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Abstract

As a generalization of alias balanced designs due to Hedayat, Raktoe
and Federer [5], we introduce the concept of alias partially balanced
designs for fractional 2™ factorial designs of resolution 2/+1. All or-
thogonal arrays of strength 2! yield alias balanced designs. Some ba-
lanced arrays of strength 2/ yield alias balanced and alias partially
balanced designs. In particular, simple arrays which are a special case of
balanced arrays yield alias partially balanced designs. At most 2™—1
alias balanced (or alias partially balanced) designs are generated from
an alias balanced (or alias partially balanced) design by level permuta-
tions. This implies that alias balanced or alias partially balanced de-
signs need not be orthogonal arrays or balanced arrays of strength 2I.

1. Introduction

Consider an experiment with m factors each at two levels. An
assembly or treatment combination is represented by (Ji, -y Jm)
where 7., the level of the kth factor, equals 0 or 1. As unknown
effects, 0,, 6, and in general 4, .., denote the general mean, main effect
of tth factor and k-factor interaction of corresponding factors, respec-
tively. For a fixed integer I (1=1<m/2), let @ be the v, X1 vector com-
posed of the effects up to I-factor interactions and let #* be the vjfx1

l
vector of the remaining effects, where v,=>} ( ﬁ) and v}=2"—y,, i.e.,
. =0

[ . . . .
(/4 —(0¢, 017 029' ) 0m’ 012!' ] 0m—lm" "ty 012---l" ) 0m-l+l---m)
!y . .
0* —(012...L+1, ct 0m—l~~-m7 Cy 012---m) .

As usual, 8 is to be estimated and 6* is not of interest for estimation.
The expected value of the observation y(j,,---,J.) for an assembly
(41, ++, Jn) can then be expressed as
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(1.1) EW(1 - +» In)=€0+e¥0*,

where the elements of (¢/, e*') corresponding to 6, ..., are given by d(j.,)
-d(j.,)---d(j.), and in particular the element to 6, is given by 1 (see,
e.g., Yamamoto, Shirakura and Kuwada [14]). Here d(j)=—1 or 1
according as 7=0 or 1.

Let T be a fraction with N assemblies. (Note that T can be con-
sidered as a (0, 1) matrix of size m X N whose columns denote assem-
blies.) Consider the N X1 observation vector y, of T whose elements
are independent random variables with common variance ¢°. Then from
(1.1), the expected value of y, can be expressed as

(1.2) Ey,)=EO+E*6*%

where E and E* denote the N Xy, and N Xy} design matrices of T rel-
ative to @ and 0*, respectively, whose elements are —1 or 1. A frac-
tion T is called a fractional 2™ factorial (simply, 2™-FF) design of res-
olution 2I+1 if @ is estimable ignoring 6*. For a 2™-FF design T of
resolution 2/+1, the best linear unbiased estimate 6 of 8 is given by
é:M"E”yT, where M=FE'E is called the information matrix of T.

However under model (1.2), the expected value of 6 becomes
(1.8) E(0)=0+A6*,

where A=M"E'E* is called the alias matrix of 7. This matrix A
constitutes an aliasing relation of & and 6* in a 2™-FF design of res-
olution 2/+1. In view of (1.3), Hedayat, Raktoe and Federer [5] have
introduced the concept of alias balanced (AB) designs in order to clas-
sify designs. In this paper, we introduce the concept of alias partially
balanced (APB) designs as a generalization of AB designs. As will be
seen from Yamamoto, Shirakura and Kuwada [14], this concept is sim-
ilar to a generalization of orthogonal fractional designs to balanced
fractional designs. We also discuss what designs are AB or APB de-
signs.

2. Definitions

Let a(t,---t,;t---t}), OZu=l, I+1<v<m), be the elements of A
corresponding to effects 4,... and 6,..,. Then (1.3) is equivalent to
that for each 5,1..4“ in é,

e(ézl"'tu):0‘1"'tu+ 2 2 a(tl' . 'tu; t{' . -t,',)ﬁ,;...t'; )
v=I+1 (t,+-+, )} € Mo

where M, denotes the collection of all subsets of {1,2,--.,m} with
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cardinality k. Note that é,..., é,l...,u and af(t,---t,; t---t;) correspond

to 4,, é, and a(¢; t{---t;), respectively, when u=0. We first define an
AB design due to Hedayat, Raktoe and Federer [5].

