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1. Introduction and summary

Various techniques are known for transforming uniform random
variables into normal random variables. Atkinson and Pearce [1] give
a good summary of methods in general use. However, when we must
attach much importance to reliability of the samples, namely, goodness
of fit and clearness of identity, one may certainly use the simple re-
jection technique. Unfortunately, the resulting algorithm is not fast
and requires considerable numbers of uniform samples. The method
presented in Section 5 rose out of an improvement of simple rejection
technique with the idea to reclaim uniform samples to be rejected in
the former methods in so far as the excellence of the simple rejection
technique preserves.

We begin in Section 2 with a deseription of multiply folded nor-
mal density functions formed by folding the standard normal density
function at fixed intervals. There we shall define a function sequence

S={s(x); ©1=0,1, 2,---}
={§(x), g(x—2a), ¢(x+2a), p(x—4a), y(r+4a),---}

to consider the function series
Fi2)=2 3 5(@)
and their limit
fol@)=lim f,(@)=2 31 5.a) ,

where ¢(x) is the standard normal density function and a>0.

In Sections 3 and 4, several inequalities concerning f,(x) including
fo(x) and their derived functions will be shown, which provide the
theoretical endorsement of efficacy of the mutual transformation be-
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tween uniform and normal random variables discussed in Section 5.

The Normal to Uniform transformation, described in the last sec-
tion, will serve ratification of Poincaré’s consideration about “ Chance”
[3]. One will find that a normal random variable is generated, by the
Uniform to Normal transformation, very rapidly from always two uni-
form variables and the normal samples are surely very reliable as well
as by simple rejection methods.

2. Multiply folded normal density functions

We shall write ¢(x) to denote the standard normal density func-
tion and let

Julz) [n=0,1,2,---]
be the function series given as follows;
fn(@=2 3 $@+2a),  fuma@=2 3 de+2ta)
[a>0, m=0,1,2,---].

We also apply the notation like f,(x|a) instead of f,(x) as occasion de-
mands. The following lemma is easily obtained ;

LEMMA 1.
funle)=2[9() + 5 (42ta—0)+ g(2ta-+2) |
= fim-1(2)+2¢(2ma+2) ,
Fin®)=2 3 [§(2a-+2)+9(2(t+1)a—0)]
= fom(®) +24((2m+1)a+(a—wx))
provided that we let f_(x)=0 for convenience’ sake.
COROLLARY 1.

Son®)=Fo(—2) s fimi(@+2)=fin(a—2)
so that the derived functions

f(zr 1)(.’2)_' f'n(x) [7‘:1: 2,3,-- ']

d 2r—1
satisfy
S P0)=f5a(@)=0 .
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COROLLARY 2. Let fi(x) denote the probability density functions
(p.d.f.’s) defined as follows;

1) when z+0 and r+a,

fo(x)=7j— Pr[|X|<x] ,

X

~ _ d . _

fx(x)—%Pr [ea—la—|X]||=x] ,

fz(x)=7j— Pr[la—la—|X|||<a],
“n

ﬂ(x)=7% Pr [a—|a—]a—|a—| X|||<z] ,

2) fO=lmf@, f)=]ln f),
where X is a random variable distributed with N(0,1). Then f(x) and
Fx) are identical for x €0, al.

These f,,(x) are regarded as being formed by folding the standard

normal p.d.f. about the vertical axis and about the axis of x=a alter-

nately, and then adding up the piled parts. f,(z) are to be called mul-
tiply folded normal density function and the suffix n signifies (number
of times being folded)—1. We investigate the properties of f,(x) as

substitute of fi(x) and then restore the results to fi(z).

LEMMA 2.
fu(x|a)+ fla—2|a)=fr(z|a/2) .

