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Abstract

Suppose that X, X;,.--, X,,--- is a sequence of i.i.d. random vari-
ables with a density f(x, 6). Let c, be a maximum order of consist-

ency. We consider a solution 8, of the discretized likelihood equation
31 l0g f(X;, fut-res')— 33 log f(Xe, 6)=a,@,, 7)
i=1 =1

where a,(f, r) is chosen so that 8, is asymptotically median unbiased

(AMU). Then the solution 6, is called a discretized likelihood estimator
(DLE). In this paper it is shown in comparison with DLE that a maxi-
mum likelihood estimator (MLE) is second order asymptotically efficient
but not third order asymptotically efficient in the regular case. Further
it is seen that the asymptotic efficiency (including higher order cases)
may be systematically discussed by the discretized likelihood methods.

1. Introduction

Recently second order asymptotic efficiency has been studied by
Chibisov [4], [6], Pfanzagl [8], [9], Takeuchi and Akahira [3], [11], Efron
[6], Ghosh and Subramanyam [7] and others. Furthermore third order
asymptotic efficiency was discussed in Takeuchi and Akahira [11], [12],
[13] and Pfanzagl and Wefelmeyer [10]. In this paper using the dis-
cretized likelihood method we consider the asymptotic efficiency of esti-
mators including higher order cases.

Suppose that X;, X;,---, X,,--- is a sequence of i.i.d. random vari-
ables with a density f(x, 6). Let ¢, be a maximum order of consistent

estimator of . We have proposed a solution 4, of the discretized likeli-

1 The results of this paper have been presented by the first author at the meeting
on ‘“Asymptotic Methods of Statistics’’ at the Mathematical Institute in Oberwolfach of
West Germany, November 1977.
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hood equation
(L) 31 log £(Xi, fytre;)— 33 1og F(Xer G)=a,0n )

where a,(f, r) is chosen so that 6, is asymptotically median unbiased
(AMU) (the possibility of which will be shown in the context) [3]. Then

the solution 4, is called a discretized likelihood estimator (DLE). If for
each real number 7,

éll log f(X:, 0+rc;1)—£\“_,_l log f(X;, 6)

is locally monotone in #, then the asymptotic distribution of the DLE

6, attains the bound of the asymptotic distributions (discussed below)
of AMU estimators of 4 at . It is easily seen that there is at least
one estimator which attain the bound. In regular cases with ¢,=v7n
the left-hand side of (1.1) is expanded as

n A 2 n A A
St log £(Xe, 6)+—T1— 2 St log (X, 6,)+ -+ - =u(6sr 7).

3
12) 2L
12 5 & 27 oF ist

We derive from (1.2) the order to which the maximum likelihood esti-
mator (MLE) is asymptotically efficient. In this paper it is shown that
an MLE is second order asymptotically efficient but not third order
asymptotically efficient. The motivation for the definition of the DLE
is that; when we test the hypothesis §=6,+rc;! against §=46,, the most
powerful test is given by rejecting the hypothesis if

i% log f(X;, 0o+7'6;‘)—?‘_.: log f(X;, 6) <k,

hence if an estimator 4, is defined so that the event 8,>6, is equiva-
lent to the above inequality (at least asymptotically up to some order),

then @, is efficient (asymptotically up to some order) for specified choice

of r. Therefore if 6, can be defined independently of r, then it is shown
to be efficient (asymptotically up to the above mentioned order), and if
not, we can establish that there does not exist any efficient (in the same
sense) estimator. It is also seen that the asymptotic efficiency (includ-
ing higher order cases) may be systematically discussed by the dis-
cretized likelihood method.

