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Abstract

The methods of optimal scaling are usually formulated as the max-
imization problem of a ratio of quadratic forms, and the optimal scores
are obtained by solving an eigenequation. However, there sometimes
exist order relations among categories. For such cases, Bradley, Katti
and Coons [2] proposed an algorithm to maximize the criterion under
complete order restrictions. Nishisato and Arri [7] discussed the case
of partial order and proposed an algorithm using separable program-
ming. Their method is, however, limited to a special type of partial
order. Avoiding this limitation, the present paper gives a generalized
formulation applicable to arbitrary order restrictions and proposes an
efficient algorithm using Wolfe’s reduced gradient method. Numerical
examples are provided to show the validity, the rapidness of conver-
gence and the stability of the procedure.

1. Introduction

The methods of optimal scaling proposed by Fisher [4], Hayashi [5],
Tanaka [9], [10], etc. are formulated as a problem of maximization of
a ratio of quadratic forms, i.e.

(1.1) Q=VAt/t' Bt—max

and the optimal scores are obtained by solving the eigenequation of A
relative to B, where ¢=[t, t,,---,t,]’ denotes a score vector and the
matrices A and B are defined according to the criterion adopted for
optimal scaling ([9], [10]). However, we sometimes meet the situations
where there are some reasons to believe that order relations should exist
among categories. In such cases the optimal scores obtained by the
ordinary methods do not always satisfy the same relations, and then we
have to try the analysis several times after pooling categories with dis-
ordered scores until we obtain the scores satisfying the order relations
required. In order to obtain an order-preserving solution in applying
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Fisher’s method, Bradley, Katti and Coons [2] proposed an algorithm to
maximize the criterion Q under the order restrictions ¢,=t,=>-.:-=t,.
Tanaka [8] showed that the similar algorithm can be applied to Hayashi’s
second method of quantification with ordered categorical outside vari-
able. Nishisato and Arri [7] considered the case of partial order and
proposed an algorithm using separable programming. Their method is,
however, limited to a special type of partial order, where the categories
are expressed by a connected graph without any circuit. Avoiding this
limitation, the present paper gives a generalized formulation applicable
to arbitrary order restrictions and proposes an efficient algorithm using
Wolfe’s reduced gradient method [11].

2. Formulation of the problem—order restrictions and the corre-
sponding transformations of variables

Assume an arbitrary set of order restrictions on the scores i, t,,
-+, t,, and apply a transformation z,,=t,—t, corresponding to a re-
striction ¢;=¢,,. Using matrix notations the transformation is expressed

by
2.1) 2(ex1)=T(eXr)t(rx1)

where

1 for some j,
ny=< —1 for some j'+#j, for each 1%,
0 otherwise ,

and where ¢=[¢t,,t,,---,t,]’ denotes a score vector, z=[z,---,2.] a
transformed variable vector, and 7 a transformation matrix.

In order to investigate the properties of the transformation matrix,
we shall define “connectedness” between categories as follows.

DEFINITION. Two categories ¢, and ¢, are “connected” with each

other and expressed as t;~t;, when

i) there exists a chain of inequalities, which starts from ¢; and ends
at ¢, or

ii) there exists a connection between the jth and the j’th columns on
T for some 4%, %, -, 1,th rows, that is, there exists at least a se-
quence {7, My s Niygyse - *5 Ny}, Where

(2'2) ntoj#:oy ’niojl:'eo, ] ntkj';éo .
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Also we define that a category is connected with itself, i.e. t;~t,.

The connectedness defined above is equivalent to that in graph
theory when the categories ¢, t,,---,¢, and the order relations among
them are expressed as vertices and edges, respectively ([1], [3]).

Directly from the above definition it can be shown that the con-
nected relation is an equivalent relation and makes a classification into
equivalent classes of categories. Thus, for arbitrary order restrictions
the set of categories {t,, t,,---,t,} are classified into mutually exclusive
and exhaustive subsets I, 9,,---, 9, according to connected relations.
Corresponding to this classification the transformation matrix T can be
expressed as a block diagonal form such that

(2.3) T(cx k)=block diag {T;, Ty, - -, T} ,

where the submatrix T,=T(c,Xr,) transforms the subset of », cate-
gories = {tw:, tass**s twr,} into the subset of ¢, transformed vari-
ables Zi= {21, Zanr**s z(lc)ck} .

LEMMA 1. The rank of the submatrix T,=Tic,X1:) 18 r.—1, and
accordingly the rank of the transformation matriz T(cX7r) is r—m.

The proof is easily derived from the fact that the rank of 7, is
equal to or greater than r,—1 because of the connected relations of the
categories in the subset and the fact that the number of linearly in-
dependent contrasts of r, variables is at most »,—1.

If we add a row, say,

(2-4) Zox=tw1 »

to a transformation zu,=Tita,, Where zw=[2uw1,: "+ 2Zwe,]ls tw=[twr,
-+, tary,)’, We obtain a transformation submatrix with rank r,.

