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1. Introduction

Swain [8] has investigated, in his Ph. D. thesis, the use of more
stringent standards in the compound decision problem and has called
the resulting version the extended compound decision problem. Gilliland
and Hannan [2] have developed more details for the nature of these
standards.

The component problem in the compound decision problem here is
the squared-error loss estimation (SELE) problem.

Let k=1. The component problem is the estimation of # given
X~P,e P where P is the family of probability measures. Let X,=
(Xi,- -+, X,) be n independent random variables with each X;~P,=P,
€ P where = is the defining property. Note that k<n. The set-
compound problem is the estimation of 8, according to the decision pro-
cedure ¢,=(t,---,t,) with each t, depending on all n observations X,.

With L(6, a) denoting the loss the risk here is R(,, tn)=S n! i L(9,,
j=1

t,(x)d(P,X - -+ X P,)(x,) and the modified regret for ¢, is D(4,, ¢,)=R(8,,
t.)—R(G,) where G, is the empirical distribution of 4,,6,,---,6, and
R(G,) is the Bayes envelope (the minimum Bayes risk) of the compo-
nent problem at G, which is the usual standard in the compound deci-
sion problem.

Let k=1. Let zi=(2;_441,-**,2;), j=k, -+, n. Define by G: the
empirical distribution of the k-vectors 6%, 6%, ,,--.,08%. Gilliland and
Hannan [2] considered the following extended statistical game (the com-
ponent problem): Player I picks 8,=(6,,- - -, 6,) € 2* where 2 is a param-
eter space of ¢ and Player II, after observing X,~P, X .- X P,, picks
an action a according to some (nonrandomized) decision rule ¢(X,). The
risk Player II incurs is

R¥8,, t)=8 L6, t())d(P,X - - - X P) () -

The Bayes risk versus any prior G on 2% is

169



170 YOSHIKO NOGAMI

R¥G, t)=S R, )IG(B,) .

Swain [8] used R*(GY) as a standard for the k-extended compound prob-
lem. The modified regret for the k-extended set-compound problem is

1.1) D*@., t,,):S (n—k+1)™" é L(b,, t(x,)d(P,X -+ X P,)(x,)
—R¥G7) .

Swain [8] considered SELE problems in the discrete exponential and
the normal families of distributions and obtained rates O(n~'*log* n)
and o(1), respectively (all rates are uniformly in 8 € 2). Yu ([9], Part
II) considered the same problems and obtained improved rates O(n~'?)
(in Chapter 3) and O(n~V**) (in Chapter 4), respectively. The author
([4], Chapter III) has considered SELE problem in the nonregular (for
the word “nonregular”, see Ferguson ([1], p. 130)) family and showed
the existence of the set-compound procedures with a rate O(n~v®**?),
In this paper she considers the same problem and introduces another
procedure ¢, with an improved rate O(n~'*). To obtain a rate we apply
the method used in Chapter 3 of Yu ([9], Part II). We note that this
O(n~'?) is the same rate for the one-stage procedure g* in unextended
(k=1) version of the same problem in Nogami [6].

Notational conventions. We abbreviate Gt and z, to G and z, respec-
tively. 2’ and 2z, abbreviate z—1 and (2,—1,---,2,—1), respectively.

Let P=P,X---XP, and z=(n—k+1)™! i}‘z,. For any function g, g
j=
means g(a)—g(b) and let g"(zk)ziﬁ g9(z,). We often let Pg or Pg(v) or
=1
P(g) or P(g(v)) denote Sg(v)dP(v). When we refer to (a.b) in Section

a, we simply write (b). We denote the indicator function of a set A
by A itself.
The Fubini theorem will often be applied without mentioning it.

2. Statement of the problem

Let ¢ be Lebesque measﬁre and f be a measurable function such
that for a given finite positive constant m,

(2.1) O<)m'sf=1.
Define q(0)=<S:Jrl fd5>_l and then

(2.2) 1<q=m .
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Letting p,=dP,/d¢ we denote by P*(f) the family of probability meas-
ures given by

PHf)={P,: p=q(0)[0,6+1)f, for every 6 € 2}

where 2[¢, d] with —oco<e<d< o0,

Let X;,---, X, be n independent random variables with each X~
P, c P*(f). For each j=k,k+1,---,m, let =X, y=X;7' and z=(y,
z)=X}. Let 6, be the k-extended procedure, not counting the first
k—1 coordinates, whose components are Bayes against G: 6,=(0;,,
0k+lnr' ] 0nn) With, each j:
2.3) 0n=\_ 0,703aG0)/\" 0G0

where the affix + is intended to describe the integration as over the
interval (a’, z]. Hereafter we suppress the affix +. The Bayes en-
velope in the k-extended problem is of form