2. Notations and definitions

Let (X, B) be a sample space. We consider a family of probability
measures on B, P={P,: 0 €O}, where the index set 6 is called the
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parameter space. We assume that € is an open set in a Euclidean 1-
space R'. Consider n-fold direct products (X™, B™) of (¥, B) and the
corresponding product measures P,, of P,. An estimator of ¢ is de-
fined to be a sequence {é,,} of B™-measurable functions 4, on ¥ into
6 (n=1,2,--+). For simplicity we denote an estimator as 6, instead of
{é,,}. For increasing sequence of positive numbers {c.} (c. tending to
infinity) an estimator 6, is called consistent with order {e.} (or {c.}-
consistent for short) if for every ¢>0 and every §€© there exist a
sufficiently small positive number ¢ and a sufficiently large number L
satisfying the following:

Tm suwp P,{alb,—0lzL}<e  ([1]).

n—oo 6:|0—9|<3

For each k=1,2,-.--, a {c,}-consistent estimator 6, is kth order

asymptotically median unbiased (or kth order AMU) estimator if for
‘any 9 €6, there exists a positive number ¢ such that

lim sup ¢t
n—oo 0:|0—9|<é

P,.,{6,<6) —§| =0 ;

lim sup ci!
n—o §:|0—9|<é

P, ,(6,26) —%| —0.

For 6, kth order AMU, Gyt, 0)+c;'Gyt, 0)+ - - - +¢;% VG, _((t, 6) is
called to be the kth order asymptotic distribution of c,,(é,,—0) (or é, for
short) if

lim &Y P, o{Ca(0— 0) <t} —Go(t, ) —c3'(t, 0)— - - — ;¥ OG_o(2, 6)|=0 .

We note that G(t, 0) (i=1,-.-, k—1) may be generally absolute conti-
nuous functions, hence the asymptotic distributions for any fixed 7 may
not be a distribution function.

Suppose that @" is AMU and has the kth order asymptotic distri-
bution Gy(t, 0)+c;'Gy(t, )+ - - - +¢; %" PG, _,(t, 6). Letting 6, ( € 6) be arbi-
trary but fixed we consider the problem of testing hypothesis H*: 6=
6,+tc;t (t>0) against K:0=6,. Put @,,={{¢.}: En,60+tc;(4,) =1/2+
o(c; %), 0=¢,(2,)<1 for all %, € X™ (n=1,2,--.)}. Putting Aé, 0=
{e.(0.—0,)<t}, we have

lim P, 69+ tc;:(Adn, o) =1lim Pn.0o+tc‘7.’{én§0o+t0;l} =-;_ )

Hence it is seen that a sequence {¥4; ,} of the indicators (or charac-
teristic functions) of Aéd, e, (n=1,2,---) belongs to @,,. If
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sup Hm ¢ {En, g, (¢,) — Hy' (t, 6o)—c; ' Hi¥ (¢, 6,)—

{¢n} €Py)y noo0

ot "'c;(k—l)Hktl(tr 00)} =0 ’
then we have
Go(t, )= H{*(t, 6,) ;

and for any positive integer j (k) if G.(¢, 6,)=H*(¢, 6,) (3=1,---,35—1),
then

Gj(ta 00)=Hj+(t, 00) .

Consider next the problem of testing hypothesis H™:0=6,+tc;' (t<0)
against K:60=60,. If

inf  lim ¢~ {Ex, 0, (¢.)— He (f, 00) —cz"Hi (¢, 60)—

{pn) €Dyyy nooo
e —ca P H (8, 8,))} =0,

then we have
G(t, 0)= Hy (¢, 6,) ;

and for any positive integer j (k) if Gi(¢, 6,)=H; (¢, 6,) (:=0,---, j—1),
then G,(t, 6,)= H; (¢, 6,).

6, is called to be kth order asymptotically efficient if the kth order
asymptotic distribution of it attains uniformly the bound of the kth
order asymptotic distributions of kth order AMU estimators, that is,
for each 6¢6

I H(t, ) for t>0,
Gt(t’ 0)=
( H-(t,6) for t<0,

1=0,---,k—1 ([2], [11]). (Note that for t=0 we have G,(0, 6)=H,*(0, 9)
=H;(0,8) (¢=0,---, k—1) from the condition of kth order asymptoti-
cally median unbiasedness.)

