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Abstract

In this work we consider some familiar and some new concepts of
positive dependence for interchangeable bivariate distributions. By
characterizing distributions which are positively dependent according
to some of these concepts, we indicate real situations in which these
concepts arise naturally. For the various families of positively depend-
ent distributions we prove some closure properties and demonstrate all
the possible logical relations. Some inequalities are shown and applied
to determine whether under- (or over-) estimates, of various prob-
abilistic quantities, occur when a positively dependent distribution is
assumed (falsely) to be the product of its marginals (that is, when two
positively dependent random variables are assumed, falsely, to be in-
dependent). Specific applications in reliability theory, statistical me-
chanics and reversible Markov processes are discussed.

1. Introduction

Some interchangeable bivariate random vectors (X;, X;) (that is,
random vectors with permutation invariant distributions) which satisfy

1.1) P{Xel, X,eI}zP{X eI} P{X; €I} for every interval I,

are known in the literature, (see e.g. Hewett and Bulgren [9], Jensen
[13], Tong [34] and Sidak [31]). Jensen [14] observed that many of the
random vectors that satisfy (1.1) satisfy also the more general inequality
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1.2) P{X,e¢B, X,¢eB}=zP{X,¢eB}P{X,¢ B}
for every Borel set B in R.

Jensen called random vectors that satisfy (1.2) positively dependent.
We will not adopt this definition because, as will be shown later (Ex-
ample 2.3), there exist random vectors that satisfy (1.2) for every B
and still have a correlation coefficient which is arbitrarily close to —1.

Dykstra, et al. [2], Sidak [31] and Shaked [27], [29] have discussed
bivariate distributions which can be represented as mixtures of inde-
pendent bivariate distributions with equal marginals. Such distributions
are called positively dependent by a mixture (PDM), (see Section 2).
If (X, X,) has a PDM distribution then (note, whenever expectations
or integrals are written they are assumed to exist)

(1.3) Cov (M(X}), MX;))=0
for every measurable function : R—R,

hence (X;, X;) also satisfies (1.2).

In Section 2 we define some families of bivariate positively depend-
ent interchangeable distributions through (1.1), (1.2) and (1.3). The
usefulness of the various definitions that we introduce stems from the
fact that many interchangeable bivariate distributions that arise natu-
rally in some practical and theoretical situations (see Lancaster [18],
Jensen [14], Shaked [27], [29]) are positively dependent according to
some of our definitions. The purpose of this paper is to develop
methods that can help us in identifying positively dependent distribu-
tions (Sections 2 and 3) and to prove some inequalities that are satisfied
by them (Section 4). The inequalities can be used to determine whether
over- (or under-) estimates occur when one acts as if positively depend-
ent random variables are independent. Some applications are discussed
in Section 5.

2. Definitions and interrelations

2.1. Definitions

An interchangeable random vector (X, X;) or its distribution F' is
said to be:

(i) diagonal square dependent (DSD) if (1.1) holds,

(ii) generalized diagonal square dependent (GDSD) if (1.2) holds
(Jensen [14] considered such random vectors).

(iii) positively dependent by mixture (PDM) if F' admits the repre-
sentation

(2.1) F(x,, 2,)= Sg F (@) F(2)dG(w)



BIVARIATE INTERCHANGEABLE DISTRIBUTIONS 69

where 2 is a Borel set in BR™, G is a probability measure on 2 and
F“(.), which is Borel measurable in o, is a univariate distribution
function for every o e 2 (Shaked [29]).

(iv) positively dependent by expansion (PDE) if F' admits the ex-
pansion

(2.2) AF(@,, ©)=dF(2,)dF(xy) [1 + i aigoi(xl)goi(wz):l . ae.

where F is the univariate marginal of F, {¢:;} is a set of functions
satisfying

(2.3) Sl p®)dF(x)=0, i=1,2,...

and a; are nonnegative real numbers (Lancaster [18] considered such
distributions).

(v) positive definite dependent (PDD) if F is a positive definite
(p.d) kernel on SxS where S is the support of X.

Concerning Definition (iv) we remark that for most of the known
expansions of PDE distributions, the set of functions {¢;}i2, of (2.2)

satisfies, in addition to (2.3), the orthogonality conditions Sm ei(@)p,(x)

-dﬁ(x):éu, 1,7=1,2,--. (see Lancaster [18], Jensen [14] and references
there).

2.2. Two characterizations

The following results characterize two of the families of distribu-
tions which were just defined. They can be used to identify some posi-
tively dependent distributions. Also the following propositions will be
used later in the paper.