R*G)=(n—k+1)" ; P(0,,—0,)

and hence, in view of (1.1), the modified regret for any set-compound
procedure t relative to the k-extended envelope is given by

(2.4) D46, t)=(n—k+1)" é {P(0,—t,(X))'— P(0,,—0,)"} .
Since for each j X;<6,,<X,, we have that when X, <t(X)<X,,
(2.5) (n—k+1)27[ D0, B)|< 33 Plt,(X) =0l

In Section 3 we shall construct the set-compound procedure ¢ and
prove in Section 4 the following theorem:

THEOREM. For all 6 € 27,
| D8, ¢)|< (BN+24)m* {N¥(4k—2+E'*)((n—k+1)h7*) 24 27F+1pk)
where N=d+1—c.
From above theorem we immediately get

COROLLARY. For ¢ with a choice of h=n""%,

|DX0, $)|=0(n"""),  uniformly in 6 c 2.
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3. The decision procedure ¢

In this section we shall use Lemma 1 below to get an alternative
form of 64, and estimate 6,, by ¢;, (see (8) below for definition) through
this alternative form of 6,,. This estimate ¢=(din, Prsins- s Pn) for
6, can also be an estimate for 6.

Let for an integer r R" be the r-dimensional real line with R=R!,
v=(w, v) € R*"'X R and similarly §=(w, )=R*'xR. We denote by Q
the measure with density ¢*(v) at » wrt G. In view of (2.3),

Gy 0.=| 0dqo)\ da@), for j=k e+l .

Following Lemma 1 is a generalization of Lemma 1.1 of Nogami [6]
with g=1.

LEMMA 1. Let 7 be a signed measure and I=(¥, v] be a cube with
o(I)#0. Let =, be the signed measure with density I/=(I) wrt r. Then,

(3.2) g s dry(s)=v— g: rls<v/+tldt .

ProoF. By the Fubini theorem applied to the lhs of the second
equality below,

S (v—8)dr,(s)= SS_ dtdr,(s)= S: rls<v+E1dt .

Applying to rhs(1) Lemma 1 with r the measure with density
(Qz', z])* wrt Q gives us that

(3.3) tn=s—({ QU YIx @, 2+, 21)

For every v € R*, let py(v)=p.(w)p,(v)= Cﬁl p,,,i('wi)> 2,(v). We furthermore
define the following: for <=k, k+1,---, n

(3.4) w(¥) = pgs(v)[f*(v) =¢"(67) [v' <O =] .
By the definition of @ we can easily check
(3.5) w(0)=Q((w', w]X(—o0, DI .

By a telescopic series applied to v-coordinate,
(3.6) Qw', w] X (— o0, v])= iﬂ aw, v—7)

where the summation wrt the nonnegative integer r involves at most
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d—c+2 (=N+1) terms. From an application of (5) to the denominator
in (3) and two applications of (6) to the integrand of the numerator in
(3), we get a final alternative form of 4,,:

3.7) On=a—({ S aty, N dtfite))

In view of (4) we estimate u(v) by ﬁ(y):(n—k+1)“i_2n;,cﬁ,(y) where
for any A>0

1) =h"*v< XF<v+R1]/FH(XF)

with 1=(1, 1), the k-dimensional 1-vector, & can depend on »n and h<1
for convenience. Thus, this, (7) and the fact that z'<6,,<x suggest
an estimate ¢,, of 6,, given by

1 o _
(3.8) dm=a—0V || 5y, ez dtfalz)] AL .

Hence ¢=(¢1n,**» ¢urn) is an estimate of 6,(X) and thus of 4.
In the next section we shall prove Theorem in Section 2 which gives
us an upper bound of the modified regret DX, ¢).

4. A proof of Theorem

Let P,"=P,_k+1>< e XPJ and Pj,k=P1X v XPj_kXPj+1><"' XP,,.
In view of (2.5) .

@D (n—k+ 127 D0, )| 3} PHPyslgsa—0) -

As we have done in Nogami [5], [6] applying Lemma A.2 of Singh [7]
(see Corollary 1.1 in Nogami [6]) and weakening the resulted bound
leads to

@42 2P, ,l¢—0,]
N+

<@@) {3 || Bulae—r+—aa—r+yid

1
=1

+ Pyalia—n)—is—r)| +2B,,/u@) - i)

where x—2=(y, x—2). Before getting a bound of rhs (1) we shall in-
troduce an unattainable estimate #* of # as Yu [9] has done.