We assume that for each #¢® P, is absolutely continuous with

respect to o-finite measure p.
We denote a density dP,/du by f(x, ). Let L(; %,) be a likelihood

function, that is, L(6; 5;,,)=ﬁ f(x;, 6), where %,=(x, x;,++,%,). For
i=1

each k=1,2,---, a {c,}-consistent estimator 6, is called discretized likeli-

hood estimator (DLE) if for each real number 7, 5),, satisfies the dis-
cretized likelihood equation

2.1 log L(é,,+rc;‘; %,)—log L(é,,; %,) =an(én, 7,
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where @,(6, r) is a function in # and r and it also depends on ». The
function a,(f, r) is not defined for the moment but will be determined in
the sequel so that the solution obtained from the above equation be
asymptotically median unbiased up to kth order. It should be noted

that DLE 4, is required to be {c.}-consistent and we do not claim that
the solution of the equation (2.1) be {c,}-consistent. We implicitely
claim that there exists a solution of the equation in the O(c;!)-neigh-
borhood of the true value. In the practical situation we have to ob-
tain the DLE first by finding a {c,}-consistent estimator 6, in some way
or another then find a solution of the equation in the neighborhood of

6,. Suppose that for given function a,(4, 7),
2.2) log L(6+7rc;t; %,)—log L(6; %,)—a.(8, )

is locally monotone in # with probability larger than 1—o(c;*?). For
regular case the particular form of a,(8, r) will be given later (e.g.
page 47 etc.). For the present it is only necessary to remark that
a.(8, r) is of the magnitude of order smaller than the previous terms of
(2.2). Then the kth order asymptotic distribution of the DLE 6, at-
tains the bound of the kth order asymptotic distributions of kth order
AMU estimators of 4 at ». Indeed, it follows by the monotone of (2.2)
that for any 9 €6, there exists a positive number ¢ such that
28) lim sup &Y P,,{0.>0—7rc;'} — P, ,{log L9, %,)

n—>co 0:10—9|<é

—log L(0—rc;!, &) >a.(0—rc;', r)}|=0.

Letting 6, (€ ) be arbitrary but fixed we consider the problem of test-
ing hypothesis H: 6=6,—rc;' (r>0) against alternative K: 6=6,. Put-
ting Ad,,0={c.(6,—0)>—7} we have Pn,to—rc;t (Abn,6)=1/240(c;* ).
Let U, be the class of the all kth order AMU estimators. Set &,,=
{{#.}: En,bp—rcit (¢,)=1/240(c;* ), 0=Z6.(%,)<1 for all &, € X™ (n=1,
2,---)}. It is noted that every sequence {X4; ,(%.)} of the indicators
of the sets A4, 6 with the estimators 6, in U, is contained in D,,. In
order to obtain the upper bound of lim P,,(Ad,6) in U,, it is suffi-
cient to find a sequence {g}} of the tests which maximize im E, , (¢.) in
@,,. It is shown by the Neyman-Pearson fundamental lemma that ¢}
has the rejection S, satisfying

» X, 6,—rezt)
2 IOg f( iy Yo n <kn s
i=1 f(Xn 00)

where k, is some constant. Then it follows from (2.8) that the upper
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bound of Tim P, ,(A4; o) in U, is given by Iim E,, (¢7). Hence the kth

order asymptotic distribution of the DLE 6,y attains the bound of the
kth order asymptotic distributions of kth order AMU estimators at —r.
In a similar way as the case when r>0, we also obtain for r<0 the

upper bound of Tim P,,(4j ,) in U, of the same form. Hence the

desired result also holds for the case r<0. In later sections it will be

seen that éDL is asymptotically efficient up to second order. Note that
the DLE usually depends on r in cases more than third order.
In the subsequent discussion we shall deal with the case when ¢,

=J7.
3. Second order asymptotic efficiency

Suppose that X, X;,---, X,,--- is a sequence of i.i.d. random var-
iables with a density f(x, ) satisfying (i)~(iv).