PROPOSITION 2.1 (Shaked [29]). A bivariate distribution is PDM if,
and only if, it is the joint distribution of ¢(U;, W) and g¢(U,, W) for
some i.i.d. random variables U, and U,, a random vector W which is
independent of the U;’s and a Borel measurable function g.

ProPOSITION 2.2. The random vector (X, X;) is PDD if, and only
if, (1.8) holds for every measurable function k.

PROOF. Assume F is PDD. Let & be a function such that E|(X))
‘h(X;)|<oo. For every integer n define h,(x)=h(x) if |x|<n, 0 other-
wise. Using integration by parts on E h,(X)h.(X;) and then using the
dominated convergence theorem and the fact that the distribution of
(Xi, X;) is a covariance function it can be shown that
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2.4) E MX)h(X)=0 for every measurable 4 .

Replacing in (2.4) h(x) by h(x)—E h(X,) we obtain (1.3).

Assume now that (1.3) holds, then (2.4) holds since E A(X)WM(X;)=
(E MX))(E (X,))=(E KX;))*)=0. This fact implies, using Fubini’s The-
orem, that

(2.5) Sl S:o () () F (2, 2,)da,da,=0 for all measurable % .

Let a,,--+,a, and ¢,,---, t, be arbitrary 2n real numbers such that
t;#t; when t#j. Let 6>0 and define h,,(x)=ﬁ @Iy, 5(%) where I, is
the indicator function of the set A. Then, uis_ilng the fact that F is a
distribution funection, we have Z‘, Z‘,atajF(ti, t)= hm 0 2S_m Sl ho(x)hs-

t=1 j=1

(x,) F(z,, 2y)dx,d2,=0, that is, F is a p.d. kernel.

2.3.  Interrelations

Knowledge of the logical implications among the various families
of Definition 2.1 can be useful in identifying positively dependent dis-
tributions. We prove the implications and counter-implications that are
summarized in Fig. 2.1. The sign === means that there exists a ran-
dom vector (X, X,) that satisfies the property near the tail of the arrow
but does not satisfy the one near the head of the arrow. All the ran-
dom vectors (X,, X,) in Fig. 2.1 are assumed to be interchangeable.
Note that all the relations of implication and counter-implication be-
tween any two of the families in Fig. 2.1 are determined by the im-
plications and the counter-implications of Fig. 2.1.

(n)
X, X, are i.i.d. Corr(Xy, X) =

mﬂ (\\/ <c>ﬂ

(X., X,) is PDE =‘=>( S (Xi,X:) is PDM
]
@ N\ o
(X, X:) is PDD

%f) (1) \\(;g)

Cov(Xi, X») 20 &F— (X1, Xz) is GDSD

(k\ <h)/ﬂm)

(Xn Xz) is DSD
Fig. 2.1

Proofs of the implications of Fig. 2.1

The implications (a), (b), (f), (g) and (k) are obvious, (e) is proved
by Dykstra et al. [2].
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Proof of (c) v

If (Xi, X;) is an interchangeable random vector and Corr (X, X;)
=1 then the distribution F' of (X, X;) must have all its mass on the
line ,=x,. This implies that given X, conditionally, X, and X, are
(degenerate) i.i.d. with probability one.

Proof of (d)
Let 2 be a Borel measurable function. Assume that (X, X)) is
PDE. Then by using (2.2) we have E A(X)h(X,)=E (X)) E W(X;)+

ﬁ} a¢<sm h(w)go,-(:v)dﬁ'(x))zgo. By Proposition 2.2 the proof is complete,

(this is a generalization of a theorem of Jensen [14]).

The following examples provide proofs of (i), (j) and (1) of Fig. 2.1.
Counterexamples for (k), (m) and (n) are easy to construct.

Example 2.1 (Proof of (i)). If (X, X,) is a bivariate normal ran-
dom vector with zero means, unit variances and unit correlation co-
efficient then it is not PDE. In fact every bivariate distribution whose
total mass is concentrated on the 45° line and has there at least un-
countable points of increase is not PDE.

