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Summary

Exact robustness studies against non-normality have been carried
out for test of independence based on the four multivariate criteria:
Hotelling’s trace, U®, Pillai’s trace, V®, Wilks’ criterion, W, and
Roy’s largest root, L.,. The density functions of U®, W and L,
have been obtained in the canonical correlation case and further the
moments of U® and m.g.f. of V® have been derived. All of the study
is based on Pillai’s distribution of the characteristic roots under viola-
tions. Numerical results for the power function have been tabulated
for the two-roots case. Slight non-normality does not affect the inde-
pendence test seriously. V® is found to be most robust against non-
normality.

1. Introduction

Let S, (p X p) have a non-central Wishart distribution W(p, n,, ¥, 2)
and S, (p X p), an independent central Wishart distribution W(p, n,, X,, 0).
Pillai [7] has derived the joint density of the latent roots =, ry,---, r,,
of S.S;! under violations, having an assumption on X?¥;13V: in the
form:
(1.1)  C(p, m, n) exp (—tr Q)| A|™*|R[* I+ AR[" "2 ][ (ri—1))

>J
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where F, denotes the function of matrix arguments of order p defined
by

1.2 F = a..Co( —27' A7) L} (D)
2 ’ E" %‘J (n4/2),C(I)Ci(I)

?

21 T T((2m+2n+ p+i+2)/2)
1.3) C(p, m, n)= 1=l ,

;[:Tl {(Cm41+1)/2)[((2n+12+1)/2)(2/2)}

m=(n—p—1)/2, n=(n,—p—1)/2, 2>0, A=diag (4, -+, ), A,**+, 4, be-
ing the latent roots of ¥, 27! and R=diag (r,---, r,), C(S) is the zonal
polynomial [1] of degree k of the symmetric matrix S corresponding to
the partition s=(k;, -, k,) of k such that k,=k,=---=k,=0 and k=
k,+---+k,. The generalized Laguerre polynomial Li(S) is defined in
Equation (14) of [2] and a., are constants defined in Equation (20) of
[2].

The density (1.1) has been derived under the assumption that XV?
. ¥71¥2 i partial random, denoted “random”. Here “random” implies
diagonalization by an orthogonal transformation H and integration over
H; in other words putting a Haar prior on H leaving the latent roots
non-random. The density (1.1) has been useful to study 1) the robust-
ness against non-normality in testing 2,=2%, in two p-variate normal
populations and 2) against the violation of the assumption of a common
covariance matrix in MANOVA. Pillai and Sudjana [8] have carried
out a numerical study of 1) and 2) using (1.1) for p=2 based on the
following four criteria:

(i) Hotelling’s trace U“”=§] Tiy
(ii) Pillai’s trace V=3 {r/1+7)},
i=1

(iii) Wilks’ criterion W®=T1] (1+7), and

(iv) Roy’s largest root r,.

In this paper, an attempt is made to study 3) the robustness against
non-normality of the test of independence between a p-set and a g¢-set
in a (p+q)-variate normal population based on each of the above cri-
teria. The motivations of these exact studies of robustness are dis-
cussed in Pillai [7].

For example, for 3), denoting L(Z,, X, 8)=W(n,, p, 2, 8YW(n,, p,
),

4)  LZ, 5, Q=LE,, 5, !))]2’12;‘|"2/20F0<—;- (27;1—27,-2)82) ,
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where F\(T) denotes the hypergeometric function of the matrix variate
T. Now L(ZX,, X,, ) leads to the distribution of the sample canonical
correlation coefficients in the normal non-central case when £ is made
random, and expression in (1.4) equals L(ZX,, ¥, ) when ¥ ,=2%,. If
X,+2%,, the series ,F, leads to a non-normal situation.

