz)-i-%str (S3)+-~-}
and hence,

(2.4) g(t)=exp (ats,) exp (at’s;,/2) exp (at’sy/3)- - - .

Expanding each of the exponentials in (2.4) as a power series in t and
taking Cauchy products, we obtain

(2.5) g(t):i t* s (as)r (asy/2)2  (asi[k)*

T N L v,! v !
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and the result is obtained by equating the coefficient of ¢* in (2.2) and
(2.5).

Since a can be chosen arbitrarily, then to caleculate C.(S) for a par-
ticular partition x, we simply choose a such that (a),=0 for all {#r«,
and (a),#0. Substituting this value of a on both sides of (2.1) would
then yield C(S) in terms of the power sums of the latent roots of S.
Unfortunately, this method does not work in general, since there are
only two such values, viz. a=1/2 and a=—1. Using these values, we
obtain

(2.6) Ca(S)=r(1/2, k)[(1/2)q,
and
(2~7) C(l")(S)'——f("l: k)/(—l)(lk)

where f(a, k) denotes the right-hand side of (2.1), while (k) and (1%)
are the partitions of k£ having one and k non-zero entries respectively.
We note that (2.6), given in James ([3], p. 493), was obtained by Ruben
[7], and that the f(a, k) can be easily calculated using the following
recurrence relations

fla, 0)=1; fla k) :(k—1)!a§ s fla P!, k=1,

Let us now consider various values of k¥ (<p). When k=1, (2.1)
reduces to

aC(l)(S):—‘f(a, 1)=a31

and hence, C(S)=s,. For k=2, the partitions are (2) and (1%, and
Cux(S), Cy(S) are as given in (2.6) and (2.7) respectively with k=2.
When k=3, the partitions are (3), (21) and (1%). Cu(S) and C.3(S) are
already given in (2.6) and (2.7), and using the fact that

(2.8) S C(S)=st,

it follows that
(2.9) C(zn(S)38?—0(3)(S)—C<13)(S) .
Note that (2.8) is a direct consequence of (2.1), since Fy(S)=Ilim Fy(n;

(1/n)S). One could also obtain Cg,(S) by substituting any value of «
such that (a)gy=ala+1)(a—1/2)#0 into (2.1) and solving the resulting
equation with the aid of (2.6) and (2.7).

When k=4, the partitions are (4), (31), (2%, (21%), (1*). As usual,
Cw(S) and Cys(S) are known from (2.6), (2.7). Let a;, a;, a; be any
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three different values of «. Then from (2.1), we have the system of
equations

(@)ay  (@)an  (@)as Cun(S)
(2.10) (@)an  (@)an  (@)am ) ( Can(S) )
()ay  (@)an  (@)ar Cann(S)
Sy, 4)— (0‘1)(4)C(4>(S ) —(@)asCas(S)
=( Slaz, 4)—(a)wCiix(S) — (@) at,Caus(S) ) .
S (as, 4)— (@) wCeix(S) — (@) at,Causx(:S)

One can easily check that there is no unique solution to (2.10), since
the matrix on the left-hand side is of rank 2. Thus, (2.1) fails to gen-
erate the zonal polynomials corresponding to the partitions (31), (2%
and (21%). When k exceeds 4, the same problem arises and (2.1) alone
cannot generate the zonal polynomials corresponding to any partitions
of k except for (k) and (1*), which are as given in (2.6) and (2.7). Even
use of (2.1) along with the results on some weighted sum of zonal poly-
nomials given by Sugiura [8] failed to generate the zonal polynomials.

3. Calculation of zonal polynomials of 2X2 matrices

We take k=2m or 2m+1 according as k is even or odd. In this
case, the possible partition of & are

(k)r (k_ls 1)’ (k_2y 2);' R (m, m) ) if k:2m .
(k), (k—1,1), (k—2, 2),- -+, (m+1,m), if k=2m+1.

In either case, i.e., k even or odd, the zonal polynomials can be suc-
cessively obtained by substituting the values «=1/2, —1/2, —3/2,---,
—(2m—1)/2 into (2.1). Then, we obtain the system of equations

(1/2) 0 0
("‘1/2)(k) (“1/2)(k—1,1) 0
(3-1) (_3/2)(10 (_3/2)(k—1,l) (_3/2)(k—z,2) 0

................................................

................................................

(1—-2m)/2) (1—2m)/2)¢e-1.p (1 —2mM)/2)cis,>

-0 Cux(S) F(1/2, k)
-0 Cei-1,0(S) f(—=1/2, k)
-0 C(k—2,2)(S) = f(—'3/2’ k)

...........................................

...........................................

< (A=2m)2)mm> I\ Cotem,m(S) )\ F(1—2m)[2, k)
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and the zonal polynomials can now be easily obtained since the matrix
on the left-hand side of (3.1) is lower triangular. For various special
cases, we have used the recurrence relation

(3.2) 8, =818k—1— (81— 82)8¢ /2 , k=3,4,---

to verify that the polynomials obtained from (3.1) coincide with those
given by James [3].

