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Summary

A maximum likelihood estimation procedure of Hawkes’ self-exciting
point process model is proposed with explicit presentations of the log-
likelihood of the model and its gradient and Hessian. A simulation
method of the process is also presented. Some numerical results are
given.

1. Introduction

Recently problems of estimation, filtering and smoothing of point
processes have been discussed by many authors (Vere-Jones [13], Snyder
[12], Segal [11]). However, as is observed by Vere-Jones [13] no satis-
factory solution of the parameter estimation problem for non-trivial
point processes has emerged. In this paper we propose a maximum
likelihood estimation procedure of a point process model called Hawkes’
self-exciting point process model (or briefly Hawkes’ model).

Let N(t) be a point process such that

Pr (AN(£)=1| N(s) (s<¢)} = A(t)dt+o(dt)
Pr {AN()>1|N(s) (s<t)} =o(4t) .

Hawkes [3], [4] introduced a general point process model whose inten-
gity function is given by

AO)=p+|_gt—udNw) ,
where g(-)=0 and r g(u)du<1. We call the function g(¢) the response

function. In this paper we focus our attention on the Hawkes’ model
with a response function

9(t)=ae™* .
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We note that some probabilistic structure of the model is analyzed by
Hawkes and Oakes [5].

2. Log-likelihood of the Hawkes’ model

Given the occurrence observation ¢, t,,---, ¢, for an interval [0, T']
(T =t,), the log-likelihood of a point process with a intensity function

A¢10)=p+\_g(t—u|0)Nw)
is given (Rubin [10]) by
log L(t,, - -, ,|6) = — ST A(t|6)dt+ S log A(t|0)AN(E) ,

where 6=(6,, 6,,---,0,). The gradient of the log-likelihood is given by

9 1;; L. M;f,l D g+ | (W"’) [at19))aney

and the Hessian of the log-likelihood is given by

FAE10) 411 9)— FALI0) 3A(5]0)

0*log L ST *A(t|6) TAE16) 4 ST [ 06,36, 00, a4 ]
=-— t dN(t
801605 0 aﬂjaﬁi + A(t I 0)2 ( )

(i9 j=1)"'y Ir)’

where A(t|6) is supposed to satisfy necessary regularity conditions.

We note that the Rubin’s log-likelihood is defined under the as-
sumption that the occurrence observation ¢,,---,t, are observed from
the beginning of the process, i.e. the time zero, and the log-likelihood
is given at the time T (=t,). However in most identification problems,
only t,,---,t, are given and T is not specified. Thus we assume 7T=t,
in the rest of the present paper.

In the case of the Hawkes’ self-exciting process model whose re-
sponse function is ae~#, the log-likelihood of the model is given by

log L(¢,,- - -, t.|0)= —#tn+i‘; %(6""‘n"i’—1) +é log {z+aA(i)} ,

where A(z)— e *¢~t) for 122 and ¢; denotes the time of occurrence
<t

of the ith event ‘and A(1)=0. The gradients are

ey A
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dlog L =_aé [; (t,—t)e~Pn~ t;)_}_ 5 (e~#t™ t1>)j| " [ aB(1) ]

B i=1 p+aA(?)
dlogL _ _, 43 [ 1 }
op "L ptaA(d)

where B(t)= > (t;—t,)e *“ % for 122 and B(1)=0. The Hessian is
tj<Li
defined by

0 logL:_é T A1) T
oo’ =1L p+aA(d)

dlogl |1y Blt,—tp ~BCt,—tp 1
0poa fg L B (t te” T 8 (e )}

T —B(4) aA(7)B(1) }
=l ptad@d)  (pt+adAG)

d*log L —a {;—1 [; (£, —t) e~ Pt 4 ‘32 (t,—t)eFtntd

aﬂz i=1
2 sty ; ac(i) _ (_aB@#)
T 1)] +2 [u-{—aA(z) <ﬂ+aA(i) )]
where
()= 3 (t—t)ye 4 for 22 and ¢(1)=0,
dlog L _2 -1 dlogL _ 2 —A(7)
ot §1 [ (p+aA(7)) :l ’ dadp ig [ (p+aA(7)) } ’
dlogL & aB(i)
=2 [ Gereawr

3. Likelihood maximization

As the log-likelihood of the Hawkes’ model is non-linear with re-
spect to the parameters, the maximization of the log-likelihood is per-
formed by using non-linear optimization techniques. There are three
types of non-linear optimization techniques available for this purpose.

(i) When we employ gradient and Hessian of the objective function
(as well as the function value) at each updating stage of the function
maximization, we can use the well-known Newton-Raphson method.

(ii) However the Hessian can be approximated by using the gra-
dient at each updating stage and direct evaluation of the second deri-
vative of the function is not necessary at least in updating stages of
the optimization procedure. Such a procedure which employs only gra-
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dient information and function values is called gradient method. One
of the most efficient gradient method is Davidon’s procedure (Davidon,
W. C. [1], Fletcher, R. and Powell, M. J. D. [2]).

(ili) Maximization of a function can be performed employing only
the function value at each updating stage. This is useful when the
evaluation of the first or second derivative needs complicated computa-
tions. We call this kind of procedures direct method. There are many
direct methods (Rosenbrock, H. H. [9], Hooke, R. and Jeeves, T. A.
[6], Powell [8] etc.).

Although Powell’s method employs only information of function
values in the updating stages it is a kind of conjugate gradient method
and the speed of convergence is high compared to other direct methods.

As we have overviewed, the maximum likelihood estimates of the
Hawkes’ model with exponentially decaying response function can be
obtained by employing any one of the above procedures using the ex-
plicit representation of log-likelihood, gradient and Hessians given in
the preceding section.