(i) {xz: f(x, 6)>0} does not depend on 4;

(ii) For almost all xz[g], f(=,d) is three times continuously differ-
entiable in 4;

(iii) For each € o

0<I0)=F, | {2 log (X, 0} |=—E[ T 1og £(X, 0)] <oo
(iv) There exist
J(0)=E, [{%— log f(X, 0)} {_3‘% log f(X, 0)”
and
K(0)=E, [{_550_ log f(X, 0)} “]
and the following holds:
E, [ai; log £(X, o)] — —3J(0)—K(0) .

By the following way we have shown in [11] that an MLE is second

order asymptotically efficient. Let fyr be a maximum likelihood esti-
mator. By Taylor expansion we have

A

i=

=2

0

log f(X,, byr)

-

g~ g

log £(X., 0)+ 3 -2 1og (X, 0] (G —0)
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2 3} {2 tog (X, 9] B0y
R=RET i ML ’
where |0*—0|§15ML—0|. Putting Tn=4%"(éML—0) we obtain
0= 32 1og f(X,, 00+ = (31 T 1og £(X., )| T
Vi = ’ n =1 06 . "

!

2ny/m

n aﬂ .
(52 tog £X,, 09| T

Set

log f(X;, 0) ;

0 .
2 log f(X,, 0)+10)} ;

A
N
iV

3

=15 .
WO)=— % -5 log f(X,, 0) .

i=

Then it follows that W(6) converges in probability to —3J(8)—K(8).
Hence the following theorem holds:

THEOREM 1 ([11]). Under conditions (i)~(iv)

— 5 o Z(0) . Z(6)Z6) _3J(O)+KO) oy, [ 1
@D VCu—0==3 "+ 2oy~ 2vmiey 2 +°"<~/W>

up to order n~Y* as m— oo.
Put

K(bw)

6n1(Oy)’
Then é;';,, is second order AMU. From Theorem 1 we have established
the following :

THEOREM 2 ([11]). Under conditions (i)~(iv), bur, s second order
asymptotically efficient.

A* A
ML= Oy1,

In the sequel we obtain the same result for DLE. We further
assume the following :
(v) For given function a4, r)

log L(6+rn~"2, %,)—log L(8, %,)—a.@, )
is locally monotone in ¢ with probability larger than 1—o(n™).

Remark. In usual situation it is generally true since (1/n)(3%/06%)-
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log L(6, %,) is asymptotically equal to —I(6) (<0) and a,(f, ) is smaller

order than »~!, and is usually of constant order (O(1)) as is shown be-
low. Let 6§, be an DLE. Since

2 log f(X,, fut-rn)— 31 log f(X,, B)=a,,

it follows by Taylor expansion that

V%é log f(X;, n)+— S a — log f(X;, 6,)
L
Xi! 0* -_
+6nJ_ 2o g f (X, )=
where
0% —f,|<— .
I l<«/n

Since (1/n) i{(as/aoﬂ) log f(X., 6)} converges in probability to —3J(6)—
i=1
K(0), it is seen that

(3.2) Z0) 45|~ 10D+ zz(a,,)}

— Oy
g BIG) K)o, )=

On the other hand we have

~ 1 = _ 3J(O)+KO) o, (1
(33) Z0)=20)+— = 20— VR IONT,— 22 L0 T,.+o,( ﬁ),

where T,=y7(6,—06). Since

3J(6)+K®) ma, [ 1
20)T,~10)T,— QKO T+o(V_ﬁ),

Zl n Zl
(0= (0)+«/

it follows that

(3.4) T.=5 0){ 260+ 20+ zz(o)T
_ 3J(0)+K(®) s 1
277 T}’L"P(‘/—)
Since

1),
1(6,)=1(9) +7:{2J(0)+K(0)}T 4o (ﬁ) ;
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~ 1 ., 1.
JO)=JO +—=T <0>T,,+o,,( ﬁ) ;