LEMMA 2. We can construct a transformation matrix T[(c+m)X7r]
of rank r, t.e.
Tl r2 . o e ’rm

c1< . o |...] o
02( o | 7 |---| 0

(2.5) Tl(c+m)xr]=
cm< o o |...| T,
( T,

m
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where
Ty=[n;},
1 Sfor t; €,
ni;=
0  otherwise,
and Iy is a set of elements {ty,, k=1,2,---, m} chosen in (2.4).
Using the matrix (2.5) the transformation is expressed as
(2.6) zZ[(c+m)yx11=T[(c+m) X r]rx1),
where
2(c+m) X 1=[2ly, 2oy, * *» Ztmy» Zlo)]
UrXD)=[t, ta, -+ ]’
Zoy=[2o1, 2w * s Zom] -

From the nature of optimal scaling criteria, the location of scores
may be arbitrarily determined. Therefore, without loss of generality,
we may specify a score t.,; zero. Then the criterion is expressed as

(2.7 Q=FtAt/¥Bt,
where A, B and £ indicate the matrices made from A, B and # by elim-

inating a row and/or column corresponding to the specified score. The
transformation becomes

(2.8) Z(c+m—1)x1]1=Tl(c+m—1)x (r—1)]E[(r—1)x1] ,

where the rank of 7 is r—1 and the meaning of the symbol (7) is the
same as in the case of A, B and ¢

Because 7' is of full rank, it has a left inverse matrix (7"7T)~'7",
and (2.8) has an inverse transformation such that

(2.9) t=(T'T)'T'z% .
Hence we finally have the following theorem.

THEOREM. The problem of optimal scaling under arbitrary order
restrictions can be always transformed to

(2.10) Q(2)=2Cz/Z Dz— max
subject to

(2.11) (1) Zoo=[2w1s Zawzr z(k)ck],go ’ k=1,2,---,m,
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(2.12) (i) alkpzaw=0, i=1,2,---, ¢,—7+1, k=1,2,---, m,
where
C=TTTyATTy T, D=T(TT) BITT) T

and where aq;, 18 a coefficient vector with 0’s and +1's for zy, in the
equality restrictions corresponding to linear dependencies among {Zu:,
Zaoes®* s Raoe,ty K=1,2,--+, m. The number of equality restrictions 1is
given as the difference between the number of transformed variables {2;,}
and the nmumber of linearly independent variables.

When we represent the given order restrictions in a graph, we can
easily obtain the equality restrictions corresponding to circuits in the
graph. The cases discussed by Bradley, Katti and Coons [2] and Nishi-
sato and Arri [7] are special cases with mutually connected categories
and no equality restriction.

3. Application of a nonlinear programming technique to the opti-
mization problem

3.1. Wolfe’s reduced gradient method ([11])

As shown in the previous section the problem of optimal scaling
under generalized order restrictions reduces finally to (2.10)-(2.12), i.e.
the problem of maximizing a nonlinear objective function under non-
negativity and linear equality restrictions.

Wolfe’s reduced gradient method was proposed just for such type
of nonlinear programming problem ([11]) and is known as an efficient
algorithm comparing with other competing methods ([6]). From such a
viewpoint we shall use it to solve our optimal scalig problem numer-
ically.

3.2. Numerical examples

Table 1, which shows the data for a five-treatment experiment with
a five-point scoring scale, is taken from the study of Bradley, Katti
and Coons [2] (p. 366, example 3). Now consider two kinds of order
restrictions and apply our generalized method.
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Table 1. A numerical example (Bradley, Katti and Coons [2])

Response categories*
1 2 3 4 5 Total

(%) () (¢s) (£4) (ts)
1 9 5 9 13 4 40
T 2 7 3 10 20 4 44

reat-

ments 3 14 13 6 7 0 40
11 15 3 8 42
5 0 2 10 30 2 44
Total 41 38 38 75 18 210

* Notes: Category l=Excellent; Category 2=Good;
Category 3=Fair; Category 4=Poor;
Category 5=Terrible.

(i) The case of order restrictions &,= {t;, t;} =t,=ts

The order restrictions are expressed by a graph in Fig. 1, which
shows that all categories construct an equivalent class because they are
connected with each other and that there exists only one circuit ¢,—t,
—t—ty—t,.

(Zs)

i3

Fig 1. Expression of the order restrictions # = {f;, t3} =ti=t5 by
a (directed) graph

According to the order restrictions, the transformation matrix T'[(c+m)
Xr] in (2.5) is expressed as follows.

L .
1 ~1
1 ~1
(3.1) T= 1 -1 .
1 -1
1 [ )
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Then the problem becomes

3.2) Q=2'Cz/ZDz— max ,
subject to

3.3) (1) z=[z, 2,520,
(3.4) (i) z—2z+2—2=0,
where

r0.310250 0.252340 0.336210 0.394120 0.162770
0.252340 2.099860 2.888190 1.040670 —0.280090
C=| 0.336210 2.888190 3.98856560 1.4365670 —0.300860 |,
0.394120 1.040670 1.436570 0.790020 0.141990
L0.162770 —0.280090 —0.300860 0.141990 0.835500

r 12.998770 3.498790 —0.210730 9.289268  1.757150
3.498790  12.998779 9.289268 —0.210730 1.757150
D=| —0.210730 9.289268  17.703537 8.203548  5.014279
9.289268 —0.210730 8.203548  17.703537  5.014279
L 1.757150 1.757150 5.014279 5.014279 16.457138

Application of the reduced gradient method to the optimization
problem (3.2)—(3.4) yields the result shown in Table 2. Normalizing so
as to satisfy £,=1.0 and ¢;=0.0, the optimal scores are given as

t=[1.0000 1.0000 0.1435 0.0000 0.0000] .