Example 2.2 (Proof of (j)). Let b,,---,b; be five distinet numbers
and let (X, X,) be a discrete random vector with p,;;=P (X;=b,, X;=b,)
as given in the following table (all the probabilities here are multiplied
by 42):

P X by bs by ba bs
b 4 2 0 0 2
bs 2 4 2 0 0
ba 0 2 4 3 0
b 0 0 3 4 2
bs 2 0 0 2 4

Denote P=(p,;); ;-: and ¢;=P (X;=b;). We assert that (X,, X;) is PDE.
To see this note that the matrix P is non-negative definite (Hall and
Newman [8]) hence also the matrix R=(p;,/qi?q/*)} -, is non-negative
definite. By writing down the spectral decomposition of R, noting that
1 is an eigenvalue of R associated with the eigenvector (gi?---, ¢¥?),
the decomposition (2.2) is established (with a,=1, a,=0, i=1, 2,3, 4,
because they are eigenvalues of a non-negative definite matrix, and a;
=0 for >4). The fact that (X,, X;) is not PDM follows from the dis-
cussion of Hall and Newman [8] concerning the matrix P.

Example 2.3 (Proof of (1)). Let (X,,Y,), n=1,2,... be discrete
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Y,
X, " -1 0 1
. 2 4 o 4
n+4 (n+4)? (n+4)?
n
0 0 n+4 0
1 _ 4 0 2 4
(n+4)? n+4 (n+4)

random vectors with the following joint probabilities :
The vector (X,, Y,) is GDSD, but Corr (X,, Y,)=—n(n+4)"'<0. Note
that Corr (X,, Y,)— —1 as n—oo.

Some concepts of positive dependence for general (i.e., not neces-
sarily interchangeable) bivariate random vectors have been introduced
recently (Lehmann [19], Esary et al. [5], [6] and Yanagimoto [36]). The
strongest of these concepts, i.e., the one that implies all the others is
the concept of positive likelihood ratio dependence (PLRD). The weakest
among them is the concept of positive quadrant dependence (PQD). We
will show now that, restricting (X, X;) to be an interchangeable ran-
dom vector, then

(i) (X, X;) is PDM and PDE==(X,, X;) is PQD,

(i) (X, Xp) is PLRD==(X,, X;) is DSD.

These two assertions state in fact that there is not an implication re-
lationship between the chain of concepts of Fig. 2.1 and the chain of
concepts of Esary and Proschan [5], Yanagimoto [36], or of Shaked [30].

Proof of (i)

Let Y; and Y; be i.i.d. such that P(Y,=—1)=1/2—(3/44)"%, P(Y;
=1)=1—-P(Y;=-1) and let W be a random variable, independent of
Y; and Y, such that P(W=—-1)=P (W=1)=11/32 and P (W=0)=10/32.
Then the joint distribution of X;=|Y,—W| and X,=|Y,—W| is PDM and
PDE but P(X;<1, X;,<2)<P(X,;<1)P(X,<2) hence (X;, X;) is not PQD.

Proof of (ii)
Let (X, X;) be a discrete random vector with the following joint
probabilities (all probabilities here are multiplied by 62):

X, X2 a as as
as 8 6 9
as 6 4 6
as 9 6 8 (a:1<az<as)

It is easily seen to be PLRD but P (X;=a,, X;=a,)<P (X;=a,) P (X;=
a,), hence (X;, X;) is not DSD.
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3. Closure properties

In this section we prove some closure properties of the families of
distributions that were introduced in Section 2. They can be used to
identify positively dependent random vectors and to generate new dis-
tributions that belong to the family, from known ones. The results
are summarized in Table 3.1.

THEOREM 3.1. Let (X,,Y,) and (X,,Y,) be independent random vec-
tors. If (X;,Y;), 1=1,2 are, respectively, PDM, PDE, PDD, then (h(X,,
Xz), MYy, Y3)) s, respectively, PDM, PDE, PDD, for every Borel meas-
urable h: R*—R.

Proor. If (X;,Y;), t=1,2 are PDM then the assertion of the the-
orem is easily proved using Proposition 2.1.
Assume now that (X, Y;), i=1,2 are PDE, that is, the distribu-

tion F; of (X;,Y;) admits the expansion dF(x, y)=dF~',(x)dF'i(y)[1+

E a® ‘”(x)go“’(y)] a.e., 1=1,2. Let h be a measurable function and de-
ﬁne A(x)={(2;, 2,): Mxy, 2,)<x}. Then the distribution G of (h(X|, X)),
Wy, Y) is 6ew= || || dFe, wiRe, 9 =Gecw+

(21, T9) € A(@) (WU € AW)

3 3 U@ W)+ 3 P af % @) hiy) where G(w)= || dF(w)-

A(x)

dF (@), ¥O@)= || w@F@)AF (o), and 1.@)= || o (@)@
A(x) A(x)

dF(x)dFy(z,). Note that for every i=1,2 and k=1, 2,--- the signed
measure induced by ¥, is absolutely continuous with respect to G,
hence there exist #®—the Radon Nikodim derivative of ¥ with re-

spect to G, such that, llf,f")(x)zgz U O(2,)dG(x,). Similarly, for every

k and ! there exists %, such that Xk,,(m)zgw 76 ((2)dG(x) and dG can

be written as

(3.1) dG(x, y)=d@(w)d@(y)[1+g g a® To(x) T(y)
é} g O)a(z)Xk &) %k, t(y)] a.e.