The above easily verified lemma displays that the two following
operations
1) folding ¢(x) 2(n+1)-times between the points =0 and x=a/2,
2) folding ¢(x) (n+1)-times between x=0 and x=a then folding the
piled part once more about the axis of x=a/2,

provide the same p.d.f. fo.,.(2|a/2).
The existence of f.(x)=1lim f,(x) follows from the fact that the series

g #(2ta+x)=lim ,io #(2ta+1x)

converge. The following theorem gives an explicit form of f.(x).

THEOREM 1.
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fo(2)= % [1 +2 g exp (—*k*/(2a%)) cos (zrkx/a)] .

PrROOF. We can write

fAo)=2 31 ¢(2tata)

= Eexp(—xz/z)- f‘, exp (—2t%a?)-exp (—2tax)
T t=—o0

= \/z exp (—2%2) [1 +2 i exp (—2t’a’) cosh (Ztax)]
T t=1

which is rewritten with a theta function, one of elliptic functions of
the third kind, (q.v. [4])

0¢|7)=1+2 ;i exp (inzt?) cos (2t€)

as follows;

ful@)= \/% exp(—x2/2)03<%ix 27“2@)

= \/% exp (—2/2)- \/% 7‘1? exp (w’/2)0s(§%l§3—2i>

(Jacobi’s imaginary transformation)

= 7} [1 +2 é exp (—n°k*/(2a%)) cos (nkx/a)] .

COROLLARY 3. f.(x) ts a periodic function of fundamental period
2a and Theorem 1 gives the Fourier series of f.(x).

COROLLARY 4. The following equations are easily obtained from
Corollary 1 and Lemma 2 adding a reaffirmation through Theorem 1.

1) fu(@)=fo(—2),

2) fola+2)=f(a—2),

3) fo(ozr—l)(o) =f°(°2r—1)(a)=0 [7':1’ 2y 3’ i ']y
4) fu(z|a)+f.la—2x]|a)=Ff(2]|a/2).

COROLLARY 5. f.(z)=lim f.(z) is in existence being a p.d.f. over

[0, a], since

S: fo(x)dz=1 .
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3. Some properties of fu(%)

In this section, we shall be interested in several inequalities con-
cerning f.(x) and its derived functions.

First, we shall prove the lemma which provides signum of f& (%),
the (2r—1)th derived function of f.(x).

LEMMA 3.
(=1)yfe—(x)>0 [r=1,2,3,---],
if 0<x<a<n(8/(2(2r+1) In 2))¥2.

ProOOF. (1) When a/2<x<a; concerning h(k)=Fk" exp (—ck?) [c
=n%/(2a%)], we can obtain from the given condition that

[2(2)/(1)]=2" exp (—3c¢")=1/2
and
exp (—2c) K272l /4 |
Hence for k=1 we have
[Pk +2)/R(k+1)] =[k(k+2)/(k+1)"] exp (—2¢%) [h(k+1)/h(k)]
SALGRVIOEE S

Now we let y=a—x then we have 0<y=a/2 and

sin ixgzy, sin k—”xg—ﬁy
a a a a
Therefore
(—=1)f< —c*k?) sin (”k >
a

>“f: [ h(1)— Eh(k)]

k
[ Zh-r@ £ (L)]>0.
a“ T k=0 \ 8
(2) When 0<z<a/2; we can write ¢ with integer m=1 and 0<
Yy=2""'g as
r=2"a—y .
Now, supposing that
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(=1)yf& 2 (2)<0
then we have, since
(= 1) D(a—u)<0
from (1), that
(=178 x| 27a) =(=1) [ (x| @)+ f& P (a—2xa)]
<0 [Corollary 4].
Similarly from
(—1)yfe 2 'a—x|27%a)<0 [s=0,1,---, m—1]
we obtain
(=1 f&(x]27"a)<0

in consequence, which is inconsistent with (1). Therefore we have the
lemma also in this case.

COROLLARY 6. For any a>0 and 0<x<a, it hold that
2(x)<0
and
f(0)>1/a> fu(a) .