DEFINITION 1. A 2™-FF design of resolution 2/4+1 is said to be
AB if

Cm 12
L5 3 ettt t)]
V=I+1 (t,rr 8} €Dy

is constant for all subsets {t,,---,t.}, (0=Su=l).

As a natural generalization of Definition 1, we make the following

DEFINITION 2. A 2™-FF design of resolution 2/4+1 is said to be
APB if

m 172
(5 3 aet )
v=I4+1 {t],++-, t;} €Dy

are dependent only on u (0=uxl).

We next define orthogonal arrays, balanced arrays and simple ar-
rays which may constitute AB and APB designs.

DEFINITION 3. A (0,1) matrix T of size m X N is called a balanced
array of size N, m constraints, strength ¢ (<m) and index set M= {u]
1=0,1,-..,t} if for every txX N submatrix T, of T, every vector with
weight (or number of nonzero elements) i occurs exactly p; times as
a column of T,.

DEFINITION 4. The matrix T of Definition 38 is called an orthogonal
array of size N, m constraints, strength ¢ and index 1 if all g’s are
equal, i.e., A=p=p=---=p.

m
J
~posed of all distinet column vectors with weight j. A matrix T ob-
tained by juxtaposing each 2(j; m), (0<j<m), 2, (=0) times is called
a simple array with parameters (m; 4y, 4, ) An)-

DEFINITION 5. Let 2(5; m) be a (0, 1) matrix of size mx( ) com-

For the above arrays, we write simply B-array [N, m, t; H], O-array
[N, m, t; 2] and S-array [m, 4, 4, - -, 4}, respectively. From Definitions
3 and 5, it is easy to check that an S-array [m; 4,-:-, 4,] is a B-array
[N, m, t; SM], where

ey N=34(T),  w=2a(7T]).  fori=0,1..¢.
i=o J j=o0 17—
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Note that (g’>=0 if and only if 5>a=0 or b<0.

3. AB and APB designs

To avoid repetition, note throughout Sections 3 and 4 that a frae-
tion T is assumed to be a 2"-FF design of resolution 2I+1 (i.e., the
information matrix M is nonsingular). In this section, it is shown that
some arrays defined in Section 2 yield AB and APB designs as fractions.

Let T be a fraction with N assemblies which is composed of n dis-
tinct assemblies ji=(J15) J2gr* **s Tma)» (@=1,:-+, n), with each multiplic-

ity 7, <N=§n} r,,). Further let e, be the y,Xx1 coefficient vector for &
g=1

obtained from (1.1) according to the assembly j;. Then we have
LEMMA 3.1. For the above fraction T,
(3.1 AA =2"{M'‘+M'HM*'}—1I,

where I is the identity matrixz of order v, and
(3.2) H=3r(r,—1)e,e, .
q=0

ProOF. From (1.1) and (1.2), we have [E:E*|[E:E*]'=EE'+E*E*
=2~ diag (G,,, G,,,* -+, G, ), where G, denotes the rXr matrix with all
elements 1. Hence by an argument similar to the proof of Theorem 1
in Shirakura [8], it is easy to show that (3.1) holds.

Remark. In Shirakura [8], a 2"X1 vector w=(¢': e¥') in (1.1) is
assumed to be normalized, i.e., w'w=1. As far as the problem of this
paper is concerned, however, it may be assumed without loss of gen-
erality that such a vector w satisfies w'w=2".

THEOREM 3.1. Let T be an O-array [N, m,2l;2]. Then T is an
AB design.

Proor. It is well known (cf. [14]) that M=NI=2%*2I holds for an
O-array [N, m, 2l;2]. Since the elements of e, are —1 or 1, the diag-
onal elements of M~'HM™! are all (22‘1)'2§ rr,—1) (=a, say). Hence

g=0
it follows from Lemma 3.1 that every diagonal element of AA’ is equal
to 2"{(2¥2)'4+a}—1. This means that T is an AB design.

Recall an (I4+1) sets triangular type multidimensional partially
balanced association algebra 2 defined in [14]. Then we have
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LEMMA 8.2. For a fraction T, if AA’e€¥N, then T is an APB de-
sign.

PrROOF. The proof follows immediately from properties of 2.

THEOREM 3.2. Let T be a B-array [N, m, 2l; M) whose columns are
all distinct. Then T is an APB design.