AN 1 , 1 .
K(en)—K<o>+ﬁK(e)Tn+op(ﬁ) ;
Z(6,)=Z6)— J(6) To+0,(1) ,

it follows from (3.2) that

A @y T r _
Z\(8,)= . +?I(0)+6\/—W{3TJ(0)+TK(0) 3Z,(6)}

r 1
o= (80)+ KON T, ﬁ)

up to order » 2. From (3.4) we have

’ 2 2
It _TEIYK) 7 %k _(I+K)Z ( 1 >
I elym I Twm 2fvm  \Tm

up to order n~'% where a,=—(rI/2)+a, with a,=0(1/y/ ") so that 6, be
AMU. In order to have second order asymptotic median unbiasedness

of 6, we put

\—_Tr@J+K) rK ( 1 )
n ovn  6lym \Vm

and we denote by T.* the corresponding T, to this particular value of
a,. Then we may also denote Tn*=J_ﬁ(5,T—0). Then it is shown that

6* is second order AMU. Hence we have established the following
theorem.

THEOREM 3. Under conditions (i)~(v), the DLE 6} with a, defined
above satisfies the following :

T¥=yn(6%—0)
K | Z(0) , ZO)Z6) 3JO)+KE) 5 o

ROV (N O A O

r _3J(6)+K(6) 1
BT OV {Z 0) 10) Z‘(o)} +O’<¢W>

up to order m~'* as n— oo.

Remark. Since we have

E, [zl(e) {zz(e) — é’%z«o)}] —0;
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1 1
Vv Tn* = 0(——:) ’
o (T) T0) + e
and the third order cumulant is equal to that of the MLE up to the
order n~Y*. Hence the asymptotic expansion of the distribution of T*

is equal to that of J%’(é;‘f,,—ﬁ) up to the order n~Y%. Therefore the
DLE 6* is asymptotically equivalent to the MLE (5;';,, up to that order.

4. Third order asymptotic efficiency

We proceed to the problem of third order asymptotic efficiency.
We further assume the following: ‘

(vi) For almost all z[g], f(x, 8) is four times continuously differ-
entiable in 4;

(vii) there exist

L(0)=E, H%’s log F(X, 0)} {_aab‘ log f(X, o)}] ;
M(6)=E, H_af;iz log F(X, 0)}2] ;

N(6)=E, [{ai; log f(X, o)} {aa_o log f(X, 0)}2]
and

H(0)=E, [{_a% log £(X, o)}‘]
and the following holds:

o 3 e
E, [%‘_ log f(X, o)] — —AL(6)—3M(6)—6N(8)— H(6) .

Let 6, be an DLE. Since
S log f(Xi, én+—r_—)— 5 log £(X;, 6,)=a, ,
i=1 Jn i=1

it follows that

1 2 9 PO L A
4/_% = -50— log f(Xn 0n)+—2',r; ‘Eﬂ 50—2 log f(Xi: 6.)
"3 P tog £(X b))+ 312 Tog £(Xi, 0%)
6nym i1 06 ©oM T oamt = o0t ¢

an
r

b
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where |[0*—0|<r/ym. Since (1/n)§;(a4/ao*) log f(X;, ) converges in
i=1

probability to —4L(0)—3M(0)—6N(6)— H(6), it is seen that

zl(én)+—{ 10+ =76} - J% (8J(6,) + K(6,))

==
+ Z4(6,)— = {4L(6,) +3M(6,) + 6N(G,)+ H
on 24n
where
z0=~ 52 log F(Xe, 0)+30)+KO)} -
Jn o=t
Hence

a,, _r
41)  Z@)~lr = I(ﬁn) 2 ~/_ = — 76 5 J“

74, toi {4L(0n) +3M(6,)+6N(0,)+ H(b,)} .