Representation (3.1) is the same as (2.2) but to complete the proof we
have to verify the orthogonality conditions (2.3). Indeed, for i=1, 2,

k2l |7 BO@dem=lim vom=(|"_afi o) (|7 dP@pfie)=
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1.0=0. Similarly g” Zo (@)dG(@)=0, k=1, =1

Assume now that (X, Y;) are PDD, 7=1,2 and let I, denote the
support of X,, 1=1,2. Then for i=1, 2, the distribution F; of (X, Y,)
is p.d. on I;xI,. Hence there exist two stochastic processes {Z(t), t ¢
L}, ©=1,2, that we can assume to be independent, such that Fi(z, y)
E Z(2)Z(y), (x,y)e [ XI,. Let h(x,y) be a real measurable function
defined on I, X I, and denote B(x)={(x;, %;): h(x,, z;)<x}. Then the dis-
tribution G of (W(X,, X3), (Y;, Yy)) is

6@ n=E| | | | Lo sdbow 1)42@0zwize@)izw,) |

where I, is the indicator function of the set A (for validity of this
result, see Loeve [20], p. 472). Hence, for any signed measure H,
o oo oo 2

I\ 6@ vaa@aE@=E|| | " Lo, w)iBedz@dz@) | 20.

- 1 P

That is, G is p.d. on RXR.

COROLLARY 3.1. The families of PDM, PDE and PDD distribu-
tions are closed under convolutions.

Next we have the following closure theorem :

THEOREM 3.2. A wmixture of PDM[PDD)] distributions is PDM
[PDD].

PrROOF. Write the distribution of (X, X,) as
(8.2) F(x,, )= SS Fy(,, 2,)dG(s)

where for every s¢ SCR, F(x,, x;) is an interchangeable bivariate dis-
tribution function, Borel measurable in the variable s, and G is a prob-
ability measure defined on subsets of S.

For PDM distributions the assertion of the theorem is trivial. If
F(x,, x,) is PDD for every s€ S then, by noting that a mixture of p.d.
kernels is p.d., one sees that (X, X,) is PDD.

Note that a mixture of PDE distributions is not necessarily PDE.
The bivariate symmetric normal distribution with zero means and unit
correlation coefficient is clearly a mixture of PDE distributions, but it
is not a PDE distribution (see Example 2.1).

The next theorem deals with closure under passage to the limit (in
distribution). The part of the theorem that deals with PDM distribu-
tions is proved in Shaked [29]. The proof of the rest uses standard
techniques and will be omitted (for details see Shaked [26]).
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THEOREM 3.3. Let {F,}7, be a sequence of bivariate interchangeable
distributions with F being its limit (in distribution) when n—oco. If,
for every n, F, is PDD{PDM] then F is PDD[PDM].

Note that the class of PDE distributions is not closed under pas-
sages to the limit. Bivariate symmetric normal random vector with
correlation coefficient (n—1)/n is PDE but the limiting distribution of
such random vectors is not PDE (see Example 2.1). However, by com-
bining Implication (a) of Fig. 2.1 with Theorem 3.3 we obtain the fol-
lowing corollary which shows the positive dependence of the limit of a
sequence of PDE distributions.

COROLLARY 3.2. The limit in distribution of a sequence of PDE
dastributions is PDD.

The closure properties that were discussed are summarized in the
following table:

Table 3.1. Closure properties

Closed under
Family of Mi :
oA ixtures Transformations Passages to
distributions in the sense of the limit
Theorem 3.1 (in distribution)

PDM Yes Yes Yes
PDE No Yes No
PDD Yes Yes Yes

4. Some inequalities

In many applications of probability two random variables X; and
X, are assumed to be independent even when they are not so. This is
done when the joint distribution of X, and X, is unknown or when it
is difficult to deal with it analytically. Theorems 4.1 and 4.1’ discuss
the bias that is caused in some cases when independence is assumed
while in fact (X;, X,) is PDM or PDE. The following definition is needed:
Let I be a subset of R. A symmetric kernel K defined on IxXI (i.e.
K(z, y)=K(y, x) for all z,yeI) is said to be conditionally positive de-
fimite (c.p.d.) on IXI if for any positive integer n and for every choice

of ;,-++,«, in I and real numbers a,,---, a, it holds that
4.1) é jﬁ‘, K(z;, z,)a,a,=0 whenever é a;=0,
i=1 j=1 i=1

(such kernels were discussed by Parthasarathy and Schmidt [22], Horn
[10], [11], [12] and Johansen [15].) It can be shown (Shaked [26]), us-
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ing a result of Parthasarathy and Schmidt [22], p. 3 and a standard
approximation technique that K is c.p.d. on I X I if and only if

(4.2) SI SI K(z, y)dH(@)dH(y)=0  whenever SI dH(z)=0 .