Proor. If a<2, the first inequality of the corollary is identical
with Lemma 3, hence we assume a>2. Then, the second derived func-
tion of ¢(x) satisfies

é¢"(x)>0 if x=a/2>1,

so that, if 1<x<a, it follows that fZ(x)>0 which implies f/(x)<0 since
fl(a)=0 [Corollary 4].

When 0<x<1<a/2, the proof is done similarly as in (2) of the
proof of Lemma 3.

The second inequalities are simple consequences of the first.

COROLLARY 7. For 0<x<a=<v3++/6

Sd(2)>0
and
fix)<0< f(a) .

PROOF. Notice that
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¢(tv)(x)<0 ’ if V3—\/—6_<x< 3_{_”
with 2¢¥8—+'6 <zv3[(101n2), moreover for the second inequality that

S:fé’(x)dxzo :

LEMMA 4. The least upperbound of deviation of a-f.(x) from its
mean (=1),
e(@)=min |a-fo(x)—-1],
satisfies

2 exp (—7'¥’/(20%))
1—exp (—37°/(2a%))

e(a)=2 k% exp (— kY (2a%)) <

PrROOF. It can be easily obtained that
a-f(0)—1>1—a-f.(a)>0.
Hence, from the fact that
a-f(0)2a-fu()2a-fo(a)
we have

a)=a-fo(0)—1=2 g exp (—=k/(2a%)

which is bounded from above by the geometrical series

Ha)<2 ?1 exp (—n%(3k—2)/(2a%) = lii Z’:(I;) (( = 7;25/2(@223» .

e(@) and e(a/2) are so small [see Table 1] that the figure of f.(x)

Table 1 Bound of deviation |a-f.(z)—1]|

a &(a) e(a/2)

1 <1.5%x1072 <5.4%x10°
1/2 <5.4x107° <1.1x10°%
1/3 <1.1x10~% <1.5x10°7
1/4 <1.1x10°% <1l.4x107w7
1/5 <5.3x10754 <9.7x107218
1/8 <1.4x107187 <4.5% 1054
1/16 <4.5%x10-54 <5.2x10-2195
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Fig. 1 Folded normal density functions.
and fo(2)+ f.(a—=) appear to be just rectangles [see Fig. 1].
In addition to Lemma 4, we can prove other inequalities such as

2 exp (—2x%/a?)
—exp (—57*/(2a’))

|a-fo(®)—[142 exp (—7*/(2a%)) cos (nx/a)]|< 1

and so forth.

4. Inequalities concerning fi«(*) and their derived functions

We have mentioned, in Section 2, some equalities concerning f,(x)
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and their derived functions. In this section we shall discuss inequalities
regarding them.

LEMMA 5. Let f!(x) denote the second derived fumction of f.(x).
Then the following inequalities hold for 0<z<a;

@) > f1(@)> - - > fif o) > Fi ()
and

S (@) < fifu(@) < -+ - <fL(%)
where M is the largest integer smaller than 1/a.

ProoF. This lemma is easy to prove. Only to notice the sign of
[f/(x)— £’ (x)] may suffice for it.

The preceding theorem and lemmas leads to an important property
concerning the first and second derived functions of f,(x), which is sum-
marized by the following theorem.

THEOREM 2. Let p=+r*—1/e [~3.08], p(a)=p/a’*—3 and let K be
the largest odd inmteger not exceeding po(a). Then, if 0<a<+p/6 [~0.71],
there exists an odd integer N=K such that,

Jor n=0,1,2,---, N,
1) fl(x)<0 [0=x=a],

2) fl(x)<0 [0<z=a] if n is even,
Sl(@x)>0 [0=xz<a] ©f n s odd .

To prove Theorem 2, it suffices to show that the second derived
function of f,(x) is negative in the range 0=<x=<a. Concerning 2), we
can obtain the inequalities easily through Corollary 1 [f/(0)=fin(a)=
0; m=0,1,2,.--.-] when we have proved 1).