9,)+K(6,)}

C6n

On the other hand we have

Z4(0.) = Z(8) +— ( Zu(6,) — v T I(0)} To— i‘ww
v 2J7m

o (AL(0)+3M(0) + 6NO) + HONT: +0,( 1)
on n
where T,=y7(0,—0). We obtain

1
(4.2) Tn_m[

— o L)+ 3M(O)+6NE) + HON T | +0,( L) .
n n

—Z,(6 1 _ 3JO)+ K(0) -

Since

1(6,) = I(6)+——{2J(6)+ K(O) T,
v

+ = {21(6) +2M(6)+ 5N(O)+ HO)} T o)
2n "

J(6.,)= J(0)+—{L(0)+M(0)+N(0)}T +o<¢ )

1
K(6,)= K(0)+T{3N(0)+H(0)}T +o,,<—7>
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. 1 ., 1.
L(o,,)—L(o)+7_n:L<a)T,.+o,,( m> ;

AN 1 , 1 .
M(o,.)—M(a)+ﬁM(o>Tn+op< m> ;

AN 1 , 1 .
N(on)—N(o>+ﬁN(o)Tn+op( m> ;

AN 1 , 1 .
H(on)—H(a)+ﬁH(o)Tn+op( ﬁ) ;

5y _ _ 1 2 1\,
Z(0,)=2Z60)—J(O) T, VA {2L(6)+ M(6)+ N(9)} T +0p<—‘/_n) ;
and

Ay 1
Z3(0n)—“¢%—

z;(o)T"+op(_;W_) ,

it follows from (4.1) that

Z(b)y=In 4 T T 7 TGI+K) 1, T s5ig)T
1(6,) r+2 2¢%.2+ Wi 6n3+2¢ﬁ(+)

3
+- L (AL+3M+6N+H)+-(4L+3M+6N+H)T;?
24n 4n
+f_(3L+3M+6N+H)Tn+o,,<-1_>
6n n
up to order »~! as n—oo. Under conditions (i)~(vii) we have from

(4.2)

43) T=-Ylo_ T r@ItK) 74, r4 v "

rl 2 6Iymn I 2Iyn 6In 24In

r re. L' Z, 3J+K
- 38J+K)T,— T+ T,— 22T T2
2Iyn 3J+K) 2In + Iyn 21y
r 1 1
- LT~ T <_
i L Lo n>
all K Z,, r 3J+K > 2.7,
=Y “ Z,— Z\ 4 L1l
rI ' 6I*Jm T 2Iym ( : T )t I'vn
~BIERE gz -ar+ K0z 2
o 1/% + T'n 1442 ( + ) 1493 6 1
L BI+KYZ:  (I+K)ZZ, _ (3J+K)KZ, | KZ
2I 2 61 6

_rBJ+K) _rI3J+K)Z, | r@I+K)Z
12 4 4
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__3r(8J+K)Z,Z, + r(3J+ K)'Z} 4 rlz;  rIL'Z,

2 41 2 2
r(8J+K)YZ: r 2£ < 1>
TOJTR)Z T g 2

+ o 1 LZE 4o, p

up to order n~' as m— oo, where a,=—(rl/2)—r*(8J+K)/6Iyn +rK/
61/ n +a with a/=0(1/n) and .L=4L+3M+6N+H and .L'=3L+3M
+6N+H. We denote by T* the corresponding T, to this particular
value of a,. Then we may also denote T,,*=¢W(@:{‘——0). On the other
hand under conditions (i)~(vii) we have obtained in [11]

44) VEGu—0)=2ry 1 {lez_(3J+K)Zf}

I I'Vm 21
+7};{2,Z:+-;-zlﬁzs— 3"2*}1‘ Z:7,
BJ+K) ,, AL+3M+6N+H 3} (l)
t——p 4 6l Zij o\ ) -