It may be observed that non-normality occurs in the study due to
a) heterogeneity of covariance matrices and b) kurtosis, [6]. The heter-
ogeneity is involved in view of unequal covariance matrices in (1.4).
Kurtosis is caused by the introduction of the “random” approach on
Yiny-1yi For example, using the “random” approach on ¥ in the
Wishart distribution W(p, n, ¥, S) we get

(1.5) E(exp(—ttr 2-'S))
=exp (—tr Q) éo >

S CIUI+2tHD.H'2 )2 ,
w | ZHD,,H +2t1 "k '

where 0(p) is the group of all orthogonal pxp matrices H, dH is the
Haar measure normalized so that the measure of the whole group is
unity and D, is the diagonal matrix of the latent roots of . It may
be seen that without the “random” approach we get

(1.6) E (exp(—ttr 2-'S))=exp (—tr 2) g S CA82)/[k (A 42ty +e]
which is different from the expression in (1.5). Further
A7) B IS n=p,+(2) 3 E{X— XXX

(X - XY EX, - X)),

where 8,, is Mardia’s measure of multivariate kurtosis replacing g by
P ¢

X [5], X,,---, X, is a random sample of size n from N(g, %), and X is
the mean vector. The above discussion indicates that kurtosis is also
involved in this robustness study. However, skewness is not involved
since the distributional investigation here starts with Wishart distri-
butions.

In the following sections, the density functions of U®, W® and
r,, mgf of V® and moments of U® are obtained starting from Pillai’s
density of the canonical correlations under violations (2.2). Further,
cdf’s of the four criteria for the two-roots case are derived explicitly
in terms of incomplete beta functions and their powers are computed
to study the robustness of the test of independence against non-nor-
mality. Some inferences are given based on the tabulations.
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2. Canonical correlation distribution under violations

Again, Pillai [7] has obtained the density of r,,---, r, for canonical
correlation under violations by making £ completely random in (1.1)
in the following manner:

Consider 2 as a random matrix (1/2)27MYY'M'2* where YY'
has a central Wishart distribution Wi(q, n,+n,, ¥;) given by

(2.1) {[’q (.;_ (my +n2)> l2z’3|(n1+n2)/2} _1| Y Y|t
 exp ( < 1y 1YY’>

Now, expand the generalized Laguerre polynomial in (1.1) in terms of
zonal polynomials and multiply (1.1) by (2.1). Then, integrating Y'Y’ us-
ing Theorem 1 of [1], we have the joint density of »,---, 7, in the form

2.2) C(p, m, n)| A|7| T+ 8|~ "2 R[>0 T+ AR|™ "2
S -1
=) 58 (L | CORTEIR)T)
i>7 k=0 & 2 .

k!
& Cy(—27147)

dzj_s > a:,a——’*——c 73)

L e (21)as (gt m0)[2),CLUT+2)7'21]
5 (n,/2).C.(I)

where 2,=3V*M'Y*MYY*. The distribution of the canonical correla-
tion is a special case of (2.2).

3. Density functions of U®, W® and r, for canonical correlation
under violations

In this section, first we consider the density function of Hotelling’s
trace.

Density of UP=2tr S,S;!. Use the density of U® for MANOVA un-
der violations given in Equation (2.1) of [8] and consider £ as a ran-
dom matrix (1/2)2 " MYY'M'37* where YY' has a central Wishart
distribution W(q, n,+n,, 25, 0) given in (2.1). Then multiplying the
density of U® from [8] by (2.1) and integrating out Y'Y’ we get the
density of U® as:

(3.1) CHAE—"‘/ZH le(nl'{'nq)/z(U(p))pnl/Z—l

i ((n+1)/2) (= UPYC(a A7) (1,/2).
k=0 k!I'(pn./2+ k)
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(=10, (O m)2ACPY
b (n2.CAD)

where C=I((n;4n1,)/2)[[}(n,/2), P*=(I+£2,)"'2, and 2,=2V’M'I'MX}".
The series (3.1) converges only for 0<|U®|<1.