THEOREM 4.1. Let (X;, X;) be a PDM wvector and let Y, and Y, be
1.4.d. random wvariables which are distributed as X,. Then for every
kernel K which is c.p.d. on SX S, where S 1is the support of X;, the in-
equality

(4.3) E K(X,, X;)=E K(Y,, Y»)
holds whenever the expectations exist.

PrOOF. Representation (2.1), the fact that for every w € 2, SsdAw(x)

=0 [where dAw(x)zdF“”’(w)—SQdF““"(m)dG(a)’), see (2.1)], the assump-
tion that K is c.p.d. on SX S and inequality (4.2) imply E K(X,, X,)—
E K(Y1, Y,)=0.

THEOREM 4.1'. Let (X, X;) be a PDE vector and let Y, and Y, be
1.1.d. random variables which are distributed as X,. Then for every
kernel K which is c¢.p.d. on SXS, where S is the support of X, the in-
equality (4.3) holds whenever the expectations exist.

PrOOF. Representation (2.2), the nonnegativity of a; of (2.2), the
orthogonality relations (2.3) and the assumption that K is c.p.d. on
Sx S imply E K(X;, X;)—E K(Y;, Y;)=0.

The family of the c.p.d. kernels is the most general one for validity
of (4.3) for all PDM (or PDE) vectors as the following theorems show.

THEOREM 4.2. Let S be a Borel set and let g(x,, x,) be a symmetric
kernel, defined on SX S, which is not ¢.p.d. on SXS. Then there exist
a PDM wvector (X, X;) and i.i.d. random variables Y, and Y; such that
Y, is distributed as X, the support of Y, is contained in S and

(4.4) Eg(X,, X;))<Eg(Y,,Y)) .
PrROOF. Let B(:)=x0 be a function that satisfies S dB(x)=0 and
S

Ss Ssg(xl, )dB(w)dB(w:)<0. Denote a=SAdB(x)=—-SS_A dB(x) where

a'dB(x) if xe€ A
0 if reS—A

Clearly dF'® and dF'® determine probability

A={x: dB(x)>0}. Define dF<1>(x)={

B {0 if zcA
T |—a'dB@) it weS—A"

and dF®(x)
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measures. Let (X;, X;) be a PDM random vector with joint distribution
(4.5) F(x,, w2)=—;—F“’(xl)F“’(xg)+—;—F‘2’(x1)F‘2’(x2) )

(2, 2) € SXS,
and let Y; and Y, be i.i.d. with common distribution F. Then
Eg(X,, X;)—Eg(Y:, Y))
= { o x»% dF‘“(a:l)dF“’(a:z)+—;—dF‘Z’(xl)dF‘”(a:z)

~(Laro@)+ Lare@)(Larow)+ Larew)]

= :11— SS Ss g(xy, ) [dF “)(xl)dF <1>(x2) +d F‘Z’(xl)d F®(x,)
—AFY(x)dF®(x,) — dF O (2)d F(,)]

-2

= SS SS 9(,, 2)dB(@)dB(,) <0 .

THEOREM 4.2'. Let S be a Borel set and let g(x;, x,) be a symmetric
kernel, defined on SxS which is not c.p.d. on SXS. Then there exists
a PDE random wvector (X, X;) and i.i.d. random variables Y, and Y,
such that Y; is distributed as X, the support of Y, is contained in S
and (4.4) holds.

PrROOF. Let B(-) be as in the proof of Theorem 4.2. Let (X, X,)
and Y; and Y; be distributed as in the proof of Theorem 4.2. Clearly
(4.4) holds. To complete the proof we need to show that F of (4.5) is

PDE. Note that dF(x,, ;) =dF(2,)dF(2,)[1+¢(x)e(x,)], where o(x)=
[AF ()]t (1/2) (dF O(x)—dF®(x)). Clearly Ssgo(x)dﬁ'(w)zo, hence F is
PDE.