4. Simulation method

We need artificial self-exciting point process data to check the
validity of the maximum likelihood method. Suppose that self-exciting

point process data t,,---,t, are given. Let F(t|t,,---, t;, 6) be condi-
tional distribution of random variable of the interval between ¢, and
the next event t (t=t,) of the process, and let f(t|t,,---,t:, 8) be its

probability density function.
The conditional Hazard function is given by

f(tlth"'ytk) 0) A
=AE|t,,---, L, 0),
1—F(t|t,, -, t., 0) (t1t e 0)

and we have
10g{1—F(u|tl,~--,t,,,e)}=—gu Aty - - e, O)dt
[
u k
=" {er S oe—ti0)ar.
" i=1

Since the time of the k+1st event u satisfies this equation and 1—
F(ult,---,t, 0 is distributed uniformly on [0, 1], generation of ¢,,, is
performed by generating a uniform random number U and solving the
following equation with respect to u,

t

(4.1) log U+S {;uré a(t—t,]6)ldt =0 .
k i=1
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In the case of exponentially decaying response function
gt)=ae™?

(4.1) reduces to the following transcendental equation

i=1 i=1

(4.2) log U+ p(u—t,,)—%{z"; Pt _ 3 e—mk—w} —0.

This equation (4.2) has the following recursive expression which is sug-
gested by Dr. H. Akaike,

(4.3) log U+y(u—tk)+%_ S(k) {1—e=%} =0

where
S(1)=1
SG)=e- i trSGE—1)+1  (i22).

The algorithm for the generation of Hawkes’ self-exciting process
data is thus described as follows:

Algorithm
1. Generate a uniform random number U on [0, 1].
2. Let t,=—log Ujp.
3. Generate a uniform random number U on [0, 1].
4. Solve (4.3) with respect to U and get a solution u.
5. Let t.,,=u and

S(k+1)=e-*%-wS(k)+1 .

If k+1=n stop, otherwise increase ¥ by 1 and jump to the
stage 3.
The equation (4.3) can be numerically solved with respect to v by New-
ton’s iterative method which updates u, by the formula

Uiy =U;— J(w)

J'(w;) ’

where
f(w)=log U+y(u—tk)+% S(k) {1 —e~ Pt
f'(u)=p+aS(k)e =%,
The initial value of this iteration is taken to be
t,—log Ulp

which is the solution of (4.2) when the process is Poisson.
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5. Numerical results

Employing the method of generation of Hawkes’ self-exciting pro-
cess stated in the preceding section we generated artificial data and
applied the three methods of the maximum likelihood estimation pro-
cedure which are mentioned in the previous section to check the validity
of the estimation procedure. We generated two sets of data {¢;; 1=
1,2,--+, N}, each with N=500. One is generated from the model whose
parameters are a=4.0, 3=5.0 and ¢=0.5 (which we abbreviate as (4.0,
5.0, 0.5)), and another is from the model (a, 8, £)=(0.8, 1.0, 0.5). As is
well-known the clustering size of the Hawkes’ model is given by

c:l/(l——S: g(t)dt)

and the mean rate 2 of the whole process is given by i=cp. The two
sets have the same clustering size and the same mean rate but the
decaying behaviour of the intensity differs significantly. The difference
is clearly seen in the behaviour of the intensity process A(t|a, 8, p)
(see Fig. 5 and Fig. 7).

The maximum likelihood estimates and their estimated variance-
covariance matrix of the first model (4.0, 5.0, 0.5) is shown in Table 1
and those of the second model (0.8,1.0,0.5) in Table 2. Since the

Table 1. Maximum likelihood estimates and variance-covariance
matrix of the estimates of the model (4.0, 5.0, 0.5)

a 8 ©
true 4.0 5.0 0.5
estimated 3.968 5.174 0.459
variance- 0.227x 10! 0.845x 102 0.590x 102
covariapce 0.315x 102 0.220x 102
matrix 0.153x 10-2

Table 2. Maximum likelihood estimates and variance-covariance
matrix of the estimates of the model (0.8, 1.0, 0.5)

a 8 ¢
true 0.8 1.0 0.5
estimated 0.684 1.018 0.672
variance- 0.140x 10! 0.194x 101 0.502x 103
covaria_nce 0.373x10 0.105x 10
matrix 0.153x 10
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spectrum of the Hawkes’ model (a, 8, ¢) is given (Hawkes [3], [4]) by

¢ B (28—a)
6-1) f=4r B—a {1+ (ﬁ—a)”—*-wz} ’

the estimate f (w) of the spectrum of the Hawkes’ model is obtained

by substituting the estimated parameters &, §, i into (5.1). The theo-
retical spectrum and estimated spectrum of the first model (4.0, 5.0, 0.5)
is shown in Fig. 1 and Fig. 2 and those of the second model (0.8, 1.0,
0.5) in Fig. 3 and Fig. 4. Fig. 5 and Fig. 6 show the spectra of those
two sets of data estimated by the conventional method (Lewis, P. A. W.
[7]) which is to calculate the periodogram and to smooth it by an ade-
quate weighting function. The theoretical and estimated intensity pro-
cess of the first model (4.0, 5.0, 0.5) is shown in Fig. 7 and Fig. 8 and
those of the second model in Fig. 9 and Fig. 10. These figures show
that the estimated spectra and the estimated intensity processes through
the estimated models show good agreement with the theoretical ones.

6. Conclusion

Possibility of the maximum likelihood estimation of the Hawkes’
self-exciting point process model with response function g(t)=ae * is
verified with simulations. Its usefulness as the procedure of the esti-
mation of power spectrum and intensity process of point processes is
obvious. These results will provide a basis for further development of
the statistical identification of general point processes.
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