Fix je{k,k+1,---,n} until (4). Let A,={j—k+1,---,j+k—1}
and X-iikk=(Xi—k+l’° w0y Xjoes thk+1!' ) z*) for i<j; =Xj*k for i=7;
=(XEesay o X X0, 0+, X3) for i>7, where X* is independently dis-
tributed according to P, and independent of X,. For any real »¢ R¥,
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define #}(v) for i=k, k+1,---,n by

() , for 1 ¢ A,
(4.3) UHOES ‘

(R X)) = X5 <v+hl],  for icA,.

Then, we can estimate #(v) by an unattainable estimate 17,*(1)).
Let E; be the measure on (X}, (X, -+, X;4, X;_4,--+, X,)). By
two usages of the triangular inequality

P, |i(v) — ()| S E, |#(v) — 2*(0) |+ E, | %) — E, 2*(v)|
+|E, 4*(v) — ()] .

Since by Holder’s inequality (E,|#*(v)—E,4*v)|)*<0c3(v) where ol(v)=
variance of #*(v), and since

(n—k+ DR [E) — T WIS | 3] [0S XE<o+hISXD)

<2m*(2k—1),
we obtain
(4.4) P, o |i(v) —(v)| — (4 — 2)m*(n—k-+1)h*) !
<o (v)+|E; a*(v)—u(v)| .
In view of (2) and (1),
(4.5) (4N+12)~Y(rhs (1))
< 33 PH{(e—2)m*(n—k-+ k") '+ sup o,(0)} @)}

+sup 31 PHIE, iz —2)— Wz —2)|fi(z)}

Hence, we shall obtain upper bounds for i‘. Pl(u(z))™', supo,(v) and
j=k v

(the second term of rhs (5)) in Lemmas 2, 8 and 4, respect_ively.

LEmMMA 2.

(4.6) jz PHax) ' <(n—k+1)N*.

PROOF. Since by the definition of % ,2 ¢(0) [0z <0 +1]=(n—Fk
+1u(z), it follows by k usages of f<1 that (n—k+1)"}(1hs(6))=
| t: a0)> 01 *)do < N~

LEMMA 3. For every ve R,
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o(v) S mH(n—k+1)h%) 2

PrROOF. Let 3 denote summation over 1=0,1,2,---,k—1 and >}
denote summation over integers r for which k<2+7rk<n. Then,

4.7 (n—k+1)0;(v)=E,; (X' X" (B, ¥ «(v) — 0k ()} .

By Minkowski inequality (cf. Loéve [3], p. 156) applied to lhs (8) of
the first inequality below,

(4.8) (rhs ()= X" Ei* {2 (B, r(v) — 2% ()}
=3V (" EyaE )

Since for 1=k, k+1,--:,n
B, ar@=h " (F0) 06 Sv<6t+ Tidt<m¥h

where the inequality follows by (2.1) and (2.2),
rhs (8) <k (m—k+41)"’m*h~*2
This, (8) and (7) gives the bound of Lemma 3.

LEMMA 4. For every z€ R,

@9 3 PHB,#*@—2)—ua=2)|fu(z) Sz mn—k+1) .

Proor. Since E; W*(x—2)=h"* S”M SI—ZM #(v)dy, by a change of
v

variables v to t=(v—2—2)/hl i
|, w¥(z—2)—u(z—2)|
=||, @e—z+ht) e —2)dt|

={ -+ 5 @0t -ht <z <o)
+[0F+1—ht<z<O:+1]}dt .
Thus, by k applications of f<1 and g<m to the lhs of the second in-
equality below
d+1

s @=31¢00 | |

) {
t=0 Ju=¢

. f"(@)dydi—
<om*h(n—k+1) S t

[0 —ht<v< O]+ [0¢+1—ht<v<O:+1]}

which gives rhs (9).
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We now go back to the inequality (5). Applying Lemmas 2, 3 and
4 leads to

rhs (5) S m*N*{(dk—2)h "+ E"*(n—k+ 1)L )2} 4 2 ¥ 'm*(n—k+ 1)h* .

Therefore, in view of (1) and (5) and by weakening the bound we finally
obtain asserted bound in Theorem in Section 2.
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