Density of W®. Using the density of W®=|I+iR|"' for MANOVA
under violations in Equation (8.5) of [8] and considering £ random and
proceeding as before we get the density of W® as

(3.2) C|AA| ™/ (W ®)mg—p-D/2
é {( (nﬁm))( n,) C(I)/k'}II Pr{eunre

. » ap a,, aCa( _ 2—1/1—1)
Gr(Welp ) 53 )

& 5 (10 () 2).CAPY

&2 (n/2).CAD)

where G( ) denotes Meijer’s G-function a,=n,/2+k,_,,,+b;, and b,=(1—
1)/2.

Density of r,. Again using Equation (4.6) of [8] we have the density
of r, in the form:

(33) Gl [ Pt 3153 k,((’zfli;) f&zﬁ@%

S na (Loutm) Cra)

A(n+n,)/2),C.(P?)
(n,/2).CI)

where C,=I'(1/2)I((n;+ne)/2),-(p/2+ 1)/ {T"(D[2)] (1| 2) (Mo 2) p_o((11+D
+1)/2)}, where ¢:. are constants defined as C,(A)C,(A)=; 9. .Cy(A)

where d is a partition of k+t=d and v that of <.

2;( 1)(15

4. Mgf of V» and moments of U®
We derive two forms for the m.g.f. of V®=tr [R(I+R)™],

Mgf of V®. The following theorem gives the two forms of the mgf
of V.

THEOREM 4.1. The m.g.f. of V® for canonical correlation under
violations can be obtained in the following two forms:



90 K.C.S. PILLAI AND YU-SHENG HSU

(4.1) (i) E (exp (V®))=|4| ™" g 2 %

2 S ) e

2 a,C(— A
230D

2 (=1, ((mtm) 2),C(PY
= (1/2),C(T)

o | I— Ptz

(4.2) (i) E (exp (V®))=C,|A4|"™?|[— P?|mtmr
s (Ot m)2). & ¢

k=0 "¢ k! i=o ¢!
.5y G(m)2),C) C(—47)
2 ((ny+my)/2), & GI)

& o (=DPay ()2, C(PY
&% (2,00 ’

where 2 18 a partition of 1 in (i) and C,==""|T(p/2).
ProoF. (i) follows from the result of [9]

MY) — _ —ny/2 ht (nl/z)tCl(I)
E (exp (tV®))=exp (—tr £)|4|™/ ,E, ; ke,

.S 1\ e G 6, C(—47HLNR)
A3 (e g (m/2).C.DCT)

where a=n,+n, and m=(n,—p—1)/2. We get the result as before by
considering 2=(1/2)X*MYY'M’'2""* and integrating YY’ as we did
before. To prove (ii), use the joint density function of »,,---, r, given
in Equation (3.20) of {7] and let L=R(I+ R)™!, we get the density func-

tion of L as

(4.3) C(p, m, n)]AI'"I”II— Pt
.S 1 5 8 C(—47")
pIDY < > ("‘+”2)>./k! 5370
((ny+mn,)/2),C.(P?)

. s (—'1)"04.)
m (/2).C(T)
. C‘(L)ILl(‘Vll_P—l)/2lI_Ll(nz—p—l)/z .

Now, consider exp (t tr L)C.(L)|L|™~?~ V72| [— L|"?-b/

(4.4) =§}, _f_: ; C{(L)C(L)|L|™=2=0/2| [— [|m2-1/2
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g?,.Cq(L) | L[m=p=br| [ [ [m=2-Dr2 |

Iel-
ey

Now using Equation (22) of [1] to integrate L from 0 to I in (4.4) then
substituting in (4.3) we get (4.2).