Let 6% be a modified MLE so that it is third order AMU. Comparing
(4.3) with (4.4), we see that JW(@;FL—ﬂ) and T* are essentially differ-
ent in the order n~!. We put T =47 (0. —0). Note that the differ-
ence of Ty% and T.* appears in the linear term of order » ' and other
terms of order n~!. It is shown in [12], [13] and [14] that the asymp-
totic cumulants are determined up to order n~! by the terms of order
up to n~'2 if the first term is equal to Z,(#)/1(¢); and the fourth order
cumulant is identical in the first term of order n~! for all asymptoti-
cally efficient estimators. In the third order cumulants we have

el T — ) — Bs(8) 1y,

s(TML Ea(TML)) __J-ﬁ +0<n>,

Ks(Tn*—Ea(Tn*))=@+If’@+o<-1—> .
v n n

Therefore there is a difference of asymptotic distributions of JW((?,;*L—
0) and T* in the term of n™! if 74(8)#0. If we denote by Theorem 3
and (4.3)

7 J+K r
Tn*="'_l'—" p— pe—
I 6I'yn +Jn

1 1 1
L= (Q_CHZR“L""(Z) ’

where

L*=2LI<Zz— 3J:IK Zl) ;
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_1 (lez 3J+K le> ;

T of
_ J+K
C —_ .
21
We decompose that
B(6) . @, (1\__ 1 3 * )2
@5) BT 4o )= B @)+ Bl 2T - BT
3 * nio(L
oo B Z(rL*+ Q- c)]+o<n>.

Note that E,(Q)=c. We have E,(Z})=K/y7n. For the second term of
the right-hand side of (4.5) we use the following lemma (see [12], Lemma
4.1).

LEMMA. Suppose that X, X;,---, X,,, -+ 18 a sequence of i.1.d. ran-
dom variables with a density f(x, 6) which is differentiable in 6 for al-
most all x[p]. Suppose further that T, is a B™-measurable function on
X into R' and differentiable function of 6 and that

I _E,(T)=

0 v 35 2 {Tv 1T r@e, 0)f 11 dutao

holds. Then we have

P 1 oT,
E,(ZIT,)-T/: B, (T)——= E( )
By the lemma we obtain
(4.6) E [Z(T¥—E, (T}
1 9
Va TX — E, | (T*—E,(T,*
= Vo)~ B [ (T =B, (1)

: {E;(Tn*—E,(T,.*»}]
)l
21ij o)
We also obtain
4.7 E,[Z(rL*+Q—c)}]
(8J+K)K

=2r K, [Z,L*@Q— c)]+0(1)——{7—-'——272——} +o(1) .
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From (4.5), (4.6) and (4.7) we have

__8r [ M) _ {3J(6)+K(6)} K(9)
n(a)_zl(ay[ 16) 21(0)° ] :

Since the third order asymptotic distribution of T,* attains the bound
of the third order asymptotic distributions of third order AMU esti-
mators at r, there is no third order AMU estimator which uniformly

attains the bound, if 5(f) is not equal to zero. Hence we have estab-
lished :

THEOREM 4. Under conditions (i)~(vii), 6%, is mot third order
asymptotically efficient if 7(6)+0.

5. Maximum log-likelihood estimator

Instead of the equation (1.1) we may take a solution 6, of the dis-
cretized likelihood equation :

5.1) 31 log f(X,, utret)— 33 log £(Xe, Bu—rei)=0 .

The solution @, is § which maximizes

S"; 1 log £(X,, 0-+t)dt= S'CZC_ log L(0+t)dt
—7 ”l

—rcRt i=1
where L(6) denotes the likelihood function. Then 6, is called maximum

log-likelihood estimator (MLLE) ([3]). If log L(é,,+t) is locally linear-

ized, 6, agrees with maximum probability estimator by Weiss and
Wolfowitz ([15]).

Now we shall consider a location parameter case when the density
function f satisfies the following assumption :

(viii) f(x, )=f(x—6) and f(x) is symmetric w.r.t. the origin.