Proor. It has been shown in [14] that the information matrix M
and its inverse M~! belong to 2. From Lemma 3.1, we also have AA’
=2"M1—Te, since H in (8.2) vanishes. This completes the proof,
because of Lemma 3.2.

Let 0 and 1 be the mx1 vectors with elements 0 and 1, respec-
tively.

THEOREM 3.3. For any monnegative integers v, and r,, let

(3.3) T=[0:0:---:0:1:1:--~:41:T*],
4 7
where T* 1s a B-array [N*, m, 2l; M*={pF, 1.+, pu-1, p3}] whose col-

umns are all distinct and exclusive of 0 and 1. Then T is an APB
design.

Proor. It is clear that T is a B-array [N=N*+r+1, m, 2l; M=
{o=p¥+r, puse oy ey, pu=pi+1}]. Thus M'eA. From (1.1), the
v; X1 coefficient vectors e, and e, for @ according to the assemblies ('
and 1’, respectively, are given by

el=(1; =1, =1,-++, =1; 1, Looe, Lo (=1, (=1)e oo, (= 1)),
e;=(1; 1, 1,.-., 1;1,1,+++,15--+; 1, 1 ,..e, 1).
" (%) ()
This means that F'=ee/ € A and G=ee; € A hold. Thus H=r(r,—1)F

+ry(ry;—1)G €A in (3.2). Hence M'HM™'e, so that AA’ e A. From
Lemma 3.2, the proof is completed.

THEOREM 3.4. In Theorem 3.3, suppose py=p="-- =py_; (=2, say),
2—1=pF <2 and r,=0 or 1 according as p¥=2 or A—1. Then T of (3.3)
is an AB design for any mommnegative integer r,.

Proor. Clearly T is a B-array [N=N*+4r,+7r,, m, 21; H] such that
to=pm=---=py_=2 and py=pf+7. By (1.1) and (1.2), therefore, it
can be shown that M is expressed as M=2AI+(py,—2)G. Thus M™! can
also be written as the form M!'=bl+c¢G, where b and ¢ are some real
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numbers. Let B=[I, G] be an algebra generated by the matrices I
and G. Then we have Ie¢®B, M 1'e¢B and M leeM '=M'GM'eB.
Hence it follows from Lemma 3.1 that AA’ ¢ B holds. This means that
the diagonal elements of AA’ are the same, which completes the proof.

THEOREM 3.5. Let T be an S-array [m; A, A4,--+,2,]. Then T 1is
an APB design.

PrROOF. Let E, be the (Z") Xy, submatrix of E corresponding to

Qk;m) in T (i.e., Ey, is the design matrix of the fraction Q2(k; m)
relative to ). By Definition 5, every assembly with weight k& occurs
A, times in T for each k=0,1,--., m. Therefore it is easy to see that
H in (3.2) reduces to

H=k§o lk(lk—' l)E(’k)E(k) .

Since T is a B-array [N, m, 2l; H] where N and p,’s are given by (2.1),
M1'e ¥ holds. Again from (2.1), 2(k; m), (k=0,---, m), are themselves
Barrays [(7 ), m. 2 0=} | where po=(T"Y), (=0, 2,
Hence E/,Ey, € A. Hence He YA, so that A’A € A. By Lemma 3.2, the
proof is completed.

Remark. 1t is well known (cf. [14]) that an O-array [N, m, 2l; 2]
is equivalent to an orthogonal 2"-FF design of resolution 2/4+1 with

a desirable property that the covariance matrix Var [é]zM“a2 is diag-
onal. Also it has been shown in [11] and [14] that a B-array [N, m,
2l; M] under the nonsingularity of M is equivalent to a balanced 2™-FF
design of resolution 2l+1 with the second desirable property that Var

[é] is invariant under any permutation of m factors. Furthermore, the
results obtained in this section imply that the above two arrays have
other desirable properties that they may yield AB and APB designs.
Moreover, Theorm 3.4 means that AB designs are not always O-arrays
of strength 2I. For a general B-array [N, m,2l; ¥M] T, it is difficult
to show whether 7 is an APB design, since the diagonal elements of
H in (8.2) can not be explicitly expressed. However, it will be seen
from the results of Shirakura [7], [9], Srivastava and/or Chopra [1], [2],
[3], [4], [12], ete. that for practical values of m and N for =2 or 3,
most of B-arrays [N, m, 21; M] are S-arrays [m; 4, - -, 2,] where a con-
nection between the p’s and 2,’s is given by (2.1). Moreover for such
given m and N, one of optimal balanced 2™-FF designs of resolution
V or VII with respect to the trace criterion can be obtained from such
an S-array.
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4. AB and APB designs generated by level permutations