Table 2. Solution obtained for #1= {tz, {3} 2ti=ts

Cycle K 22 23 24 25 Q2)

0 *1.00000 1.00000 1.00000 1.00000 1.00000  0.1224780
1 *0.04757 1.10058 1.70579 0.60522  0.58841 0.1978295
2 0.08542  *1.10058 1.70580 0.60521 0.58839 0.1978315
3 0.08964 *1.85925 2.03080  0.26120  0.0°930  0.2423639
4 0.05140 *1.75611 2.03277 0.27666  0.0°930  0.2435769
5 0.0°140  *1.74103 2.03097  0.28994  0.0°930  0.2435847
6 0.05140  *1.74063 2.03092  0.29029 0.0°930  0.2435847
7 0.0°140 *1.73886 2.03070  0.29184 0.0°930  0.2435848
8 0.05140  *1.73990 2.03084 0.29094  0.05930 0.2435847
9 0.0°140 1.73944 2.03078 0.29134.  0.0°930  0.2435848

Notes: (1) The iterative procedure stops when the norm of gradient vector
for non-basic variables is smaller than 10-5.
(2) The value with symbol (*) indicates that it is selected as a basic
variable in each cycle.
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Although the set of order restrictions ¢,={t;, t;} =t,=¢; does not
contain t,=>t,, the solution obtained satisfies also the condition ¢,=t,.
Therefore, the optimal scores obtained should coincide with those under
the complete order restrictions ¢,=t,=t,=t,=t;. In fact, the method
of Bradley et al. gives the optimal scores

t=[1.0000 1.0000 0.1434 0.0000 0.0000}
under the complete order restrictions.

(ii) The case of order restrictions ¢,= {t,, ts, &, t;}

This set of order restrictions, which was investigated by Nishisato
and Arri [7], is expressed by a graph in Fig. 2. As this graph does
not contain any circuit, there exists no equality restriction. In this
case the reduced gradient method is equivalent to the ordinary gradient
method and yields the result #=[1.0000 1.0000 —1.4260 —2.1681 0.00007,
which coincides well with the solution #=[1.000 1.000 —1.426 —2.168
0.000]’ by Nishisato and Arri [7].

123
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1
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Fig. 2. Expression of the order restrictions
t = (ts, ta, L, ts} by a (directed) graph

4. Discussion

Methods of optimal scaling under order restrictions have been in-
vestigated by several authors such as Bradley, Katti and Coons [2],
Nishisato and Arri [7] among others. Bradley et al. [2] studied the
case of complete order t,=¢,=-.--=t,. Nishisato and Arri [7] extended
this to the case of partial order. Their extension is, however, limited
to the case that all categories are connected with each other and can
be expressed by a connected graph containing no circuit. In preceding
sections we gave a generalized formulation for arbitrary partial order.
One of our motivations behind this generalization is to scale optimally
a movement of grade or scoring from pre- to post-treatment.
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These problems of optimal scaling under order restrictions are for-
mulated as nonlinear programming problems or optimization problems
under constraints. But generally a nonlinear programming problem is
not easy to solve numerically even if the formulation is made. The
method by Bradley et al. [2] is a kind of gradient method and the iter-
ative procedure converges rapidly to optimal solution according to our
experiences. It is not applicable, however, to the case of partial order
in their original form. Nishisato and Arri [7] applied separable pro-
gramming based on polygonal approximations after transforming all
functions in the constraints and the objective function to separable
forms. In order to obtain a solution accurately, a large number of
mesh points should be chosen around the initial values, which are ob-
tained sufficiently near the optimal values. They obtained initial values
by solving eigenvalue problems iteratively after pooling disordered cate-
gories. In this procedure to obtain initial approximations, however,
there exists a possibility to pool excessively, so that the initial approxi-
mations are not always sufficiently near the optimal values. In such
cases it is required to choose mesh points and initial values carefully
and to solve a large scale linear programming problem.

Because of these difficulties of separable programming we applied
the Wolfe’s reduced gradient method [11]. It is known as a very ef-
ficient algorithm to solve a special type of nonlinear programming prob-
lem with linear equality constraints for nonnegative variables [6]. Thus
it may be said that the method is just suitable for our problem (2.10)-
(2.12). In fact the procedure converges rapidly to the optimal values,
starting from arbitrarily chosen initial values z,=2,=---=1.0. It may
be much better to use the conjugate gradient algorithm than to use
the ordinary steepest ascent algorithm in the reduced gradient method,
especially when the number of unknown parameters is large.
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