Now considering the moment of U®=2tr S,S;!, by [9] we have

COd(n[2). < <~ (=1)a..C(=9)
(P+1—my)[2). =" (m/2),C(I)

Let 2=(1/2)2*MYY'M'2" with YY" distributed as (2.1). Multiplying
(4.5) by (2.1) and integrating out Y'Y’ we get the following theorem:

4.5) E[U)]=(-1)%

THEOREM 4.2. The moment of U® for canonical correlation under
volations is given by

(D\k > C(IA)(n1/2)
. BE £2 1
(4.6) (=P =12 ((p+1—mny)/2).
< (—1)”a.,v((n1+nz)/2)uC»(A)
a3 (,/2),0I)

where A=(I—P*'—1I.

5. Non-central distributions of four statistics for p=2

In this section we derive the distributions of U®, V¥, W® and 7,
starting from (2.2).

Distribution of U®. Putting i1=1 and p=2 in (2.2) we have the joint
density of 7, 7, (r,<7y) in the form

(G.1)  C@, m, 0) (Ad) ™| T+ [y (L4 1y) (L4 1)~ mort

C. <7'1/ (10+ 7y) 1“2/(10-1- 7'2))

. (7'2—7'1)'% g <%(n1+n2)>‘

]
a,,,C; <_5/21 g_) >
. ’ —1/2
pap2 o%¥3)
R (=1)"a, (1 +7,)/2),C[(T+£2))"'21]
22 (naf2).C1) ‘

Now, denoting the characteristic roots of (I+£,)7'2, by pi and g%, (5.1)
becomes

(5.2) C(2, m, n)(22) ™" [(1—pi) (1 — p})] ™"/
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i ((m+13)[2). <r1/(1+r1) 0 )

k! 1'2/(1—]-7'2)
a9,
_ —1/%
=5 o
iy pi 0
-éz( 1) a,,,,((n1+nz)/2)uCy<0 p;>
i (14/2).CI)

s (rr) A7) A7) My — )
Further, let

6:3)  F=(re)(@+m)@+mloor—rc,(0Gm 0 )

and C,(A) be written in the form
(5.4) C(Ad)= 3 b(r, s)alas,

r+28=k
where a,, a, are the first and second elementary symmetric functions
of the latent roots of the 2x2 matrix A and b(r, s) can be found in
[8]. Then using (5.4) in (5.3) we get

55 Fe b fr,s< 1T )r[ 171 :Is
(5.5) T T a i

- ()" [+ 1) A7)y — 1)

Now transform x=r,+7,, y=rr,, integrate y from 0 to «’/4 and x
from 0 to U, we get

u (x2/4
(5.6) | Payde= 5 b 9w

r r s u (x4 xiym+r+a-i
Whel‘e Hrs(u) = ; < . >2 S S m+n+r+s+3
o\ 4 oo (1+x+y)

the following theorem :

THEOREM 5.1. The exact C.D.F. of U® wunder violations in the
canonical correlation case is given by

dydx. Hence we have

G O@,m,m) (AL - e 5y 5 ()2

P k!
1/, 0
k :JCJ .
Z b(r, 8)H,(U) g‘, < C(I) 1/Zz>

. (= 1)an (2,00 O
DY <0 Pz)
n=0 » (n1/2)qu(I)

’
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where i, A, are the latent roots of X, 27, o}, pi are those of (I+8,)7'8,
and b(r,s), H,(U) are given in (5.4), (5.6) respectively.

Distribution of V®. Start from (5.5), and make the transformation
X=V®=(r/1+7))+(r/1+7r)) and y=(r/(L+7))(r/Q1+7)). To find
the C.D.F. of V®, we have to consider two cases:

(i) When »<1, then integrate y from 0 to 2*/4 and z from 0 to w»,
we get

v (22/4
(5.8) S S Fiydz=_3 b(r, 9F.(0) ,

+28=

v (a?
where F,,(v)= S S " Y™t (1—x+y)dyde.
0 Jo

(i) When v>1, let o'=(1/Q1+7))+(1/A+r))=2—z, y'=(1/0+r))(1/1+
r))=1—2+y, then integrate %’ from 0 to («')’/4 and z’ from 2—v to
1, we have