In the following examples we apply Theorems 4.1 and 4.1’ to spe-
cific kernels K(-,-). We assume that (X, X;) is a PDM or PDE vector,
Y, and Y, are i.i.d. and that Y, is distributed as X;,. We assume also
that the expectations that we write exist. Applications are discussed
in Section 5.

Example 4.1. Assume that the support of X, is [0, oo).

(i) For a=0 or 1=a=x2, E (X +X;)*=E (Y, +Y>)~

(i) For 0=axl, E(X;+X)'<E (Y4 Y1)

To prove (i) and (ii) recall that if w(x) is a Laplace transform of a
non-negative measure and it converges for a<x<b then w(x+y) is p.d.
on (a2, b/2) X (a/2, b/2) (Widder [35], p. 273). For a<0 and 2>0, x*=
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S:e"‘t'““/l“(-—a)dt. Hence (z+y)* is p.d. on (0, o)X (0, o0). For 1<
a<2 the kernel (z+y)** is p.d. on (0, o)X (0, o) as was shown above,
hence S: S:(w’+y')“‘2dx’dy’=(1/a(a—1))[(a:+y)“—(x"+y")] is p.d. on (0,

0) X (0, ). Using this fact, it is easily seen that (x+y)* is c.p.d. on
(0, )% (0, o) and the proof of (i) is complete. For 0<a<1 and for
every ¢>0, exp(—ecz®) is a Laplace transform of a probability measure
on (0, o) (Feller [7], p. 448), hence by the theorem of Parthasarathy
and Schmidt [22], p. 8, —(z+¥)" is c.p.d. on (0, o) X(0, o). This proves
(ii).

Note that for a>2 the kernel (z+y)* is not c.p.d. on (0, o)X (0, o)
because if it were c.p.d. then (6%/0xdy)(x+y)*=a(a—1)(x+y)** is p.d. on

8 8
(0, 00) X (0, 0), (Horn [11]). But this would imply that (+1)* (1-+2)

1+2) (24-2)
=0 for f=a—2>0 which is false.
Possible applications in reliability theory of the inequalities of the
previous and the next examples are discussed in Section 5.

Erxample 4.2.

(i) For —1=a=0 E|X;—X;['2E|Y,—Y;|"

(ii) - For 0=za<2 E|X,— X,|"<E|Y,— Y|~

To prove (i) and (ii) recall that if ¥ is a real characteristic funec-
tion then ¥(x—y) is p.d. on RX R (Bochner’s theorem). If ¥ is a real
characteristic function of an infinitely divisible distribution then log ¥ (x
—vy) is c.p.d. on RX R (see Johansen [15]). For 0<ax2, exp{—|u|’} is
a characteristic function of an infinitely divisible distribution hence
—|z—y]*, 0<a<2, is c.p.d. on RXR. This proves (ii). If ¥ is a real
characteristic function, then for every 0<5<1, (1—p%(u))! is a char-
acteristic function and (1—p%(x—y))™' is p.d. on RXR. Let a>0 and
0<p<1 then (by using e.g., Polya Criterion, Feller [7], p. 509) one can
verify that F(u)=1—a'|ulf if |u|=a, 0 otherwise, is a characteristic
function and hence p(z, ¥)=[1—pf1—a !|z—y[P)]" if |x—y|<a, 1 other-
wise, is p.d. on RXR. Hence for 0<5<1, —1<a<0 and a¢>0,

E [1 "‘}9(1 "a—lIXI—XzI_u)_l]I[—a,a](IXr‘Xﬂ)"l'P (|X1—'Xz| >a)
ZE[1-1—a |V —Y;") Mo e Vi— YD+ P (Yi— T2 >0) ,

where I, is the indicator function of the set A. Dividing both sides
by a and letting 3—1 we obtain

ElXi— X' Lol Xi— X:))+a7' P (| Xi— X, >a)
2EYi—-Yil L oa(Yi—Ye)+a™' P (Y- Ye[>a) .

Now by letting a— oo, (i) is proved for —1<a=<0. That (i) holds also
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for a=—1 can be seen by letting a——1.

Example 4.3.

(i) Emin (X;, X;)zE min (Y, 1)

(i) E max (X;, X;)<E max (Y3, Y3).

The kernel K(x, y)=min (2, y) is a covariance function of a stochas-
tic process (Prabhu [23], p. 37), hence it is p.d. on RX R. This proves
(i). The second inequality follows from the first and the fact that
E(X,+X;)=E (Y;4+Y;). We note that a more general result for PDM
(but not PDE) random vectors is obtained in Shaked [29] by a different
method.