In this section, we observe that a fraction which is not an O-array
and a B-array may also constitute an AB or APB design. Consider a
set 2={o'=(0, ®3,**+, 0,)|®;=0 or 1; 1=1,2,..., m}. For a fraction
T with N assemblies and any o in 2, define

T(w)=T+J(w), (mod 2),

where J(w) denotes the m X N matrix whose columns are all @. Then
an element @ in 2 is called a level permutation and T(w) is called a
generated fraction by @w. We first prove the following lemma:

LEMMA 4.1. Let T and T(w) be a fraction with N assemblies and
its gemerated fraction, respectively. Let E(@w) and E*(w) be the design
matrices of T(w) relative to 6 and 6*, respectively. Then

(4.1) E@)=ED() and E*(@)=E*D*a)

hold where D(w) and D*(®) are respectively the v, Xv, and v} XyvF diago-
nal matrices given by

D(@w)=diag (1; (—1)*,- -, (=1)"m; (=1)=*e, .« ., (—1)*m-1%"n;

oo (_1)01+-..+'z, v, (—1)"m—l+1+"‘+"m) ,
D*(w)=diag (('—1)‘“1+---+“t+1’ ceny, (_.1)“'m—-z+...+wm;. oo (_1)a1+...+,,m) )

ProoF. From (1.1), the expected value of observation for an as-
sembly (j;+oy,* -, jn+®,) is expressed as

E(y(jl'*_ Wy, ey, jm+ wm)) = e’(m)a-l—e*,(w)a* ’

where the elements of (¢'(w), e¥'(®)) corresponding to 6,..., are d(j,+
@)+ +d(j,,+ o), and the element to 4, is 1. Since d(j.+w)=(—1)"d(j,),
(mod 2), for t=1,-..,m, it is clear that e'(w)=e'D(w) and e*(w)=e*:
D¥(w). From (1.2), we have (4.1).

As a matter of fact, it has been shown by Srivastava, Raktoe and
Pesotan [13] that there exist orthogonal matrices P and P* satisfying
E(w)=EP and E*(w)=E*P* for a more general asymmetric fractional
design. However we have given here another proof of the lemma for
explicit expressions of P and P*. Similar expressions of P and P*
have also been given by Raktoe [6].

THEOREM 4.1. If T is an AB (or APB) design, then for every w
in 2, T(w) is also an AB (or APB) design.
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PrROOF. Let M(w) and A(w) be the information and alias matrices
of T(w), respectively. Then from Lemma 4.1, we have M(w)=D(w)-
MD(w) and therefore, A(w)=D(w)M'E'E*D*(w). Hence

A(w)A' (@)= D(0)ME'EXE* EM~D(@)=D(@)AA'D(o) .

This means that the diagonal elements of A(w)A’(w) are the same as
those of AA’. This completes the proof.

It is easy to verify that if T is an O-array [N, m, 2l; i], then T(w)
is also an O-array [N, m, 2l;2]. In this case, therefore, Theorem 4.1
results in Theorem 3.1. However for any B-array (or S-array) T of
Theorems 3.2-8.5, T(w) can not be a B-array of strength 2l for every
w in £2—{0,1} as long as T is neither an O-array [N, m, 2l; 2] nor O-
array [N, m=2l, 2l—1; ¥'], (see Shirakura [10]). This means that (2"—2)
distinct AB designs (or APB designs) which are not B-arrays of strength
2l can be generated from the B-array T by level permutations. (For
any two fractions 7T, and T, with N assemblies, T, is distinct from T,
if T\#T,Q for any permutation matrix @ of order N.) Note that for
a B-array [N, m,2l; H] T, T(1) is also a B-array [N, m, 2l; M= {g,=
ta—:|1=0,--+, 2l}], it being called the complement of 7. Thus as a
corollary of Theorem 4.1, we have

COROLLARY 4.1. In Theorem 3.3, suppose p=pp=-++=py_, (=2,
say), A—1=Zp¥<2 and r,=0 or 1 according as pf=2 or 2—1. Then T
of (3.3) is an AB design for any monmegative integer .
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