1 (@4 - ,
(5.9) L7 Payaw= 5 v 9Fio),

0 r428=
1 (@)2/4
where F/(v)= S S @2—2)y(1—z'+y)"ty"dy'dx’. Hence we have
0
the following theorem:

THEOREM 5.2. The exact C.D.F. of V® wunder wviolations in the
canonical correlation case is given by

(5.10)  C2 m, n) (W)™ —p) (1o 5 5 (Ot 1))

. k!
14 0
k deJ
39K 5 <C(I) )
s (—1)"a.,,,((n1+nz)/2)vC»<’§ ,?;)
&2 (n,/2),C.T) ’

where A, A, pi, p are the same as in Theorem 5.1 and
F,-,(?)) ’ if ’Uél
F, 1)+ F/(v), if v>1.

Distribution of W®. Now, if we make the transformation z=1/(1+
r)(1+7r) and y=rr/1+r)(1+r) in (5.5) and then integrate y from
0 to (1—+2)* and x from 0 to w, we get

K, (V®)= {

(.11) S"’ S“’ " Faydz= 31 b(r, 8)G.(w) ,
0 0 r+28=k
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w vz

where Gr:(w)=S S(l v zry™t*(1—2+y)dyde. Now we state the follow-
0 1]

ing theorem:

THEOREM 5.3. The exact C.D.F. of W® wunder violations in the
canonical correlation case is given by

(5.12) O, m, m) @A)y A(L—p) (1= 5y 51 (Lt 1)/)e

k!
—1/11 0
k t,ﬁCJ —
= kb(,,., 8)G,(w) g ( C(:(I) 1/22>
. (=1ya, ((m+n)2).0 (0 O
DY (0 Pa) ,
=k (n/2).CAT)

where A, A, pi, pi and b(r,s) are the same as in Theorem 5.1 and
G, (w) is given in (5.11).

Distribution of Lgy=7y/(1+7,). Again, transform l,=»/(1+r,) and ,=
r,/(14+7,) in (5.5), and integrate !, from 0 to I, and I/, from 0 to I. We
get

(5.13) , S Fdyde= > b(r,s)P.(),
o Jo r+28=%k

where P"(l):[é <:>/§ (_1)1<?> S: l§"‘“‘+'“+2(1—lz)"dlz]/[(m+s+t+i+
. i=0 =0

1)(m+s+t+i+2)]. Now, we state the following theorem :
THEOREM 5.4. The exact C.D.F. of the largest root Ly, under vio-

lations in the camonmical correlation case is given by

(5.14)  C@, m, m) (&)1 —g) (A—phfertr 51 53 (kI

k!
—1/3 0
k A‘,JCJ —
S P05 <C?(,) i)
&y CVB e nRClF D)
=2 (m/2).CAT) ’

where 1y, A, p}, ps and b(r,s) are the same as in Theorem 5.1 and
P, (L) 18 given in (5.13).

6. Numerical results

In order to study the robustness against non-normality of the tests
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of independence between two sets of variates based on the four criteria
above, we can evaluate the powers of the test by using the distribu-
tions obtained in Equations (5.6), (5.9), (5.12) and (5.14). Let

B=C(2, m, n)(A4) ™" [(1 - __pg)](nl+n2)/2 ,

then we can write the C.D.F.’s of U®, V®, W® and L, in the follow-
ing forms respectively :

6.1) Pr{U®=u}= Bzz«”ﬂ;% 5 b(r, ) H @)U,

k=0 =

(62) Prv®si=B3> ((”*Jrk% 351, 9KV

6.3) Pr{W®<w)=Bx 2((’“’6% 51 b7, G0 UL

k=0 =«

and

64) Prilesh=B3> ((”1+k—"“)/2) 3 b, 9PV

where the expression U, is available in the appendix and H,,(u), K,.(v),
G, (w) and P,,(!) can be expressed in terms of incomplete beta functions
[9] as follows:

Let B(, j,a)= S ~1(1—x)’~'dx, then

2 (m+r+s—9)(n+it1)!
(6.5) Hn(u) 2 ( ) (m+n+'r+8+2)'

m+r+8—1 y
. {B(az,n+1, Al)——Z'“ ,E, (’n-’r’b-;;k-i‘l)
- Blax+2k, ay, 4) |

where a,=2n+1+3, a;,=1+1, A;=u/1+w) and A,=u/(2+u). For 0=
v,

. _ 2+ n . .
66)  K.0)=Fu)=—Z " 3 (~1)RB(2m+s+i)+7+3,

. v
2n—i)+1, .2_)

and for 1<v<2,

K. ()=F,()+F/(v)
—_ 2" Sy :
et o VEB (2(m+n+z)+r+3,
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+1 m+s

1), 2
2n—i)+1, E>+

: [B(Z(m+n——i)+'r+1, 2(n+i)+3, v)

—B(20m+n—i)+7+1,20+0)+3, 2 |,

where Ri=]i[1[(n+1—j)/(m+s+.’i+1)], R,=1 and Pi=jT:Tl [((m+s—7+1)/

6.7  Guw)=> DT 6 Ben+t2, 2m+2s+r+it3, VW),
S mtstl

where Qizj]jl[(r—j-{—l)/(m+s+j+1)], Q=1 and

68)  PuO=3(7) 5 (-10(})SBEm+s)+r+its, ntlD),

where S;=1/[(m+s+t+j+1)(m+s+t+5+2)]. Using (6.1) to (6.4),
powers of U®, V®, W® and L, respectively have been computed to
the study of 3), namely, the robustness against non-normality of the
test of independence between a p-set and a g-set in a (p+gq)-variate
normal population. In computing the powers, for a=.05, lower tail
probabilities for W® and upper for others were considered; m=0, 2,
n=>5, 15, 40, and various values of (o}, p}) and (f;, f;) were taken where
fi=4,—1, 1=1,2. These powers are presented in Table 1 (not present-
ed here but available in Mimeograph report No. 419, Department of
Statistics, Purdue University). Further, Table 2 gives the values of
the ratio e=(p,.—p)/(ms—a), for m and n as above and selected (o, o})
and (fi, fi), where p, is the power under violation of assumptions and
Py, power without violation of assumptions. The latter table serves for
a better comparison of the performance of the four criteria. Some
findings follow.

1. For small values of f, and f,, the changes in powers are con-
siderably small and it appears that slight non-normality does not affect
seriously the test of independence between the two sets of variables,
based on any of the four criteria.

2. For larger values of f, and f;, the changes in powers are no
longer small, indicating that the test of independence based on any of
the four criteria is affected by serious departure from normality.

3. From the tabulations, especially from the values of e in Table
2, it may be seen that V® has the smallest value for e among the four
criteria in 20 out of 28 cases (15 of 17 cases where f;#f; and 5 cases
where fi=f;) and L has smallest in 7 cases, (all, except one, when
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Table 2 Values of the ratio e=(p;—po)(Po—a). (pr=power under violation
of assumptions; po=power without violation; a=.05)

fe Lo| ot | o | 5 | A |Uw

n=5 m=0 n=>5 m=2

o

fi U® Ve |we

Ve |{we

P L)