Now prior to it, we shall demonstrate a lemma to assist the proof
of the theorem.

LEMMA 6. For any integer r which satisfies 2ra=v34++/6 and
0=x=a, the following inequality holds;

Fil(x)— fi-(%)> (82/+/37) (r+1)'a® exp [—2(r +1)a] .
PrROOF. On the given condition the fourth derived function of ¢(x),
¢ ()= (2! — 62"+ 3)¢(x) ,

satisfies
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¢“2ra+y)>0  if y>0
which is followed by
¢"'(2ra+x)+¢"((2r+1a+(a—2))>24"((2r+1)a)
and
¢"((2r+1)a)+¢"((2r+3)a) >2¢"(2(r+1)a) .

Therefore the left-hand side of the lemma is bounded from below as

FE@) =l 0)>4 3 ¢"(28+1)a)

>8¢"(2(r+1)a)
=4v/2[z[4(r+1)a*—1] exp [—2(r+1)a?] .

But since 4(r+1)a*>3+4+/6, the bound is evaluated as follows;
>4v/2x[1—1/(34++ 6 )]-4(r+1)%a’ exp (—2(r+1)’a?)
=(32/+/3x)(r+1)a? exp (—2(r+1)%a?) .

PROOF OF THEOREM 2. From Corollary 7 we have for 0=<z=<a=

VPl6<V3+4/6
FUDSF2@)=2ra’) 3 (= 1)K exp (—='k(2a)

<(27/a’) exp (—=*/(2a%)) .
Now if Vp/8<a=<+p/6, K is equal to 3 and we easily obtain
(K+1)a=4a>4vpB8>V3+V6 .
On the other hand, if 0<a=<+p/8, then we have

(K+1)a>(p(a)—1)=pla—4a

Zp/Vp[8—4vD[8
=4v/p[8>V3+v6 .

Hence for 0<a=<+p/6, we can apply Lemma 6 with r=(K+1)/2 to ob-

tain

SR (@)=FLx)—[fL(x)— fL ()]
<(27%a’) exp (—=*/(2a%))—(8/+/3x) (K+8)a’ exp [— (K +3)'a’/2] .
Since (K+3)*a’<p* and the second term decreases as u=(K+3)a [>p/a

—2a=44/p/6)] increases, the left-hand side of the above inequality is
bounded by
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fi(x)<a~[2z*—(8//3r)p'a exp (—1/(2ea?))] exp (—x*/(2a%))
<a~2n—(8/+/37)p"] exp (—=/(2a%)) <0 .

Thus we have proved that fi(x) is strictly concave for z € [0, a].
It follows that there exists N=K and f,(x) [n=0,1,2,---, N; 0=2=a]
are also concave through Lemma 5 and Corollary 7 [fZ(a)>0].

COROLLARY 8. For 0<m<n<N, 05x=<a and 0<y=<a,

0<fm@)<fuiy)<lla .
ProoF. It is easy to show f,(x)<f.(y) from 2) of Theorem 2, ad-
ding
Ly sfr@)<fua)<l/a .

To supplement Theorem 2, we shall prove the following lemma
which is to be used in the next section.

LEMMA 7. For any even integer 2r=0,2,4,--.,

f(0)> furla) .

Proor. (1) If a is not exceeding +/p/6, the lemma holds for 2r
<N from Theorem 2. Then we only consider the case that 2r>N.
(2) Otherwise, we consider 2r=2 since it is obvious that f,(0)> fi(a).

In both cases we get 2ra>1, so that ¢"(na+2)>0 for n=2r and
2=0. From Lemma 1 and Corollary 6 we have

Fil0) = Fil @) =[fo0) = ful@)]+2 3 [$(250—a)+¢(250+0)—2p(250)]
>0.