Erxample 4.4. Assume P (0=£X,£1)=1.

(i) Emin (X, X,)—Cov (X;, X;)=ZE min (Y;, Y3)

(ii) Emax (X;, X;)+Cov (X, X;)<E max (Y}, Y3).

The inequality (i) follows by simple arithmetics from the fact that
min (¢, y)—2y is p.d. on [0,1]1x[0,1] (Sukhatme [32], p. 1921). The
second inequality follows from the first.

Example 4.5. Let f(x,, ;) be a density of a PDM or PDE random
vector and denote its marginal by f. Then
@8 |77 s mpedez|” |7 Pe)fedds,
k=2,8,.--..

To see it, note that by Theorems 4.1 and 4.1/, Sw Sm ¥z, x)dawdx,

2" 7 @ wi@iedsdnz|" 7 1, mi@) faxdedn 2
--‘_>_S°° S:’ F¥() f¥(x;)dxdx,. The meaning of (4.6) in statistical me-

chanics_ is discussed in Section 5.
Example 4.6. Let f(xy, x,) be the density of a PDM or PDE ran-
dom vector (x,, x,). Let F be the marginal density then, as can be

verified from Theorems 4.1 and 4.1, E (f(X,, Xo)/f(X)f(Xy))=1, that
is the expected likelihood ratio under the hypothesis of PDM or PDE
(versus the hypothesis of independence) is not smaller than 1. Statis-
tical applications of this result are not yet known.

5. Applications

Reliability theory
Assume two identical components with lifelengths X, and X; operate
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in a random environment (this is the case, e.g. when the user or cli-
mate in place of operation cannot be predicted at the time of produc-
tion). Then their joint distribution is PDM (Shaked [29]). Assume also
that death of one component is undetected until the second component
dies, too. The loss incurred during the operation, ¢, of only one com-
ponent can be assumed to be proportional to ¢, 0=<a. Then the ex-
pected loss is proportional to E|X;—X;[*. From Example 4.2 (ii) it fol-
lows that if a<2 then the expected loss computed under the assumption
of independence overestimates the actual loss. A different situation
arises if only one component functions and upon failure of the first the
second standby component starts functioning in the same environment.
The income (gain) in this case can be proportional to ¢* where t is the
total time of operation. Then the expected income is proportional to
E (X;+X,)* and from Example 4.1 we see that when 0<a<1 it is over-
estimated and when 1<a<2 it is underestimated. We also see that
for a>2 it cannot be determined without additional assumptions whether
the income is over- (or under-) estimated.

Mechamnical statistics
Rao [24], p. 142, introduced, for 0<a, a+#1, the quantity (1—a)'-
log Sm Sm (%, x,)da,dr, as a measure of closeness of the density f to

a uniform distribution (large values indicating a higher degree of close-
ness). Intuitively it is clear that assumptions of independence will cause
this measure to decrease. It is shown in Example 4.5 that for integer
a=2 this is, indeed, the case.

Reversible Markov processes

A (strictly) stationary Markov process {Z(t), —oco<t< oo} is said to
be reversible in time if

(5.1) P (Z(t—h) € A| Z(t)=2)=P (Z(t+h) € A| Z(t)=2)

for all ¢, >0, z and Borel sets A (see Keilson [17] and refernces there).
Define X;=Z(t,), i=1, 2, for some ¢,<t,. Sarmanov [25] showed that
if (X;, X;) has a density then (X, X;) is PDE. Eagleson [3] proved that
if Z(t) is a chain then (X, X;) is PDE provided (X;, X;) is ¢*-bounded
(for definition see Lancaster [18]). It can be shown that, without any
restrictions concerning the range of Z(t) or its underlying distribution,
(X;, X;) is PDM. This follows from the independence of X, and X,
given Z((t,+1t,)/2) and from (5.1). Thus, by Example 4.3 we see that
E max (X, X,) is over-estimated if independence is assumed. Estima-
tion of the expected value of |X,—X;|* may be needed in some appli-
cations, the inequalities of Example 4.2 then may be used.
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Positive dependence of some well known distributions

We end the paper by applying the results of Sections 2 and 3 to
show some examples of positively dependent interchangeable distribu-
tions. More examples can be found in Shaked [29].