0/.0001 0 .1| 198 192/ 194 200| .0015/ .0015 0 .1 14.9 12.2 12.3| 12.6
.05 .05/ 196/ 194/ 194 196 .05 .05 14.8| 12.5 12.4] 12.3
.0015/.0055| 0 .1 2.89 2.83 2.87 2.90 0 .01 0 .03].5216!.5219|.5220/.5206
.05 .05/ 2.86| 2.86| 2.87| 2.85| .01 .01 0 .1/ 1.95 1.89 1.93| 1.97
0 .01 0 .1] 2.04 2.01| 2.03| 2.04 .05 .05 1.94 1.94] 1.94 1.92
.05 .05 2.02 2.04| 2.03; 2.00
.025| .025 0 .1 4.76 4.58| 4.70| 4.80
.05 .05/ 4.73| 4.63} 4.70| 4.72

n=15 m=0 n=15 m=2
0|.0001 0 .03 25.4] 25.3| 25.5| 25.6 0| .0001 0| .1] 1898| 1860| 1890 1948
0015/.0015| 0 .1/ 1.36/ 1.35 1.36/ 1.38 .05 .05/ 1880] 1876| 1888 1872
0015/.0035 0 .03 .540| .539| .540| .543| .025 .025 0 .1 .499 .485 .510/ .508
025 .025 0 .1 .267| .260] .261| .276 .05 .05| .495| .487| .512 .489

.05 .05/ .266| .260| .261 .271

n=40, m=0 n=40, m=2

.0015(.0015 0 .1 1.35/ 1.34) 1.35 1.37 0, .0001 0| .03|.4575|.4568|.4564|.4595
.05/ .05/ 1.34/ 1.33] 1.33 1.34].00125/.00125 0 .1 3.55 3.53| 3.54| 3.65
0015/ 0055 0 .03|.1561|.1558).1560|.1564 .05 .05 3.52 3.52 3.52 3.49

fi=f). V@ has largest value of e in one case and tied for largest in
two cases (all when fi=f,) while L., has largest ¢ in 17 cases (13 when
fi#f). W has second smallest e 17 times, has one smallest and tied
for smallest two times and largest e four times. U® has second larg-
est ¢, 15 times and largest three times and tied for largest 5 times.
Since a smaller value of e is indicative of better performance against
non-normality, it is clear that V® is the most robust of the four ecri-
teria and W® is the second best. L, is very inconsistent and generally
weak while U® is more steady and performs apparently as third best
behind W®,

4. The findings above are in general agreement with those obtained
from asymptotic studies on Hotelling’s trace [8] and those of Gayen in
the bivariate case [3] and those of Olson [6] from the Monte Carlo
study in multivariate analysis of variance.

Appendix
CUo, o= 1
CL]I, = 14 Al
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Uso=1+24,+A4,

Us,ar=1+24,+ Ay

Us,=1+84,+34,+ 4,

Us,av=1434;+(4/3)As+ Au+(5/3)Au

U, w=1+44,+64,+44,+A4,

Uy a0=1+44,+11/3)As+(7/3) Ay +(6/5) As+ (14/5) Az + Au
U, ar=1+44,+(8/3)As+(10/3) Ay +4 Ay + Ay
Us,=1+54,+104;+104;,+54,+ A,

CUs, w,n= 1 + 5A1 + 7A2 + 3A11 + (23/5)As + (27/5)A21 + (8/7)A4
+(27T) A+ Ay

Us,,0=1+5A4:+(16/3) A, +(14/3) Ay +(8/5) As +(42/5) Ay
+(8/3)An+(7/3)An+ Ay

qJe, = 1+ 6A1 + 15Az + 20Aa + 15A4 + 6A5 + As

Us,s,5=1+64:+(34/3) A+ (11/3) A +(56/5) Ay 1 (44/5) An
+(39/T)Ai+(66/7) Ay +(10/9)A;s +(44/9) Ay + Ay

CUe, U= 1 + 6A1 + 9Az + GAu + (28/ 5)As + (72/ 5)A21 + (48/ 35)A4
+(66/7) Ay +(147/35) As+ (12/5) Ay + (18/5) Aps+ Ao