It follows by the symmetricity of f that the solution 4, of (5.1) is
AMU. We also have

J(6)=K(6)=0 .
Let @,, be an MLLE. Then

3 log f(Xi—bu—(r[y/ )~ 3 log f(Xi= bt (r/VB)=0 .
Without loss of generality we assume that 6,=0. Since

3 log f(Xi—0,—(r]y/ W) — 3 log f(X)
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— {$log F(Xi= b+ (r]y ) — 33 log F(X)} =0 ,

it follows by Taylor expansion around ¢=0 that

jﬁ[ Slog f(Xi—0)|_+ 270 f/ri [ 2 S log fXi—0)]
+(%+ 3n7j7n,") [am 2 log S 0)L=0

_1_(1'(5,, 0, >[3 ] X,— 0} ~0
—l—3 ‘/'ﬁ_l-n«/'ﬁ Y og f( ) ,
where |6*|<|6]. Putting T,,=1/Wé,,, we obtain
207+ 2r( 2o JZZ —10)| T+ {Ze— /B BIO)+ KO}
. <'rT r

> — 5 {4L(0)+3M(0)+6N(0) + HO)}
. <1‘.T,§+LT,,)~0.
n n

Hence it follows that

T, = Z1+ Zy <Z1+Z1Z2>+ TZZ—{— 1 ZZ1

N I'n ) 6In ' 2In "I
——(4L+3M+6N+H)< A §*>+o,,(%) .

Under conditions (i)~(vii) we have

(6.2) T,= Z1+ Z\Zy o {Z1Zi+lZ12Zs—i(4L+3M+6N+H)Zf}

Tiyn
rZ, 2(4L+3M+6N+H) 2 ( )
e In 6I'n oo,

up to order n~! as m—oo. As was stated preciously the difference in
the order n~' term between (4.4) and (5.2) does not affect the asymp-
totic distribution up to the order n~'. Hence we have established:

THEOREM 5. Under conditions (i)~ (iv) and (vi)~(viii), the MLLE

A

0, s asymptotically equivalent to the MLE Ou, up to order n'.

It is shown in [12], [13] and [14] that 6y maximizes the symmetric

probability
P,y (VT By — 0| <u}
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up to the order »~! among all regular AMU estimators. Therefore it
is seen that

lim n[P, . (V7 |Gy — 0| <u} — P, o {4/ T |6 — 8] <u}] =0

n—o0

for all u, where 6, denotes DLE. The asymptotic distribution of the

MLLE 6, is equal to that of 6y, up to the order »7!, but not in the
n~%* and we can show that

lim 0¥[P,.o {4/ 7 |Gui— 0| <7} — P, o (V7 |0 — 0] <7}]=0

in general situations. Hence for symmetric intervals fyes is not fourth
order asymptotically efficient.

6. Conclusion remarks on discretized likelihood methods”

If we also define as asymptotic efficient estimator as 6, which max-
imize lim P,,),{c,.[@,‘—0[<r} among AMU estimators é,,, then 6* satisfy-

ing the following equation (6.1) is asymptotically efficient :

(6.1) 11 L& é,’!‘—t—rc,;l) o f(X, éf—A'rc;‘) _,
L S

where a, is chosen so that 6* is AMU. Then (6.1) is also expressed as

(62) exp {log L(6%+re;")—log L(6¥)}
—exp {log L(é,’f—'rc;‘)—log L(é,’!‘)} =a, .

n 9

If exp (log L) is linearize, then (6.2) is reduced to the type of (5.1),
where in this case the right-hand side of (5.1) is not always zero.
Hence it is seen from the above that the asymptotic efficiency (in-
cluding higher order cases) may be systematically discussed by the dis-
cretized likelihood methods.
Further the discretized likelihood methods may be also applied to
the statistical estimation theory of the fixed sample size.

UNIVERSITY OF ELECTRO-COMMUNICATIONS
UNIVERSITY OF TOKYO
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