Example 5.1 (Bivariate geometric, Esary and Marshall [4]). Let
U; have the probability function P (U,=k)=Q1—-6)¢*""; k=1,2,--+; 1=
1,2; 0<60<1, and let W have the probability function P (W=k)=(1—
0,05, k=1,2,---; 0<56,<1, and assume that U,, U, and W are inde-
pendent. Then X,=min (U;, W), i=1, 2 have a bivariate geometric dis-
tribution in the narrow sense (BVG-N) and (X, X;) is PDM by Proposi-
tion 2.1. The joint distribution of (X, X,) is determined by

P (X1>k1, Xz>k2):0kl+k20(l)nax(kl'k2) ; k]_, k2:0, 1, 2,' e,

Esary and Marshall define also a wider family of bivariate distri-
butions with geometric marginals (BVG-W). The joint distribution of
(Y1, Y;) which has an exchangeable BVG-W distribution is determined by

(5'2) P (Yi>k17 lfz>k2)=pkl+k2pomax(k1,k2) ’ kl! k2=07 1: 2! ftt

where p and p, satisfy, by definition, 0=<p<1, pp,<1 and 0=p,(2p— 1Y)
<1. Esary and Marshall show that there exist exchangeable BVG-W
distributions which are not BVG-N. We will show now that the only
PDM BVG-W distributions are BVG-N. Assume that (Y}, Y;) with prob-
abilities determined by (5.2) is PDM. We have to show that p,=1.
By implications (e) and (f) of Fig. 2.1, Cov (Y;, Y;)=0. Some computa-
tion shows that Cov (Y, Y3)=p*0(1—0,)/((1—pp)*(1—p*n)). Hence p,=1.

Example 5.2 (Bivariate binomial). Let (X;,Y)), 1=1,2,..--,n be
i.i.d. random vectors with the following joint probabilities :

Y,
X ¢ 0 1

1 P.—P, Py
1-2P,.+P, P —Py,

Then (X, Y)E(i X, i‘, K> is said to have an exchangeable bivariate
i=1 i=1

binomial distribution. Aitken and Gonin [1] showed that if P,=P?, then
(X,Y)is PDE. Clearly under this condition (X;, Y;) is PDM, ¢=1,..., n.
Application of Theorem 3.1 n—1 times shows that (X, Y) is PDM.

Example 5.3 (Bivariate distributions with desired marginals, Meth-
od I (Shaked [28])). Let ¥(u) be a probability generating function of a
non-negative integer-valued random variable, and let F(x) be a univari-
ate distribution. Then,
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(5.3) G(xy, ) =V (F(2,)F(x2))

is an exchangeable bivariate distribution with marginals ¥(F'(x)). Sim-

ilarly H(z,, 2,)=1—H(x,, —0)— H(— o0, %)+ H(z,, 2,) is an exchangeable
bivariate distribution where

(5.4) H(z, 2)=¥(1—F(2))(1—F(xy)) -

The marginals of H are 1—¥(1—F(x)). The distributions G and H of
(5.3) and (5.4) remain well defined if ¥(u) is of the form

(5.5) vw={ wde()

where ¢ is a probability measure on [0, ). Let F be a given univariate
distribution and assume that it can be expressed as F(x)=¥(F(x)) [or
as F(z)=1—¥(1—F(x))] for some nontrivial distribution F, and ¥ of the
form (5.5). Then (5.3) [(5.4)] define a bivariate distribution with F as
its marginal.

It is easy to verify that G and H of (5.3) and (5.4) are PDM.

Note that the bivariate Burr’s distribution (Takahasi [33]), the bi-
variate logistic distribution (Malik and Abraham [21]) and the bivariate
extreme value distribution (Johnson and Kotz [16], p. 254) are special
cases of (5.3) and (5.4) (for verifications see Shaked [28]).

Example 5.4 (Bivariate distributions with desired marginals, Meth-
od II (Shaked [28])). Let ¥(u,, u,) be a bivariate probability generat-
ing function of a non-negative random vector, or more generally, let
(5.6) W, w)=|" | wiutde(@, y)

where ¢ is a probability measure on [0, o)X [0, 00). If F(x) is a uni-
variate distribution, then,

(5.7 G(xy, %)=V (F(x,), F(x,))

is a distribution function. Similarly H(x,, #,)=1—H(x,, co)— H(— o0, 2,)
+ﬁ(x,, x,) is a distribution function where

(5.8) H(zy, 2)=¥(1—F (%), 1-F(2,)) .

Note that (5.7) and (5.8) are generalizations of (5.3) and (5.4).

The distributions G and H of (5.7) and (5.8) are exchangeable when
o(x, y) of (5.6) is exchangeable, and they are PDM if ¢(x,y) is PDM.
In a way, similar to the proof of Theorem 3.1, one can verify that if
¢ is PDE [PDD] then G and H are PDE [PDD].
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