5. Mutual transformation between uniform and normal variables

Normal to Uniform
Let X’s be independent normal variables with mean g and variance
o’. We define random variable U as follows:
(1) U=mod I(X, a)=X—a-floor (X/a) .
(2) U=mod 2(X, a)+a-neg (X)
=X—a-trunc (X/a)+a-[if X<0 then 1, else 0]
[=mod 1(X, a) for Ue (0, a)]

where floor (x) represents the largest integer not exceeding z and
trunc (x)=sign (x)-floor (|z|). The function mod 1(x, y) corresponds to
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the builtin function MOD (z, y) in PL/I and ALGOL, and also to the
residue operation y|x in APL. On the other hand, mod 2(z, ¥) corre-
sponds to AMOD (z, y) in FORTRAN.

For both definition, we obtain that 0=<U=<a and from Theorem 1
that

=[5 |5 )

g
Therefore U has the probability density (1/2¢)f.((x—g)/s|a/20)) provided
0<x=a. If we may neglect the maximum approximation error (1/a)-
¢(a/26), we can say that U has the uniform distribution over [0, a]. The
affinity between the two distribution is bounded from below by 1—1/2
-(a/2v/ 2 o), since

% S“"' a +22')”2dx>:1; S“_” (1+3—250dw
"

-

1 — E e—!nauzkza._z
k=1

1———1—e< a_’_>
2 \2v2q/°

Il

where
=3¢ ¥ cog 2nkax .
k=1

See [2] as to the notion of “affinity ”.

This result is one which ratifies Poincaré’s consideration about
“chance” [3] citing the minor planets on the Zodiac and the game of
roulette. That is to say, the unit interval ¢ may be regarded as the
circumference of the Zodiac or the roulette wheel and imagine the
Creator has thrown the minor planets, or a operator spins balls, impart-
ing to them different initial speeds according to a normal distribution.

Uniform to Normal

The random variable X determined by the following theorem can be
regarded to be normally distributed with mean zero and unit variance.

THEOREM 3. Let U, V be independent uniform random variables
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over (0,1) and let w=|2U—1|a and 1f U=1/2 then set s=1 else set s=
—1. Moreover, for n=-—1,0,1,---, N, let g(x)=af,(x) or af(a—x) ac-
cording as n 1is even or odd. Now put X for each n=0 as
(1) X=s(na+u) if g.-,(0)=V<g.(a),
(2) if g(a)=V<g.(0)
(2a) X=s(na+u) if V<gdu),
2b) x=s[(n+2)a—u] otherwise,
(3) X=X*u) if g(®)=V;
then the distribution function of the random variable X is identical with
the standard normal distribution function, @(x), in the range |x|<R=
(N+1)a, where X*(x) is an arbitrary function which satisfies X*(x)>
R for 0<z<a.

ProoOF. It is easily obtained that g.(x) is monotone decreasing
(Theorem 2) and greater than g,(y) in the case that n>m and x, y ¢
[0, @] but always smaller than one (Corollary 8). Therefore the condi-
tional expressions (1)-(8) include all the possible cases and are exclusive
each other.

We can gather (1) and (2a) as

X=s(na+u) if 9..,(0)ZEV<g.(u) .

Consider (3) and we have;
(i) For 2rasx=(2r+1l)a [r=0,1,---, (N—1)/2]:

Pr [ X=Zx]=Pr [X=2ra]+Pr [2ra+u=zz, g, (0)=V<g, (u)]
+Pr[@r+e—usw, gy (u)=V<g:-1(0)] .

Since both # and a—u are uniform over (0, a), to exchange them each
other exerts no influence on the value of the probability. Hence we
can rewrite the above expression as follows;

Pr [X<#]=Pr [XZ2ra]+Pr 2ra+usz, g, (a—u)<V<gy(u)
=Pr[X=2ral +{ " [0f(w)—afi, ()] 5-du
—Pr [X<2ra] + SZ $(w)du
=Pr [XZ2ra]+ D(x)—D(2ra) .
(i) For 2r—1)a=zz<2ra [r=1,2,---,(N+1)/2]: similarly to (i) we have
Pr [X=2]=Pr[X=(2r—1)a]+Pr [2ra—u=sz, g, () SV gy _1(a—u)]
Qr—

—Pr [X<(2r—1)a] —S  p(u)du
—Pr [X<(2r—1)a]—O[(2r—1)a]+9(z) .
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Since the probability density of X is obviously symmetrical about zero,
it holds that

Pr[X<0]=1/2=9(0) ,
so that we have the result
Pr [ X=x]=9(z) for —R=x=<R=(N+1l)a.