CUs, ahH = 1+ 6A1 + 8A2 + 7Au + (16/5)A3 + (84/5)A21 + 8A31 + 7A22
+6A5,+ Ay

where A; and A;, are defined as

A=— —;‘ a, <1 - —;— e(l)cl>

A= % (Baz+ 2b,) [1—eqyei+ exw(3¢;+ 2d,)/8]
Ay=b(1l—ewc+ eandy)
Ay=— 1—16 (5as+ 3ab,) [1 - % e+ 3ew(3c.+ 2d,)/8

—e(s>(5c3+3cldl)/16}

Ay= _";—albl [1 —%eu)cx +ew(3c:+2d,)/2 +-g—€<12)d1 —3(2,1)01dx/2]
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A4=1_;8_(35a4+20a,b1+18b2)[1—2e<nc,+6e<2>(3cz+2dl)/8

—_ 3(3)(503 + 301d1)/4 + C“)(35C4 “]" 2062d1 + 18d2)/128]
1 11 7
A= ) (3ab;+2b,) [1 —2e,¢,+ ﬂe(Z)(3CZ +2d,)+ E eand,
- %3(9(503 +2cd)— % €, vCidi e, (8 dy+2d;)/ 8]

Ap=b, l:l —2eqyc1+e0y(3e+2d,) 3+ lg()_ eqnd, — 2e¢, 1,61d, +9(22)d2]

A=— —2—;;6 (63a;+35ab, +30a,b,) I:l - g— e+ 751- ea(3e,+2d,)
- % e (5ey+3cidy) + deqy(3be, + 20c,d,+18d,)/128

—e(s)(63cs+35csd1+3001d2)/256]

Ay= ——116—(511361 +3a1b2)[1 —%emcl+ Tea(3e,+24,)/8+ Seand,
—286,(5¢5+8¢1d1) /80— 2Te g, 1,¢1d1/10+ €4 (35¢4+ 20c,d;
+18d,)/112+ 2Tecq, 1(3cathy +205) /56 — e, 1 (5estly + B0,dy) 16]
Av=—Lap[1-Bepot2e0Gataa)n+ e,
—e(5e5+3¢,d,)[10 —21e 1,0:dy /5 +€q, (e +2d,) 3
+ %e(zz)dg—e(s,mcldz/.?]

A= —%—— (231as+126a,b,+105a,b,+ 100b,) [1 —3euyc;

6(4)(3564

-8— e(z>(3cz +2d,)—— e(a)(5ca +3ed;) +

""|' 2002d1 -+ 18d2) - 128 e(5)(6365 + 3563d1 + 3001d2)

n 10124 e(s)(231ce+12604d1+105c2d2+100d3)J

Ay= 128 ———(35a,b; + 20a.b, + 18b;) [1 —3ewe+ ———6(2)(302+ 2d,)

+ 13 eqnd;— —1—e(a>(503 +3ec,d;)— —e<z i+ ——— 9 3(4)(3504
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+20c,d,+18d,)+ —2—:;‘3(3, v(3ed;+2d,) — e (63c¢s

5
1152
+35c3d1+30c,d2>—%eu,nwcxdﬁscldz)

+

1;8 e, 1)(35¢,d;+20c,d,+ 18ds)}
Au= —;— (3a:b,+2by) [1 oo+ % 6r(3¢s-+2d,) + Becnds

6(4)(3504 +20c.d,

*—‘O’sﬁem.ncxdl — 2i3<s)(5cs+ 3cd,;)+ 230
+ 18dz) + 9(22>d2 + 2—8 €a, 1)(3czd1 + Zdz) - —-—3(4 v(5eyd,
+30,d;)— %em,mcldz e (B +2d)[8)

Ay =by[1—3e ¢ +ew(3c:+ 2d,)+Teqxd, —ew(bes +3e,dy) /5
—42¢,1yc,d,[5+e, p(3ed; +2d5) 4+ Te,d, — e, »Cids+eqnds]

where a;,=A7'"+ ¢

s

bi=(A14)""
c;=pi+p}
dt = (PxPz)i

o= (33)/(3)

are positive integers.
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