4. Calculation of zonal polynomials of 3X3 matrices

The possible partitions of k are

(k), (k—1,1), (k—2, 2), (k—2, 1%, (k—3, 3),- -+, (m, m, m) ,

if k=3m .
k), (k—1,1), (k—2,2),---, (m+1, m, m) if k=3m+1.
k), k—1,1), (k—2,2), -, (m+1, m+1,m), if k=3m+2.

As before, we observe that (2.1) alone cannot generate the zonal
polynomials for any partition of k except for (k). Fortunately, if we now
use the identity given by James ([3], eg. (129)), then it turns out that
all the polynomials can be generated recursively by again substituting
different values of « into (2.1). The procedure is as follows:

(a) First find the zonal polynomials corresponding to the partitions of
k into three parts by using James’ identity

Lok, 21 2y (1) 2%3(K1) (2, + 2K, — 4Ky)!

4.1 C S)=
( ) (Icpkzvka)( ) Xlgkl-zka,2k2—2k3)(1)6k3(2k)!(kl+k2_2k3)!
T <2—%i+ki-—ka)ka(si‘—3slsz+2sa)"s>
: C(kl—ks,kz—ka)(s)
where
3 3
4:2) iegrr (D= T o=y —i+3)| TT (k43 —3)!

and we note that the zonal polynomial Cg s, ,-¢p(S) Will certainly be
known before. In particular, when k,=k;, then (4.1) reduces to

200 1) 2 — 2!y — s 312)
4.3 ke ) (S) = Ko 2ty 201 (1 :
@ OO ) G o G~ k) (120

(D), (1/2)s,(81— 38,8, +283)*2f (1/2, by — k) .

(b) The remaining zonal polynomials are successively obtained by sub-
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stituting the values a=1/2, —1/2, —3/2,---, —(k—1)/2 if k is even, or
a=1/2, —1/2,---, —(k—2)/2 if k is odd into (2.1). This technique will
yield the zonal polynomials in terms of s, s,,---, s, but the recurrence
relation

(4.4) S =8:Sx_1— ?12 (s1—85)85—2 +% (s3—3s18;+285)8;_3 -

k=4,5,---, can be used to express the results in terms of s, s, s;.

To illustrate the above procedure we now consider the cases k=4, 5,
since for k=1, 2 and 3, the zonal polynomials are given in Section 2.
When k=4, the partitions are (4), (31), (2%, and (21%). Using (4.3), we
have

sz)(S)=%{s{—3S?sz+2slsa} .
Now, by substituting the values a=1/2, —1/2, —3/2 into (2.1) and using
(4.4), we get
Cow(S)=f(1/2, 4)/(1/2),
1

= 105 {st+12sis,+ 125+ 32s;5,+ 48s,}

=_313{3s:—123332+12s;+32sls3} ;

— 1 _ —(—
C“”(S)—(—_UZ);(——I)U( 1/2, 4)—(—1/2)CuxXS)

—(—1/2)(—1)(—3/2)Car(S)}
1

= e {—4st+156sls,— T2s; — 80s;s;}
_ 1 _ —(—
C(zl)(s) = ( — 3/2)2( _2)2 {f( 3/Zr 4) ( 3/2)40(4)(8)
- ( - 3/2)3( - Z)C(au(s) - ( - 3/2)2( - 2) ( - 5/2)0(212>(S)}
- _3% {285+ 168sls,+ 25251 — 4483,8,} .

Note that Cg,(S) could have been obtained by using (2.8). For k=5,
the partitions are (5), (41), (32), (31*) and (2°1). From (4.1), we have

cazn(S)=—‘3‘-(sf—3slsz+2sa)cm,(8)

% {s}—4sls, +2sis;+ 35,55 — 28,83} .
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Using (4.8), we get
_20 s
C(312)(S)'——9—(31"‘33132‘5‘283)f(1/2, 2)
= % {83 —sis;+ 2818, — 68,52+ 48,85}

Substituting the values a=1/2, —1/2, —3/2 into (2.1) and using (4.4),
we have

Cis,(S)= 3—-5—17—9— {s}+20s3s,+80s%s; + 608,5: + 24083, + 1608,3; + 384s;}

- '613— {782 — 3653+ 48525, + 125,53+ 3258} ,

— 1 — —(—
Ccm(s)—m{f( 1/2, 5)—(—1/2)Cc:(S)

—(—=1/2)(—1)(—3/2)Cax(S)}
= —é— {—st+9sis, + 65is;+ 65,8, — 208,8,}

1
32> —_— _3 2’5 - —32 SC(S) S - —3 24 —2 C(H,)
Canl =gy, (312 )= (=320l )~ (~3/2)(~DCu(S)

—(—3/2)x(—2) (—5/2)Cusx(S) — (—3/2)o — 2)( —5/2)Cax(S)}
= glg‘ {— 2851+ 232s(s, — 272s]s,— 125,5; + 808,55} .
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