Generation methods based on this theorem must hold some con-
venient properties to put to practical use for faster generation of nor-
mal variables.

(a) If a is enough small [say ¢<1/2] the random variable X can be
regarded as exactly normal except the probability as small as impossi-
ble. Table 2 shows the normal range and the probability to overflow.

Table 2 Range where normality holds

a K (sN) (K+1)a [=R] | 2Pr[X>R]
1/2 9 5.0 <10-s
1/3 23 8.0 <10~
1/4 47 12.0 <10-3
1/5 73 14.8 <10~
1/8 193 24.25 <10~
1/16 785 49.125 <10-52

(b) Only two uniform random variables are required to generate a
normal variable on all occasions. If a few bits loss of accuracy is al-
lowed, it is possible to frame generating procedures which require less
uniform samples towards 1. This property is favorable particularly to
systems with rather “expensive” supply of uniform samples.
(¢) When X is determined by (1) of Theorem 3, the generation speed
is very fast only with simple comparisons with constants. And the
probability that we must compute g,(%), namely, that X is determined
by (2) of Theorem 3, is very small as discussed in the following.
(d) Since g,(x) are symmetrical about =0, the polynomial expansions
of them contain no term of odd degree. Therefore we can obtain the
sufficient approximation of g,(x) with just a few terms.
(e) The principle of generation is illustrated in Fig. 2. As one may
gasp the general idea easily, this method can be called rejection-free
rejection method or selection method. The least significant digits of X’s
are uniform and equal to #’s which is important for sampling experi-
ments taking the nature of “tail” as one of main concerns.

The concrete procedure of this method will be published in near
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1 1 S
r=4a—u r=3a+tu
—\ = x=4a—u
r=2a+4u z=2a+u
/ \— z=3a—u
1
1 r=2a—u 14 z=a+u
v !
!
\ \\1—- r=2a—u
z=u T=u
0 0
—U— a —U— a
(1) Basic idea (2) Revised form

Fig. 2 Principle of the generation method.

future. In conclusion we will discuss the remaining problem of (c).

THEOREM 4. The probability that X 1is determined by (2) [(2a) or
(2b)] of Theorem 3 is less than a/v2x.

Proor. Let P denote the probability concerned. We can write it as
P=3 Pr [9,()< V<gx(0)]
=3 [0(0)—0.(a)]
=0(0)+ 33 [0.0) ~gn @]~ :(@)
=2a 31 ¢(na) —gx(a)

=a¢(0)+ [9v-1(0)+ gx(0)]/2—gn(a) .

From Lemma 7 we have, since N is an odd integer,

Irw+1(@)—gn4+1(0)<0 ,
which implies that

95(0)—9x(a) =[gy.+(a) — 2a¢((N+2)a)] — [9x+1(0) — 2ad((N+1)a)]
<2a¢((N+1)a)=gx(a)—gy-1(0) .

Thus we obtain that
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P=0a¢(0)+19x(0) —gx(0)]/2—[gn(@) — gx-1(0)]/2
<ag(0)=a/v2x,

which completes the proof.

Note. Since g,(x) are concave on (0, a), the diagonal lines (0, g,(0))-(a,
g.(@)) do not intersect g.(x) except on their both ends. Therefore the
probability that we are obliged to compute g.(x) is reduced to a/(2v2x).
Moreover, using quadratic approximation of them may make the prob-
ability negligible small.
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