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Abstract

Consider the parameter space © which is an open subset of ERF,
k=1, and for each 6 €6, let the r.v.’s Y¥,, n=0, 1,--- be defined on the
probability space (X, A, P,) and take values in a Borel set S of a
Euclidean space. It is assumed that the process {Y,}, n=0, is Marko-
vian satisfying certain suitable regularity conditions. For each n>1,
let v, be a stopping time defined on this process and have some desir-
able properties. For 0<r,—oco as m—oo, set 6. =0+h,r;"*, h,—he
R*, and consider the log-likelihood function 4, (f) of the probability

measure f’n,a,n with respect to the probability measure 15,,,,,. Here 13,,,,
is the restriction of P, to the o-field induced by the r.v.’s Y, Y, -,
Y, . The main purpose of this paper is to obtain an asymptotic expan-
sion of 4, () in the probability sense. The asymptotic distribution of
4, (6), as well as that of another r.v. closely related to it, is obtained

under both Pn,o and 13,,,0,".

1. Introduction

Let the parameter space © be an open subset of R*, k=1, and for
each #¢6, let Y,, 7=0,1,---,n be the first n+1 r.v.’s from a (strictly)
stationary Markov process. Each Y] is defined on the probability space
(X, A, P,) and takes values in (S, S), where S is a Borel subset of a
Euclidean space and S is the o-field of Borel subsets of S. Let 4, be
the o-field induced by the first n+1 r.v.’s, A,=d(Y,, Y;,---, Y,), and
let P,, be the restriction of P, to A,. It will be assumed that, for
each # and 6* in 6, P,, and P,, are mutually absolutely continuous
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(P,y=P,,), n=0. Then set

(1.1)  (@Pon/dPo)=q(Ys; 0,6%);  (dP,n/dP)=a(Ys, Y150, 0%),
and, by means of these, define

(1.2) qY;|Y;-15 0, 0%)=a(Y;-1, Y55 0, 0%)/a(Y; -5 6, 6%) -
Also, define

(L.3) 9,0, 0%)=¢(Y;.1, Y;; 6, 0%)=[a(Y;|Y;-15 0, 69)],  g=1.

Then the log-likelihood function of the measure P, , with respect to the

measure P,, is well-defined with P;-probability one for all €6 and is
given by the following expression (suppressing the r.v.’s involved)

(1.4) A,(0, %) =log [dP, »/dP, ] ,
where
(1.5) [dP, JdP, ) =q(Ys; 0, 6%) ﬁso;(o, 6%) .

From (1.4) and (1.5), it follows then that
(1.6) 4,00, %)=log q(¥,; 8, 6)+ . log (6, 6%) .
j=1

Next, for each €6, let {v,}, n=1, be an increasing sequence of
non-negative integer-valued r.v.’s tending to oo a.s. [P,] as n— oo, and
such that, for each n, (v,=m)¢e A,, m=0. Replacing n by v, in (1.6),
the log-likelihood is based on a random number of r.v.’s, namely,

(1.7) A,(0, 0%)=log q(Ys; 6, 6%)+ 3 log pX(6, 6%) .
Jj=1

(See also Proposition 3.1 below.) The basic purpose of this paper is
that of obtaining an asymptotic expansion as well as the asymptotic
normality of the log-likelihood, given by (1.7), for specific 6*’s. These
results, when obtained, will be a nontrivial generalization of similar
results in Roussas [7].

A more complete outline of what is done in this paper is the fol-
lowing. It is shown (Theorem 3.1) that an asymptotic expansion of the
log-likelihood function, given in (1.7), holds true when 6* has the form
0. given in (2.5). This is carried out in Section 5 by first obtaining
(Proposition 5.1) a similar expansion for the log-likelihood function given
in (5.1) and then establishing relation (5.4). The proof of the conver-
gence stated in (5.4) as well as the proof of Theorem 3.2 require cer-
tain results referring to random sums of r.v.’s and conditions under
which such sums converge in some sense. These results appear in Sec-
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tion 4 while Section 5 contains the proof of Theorem 3.1. The asymp-
totic normality of the log-likelihood function given in (3.1) as well as cer-
tain other asymptotic results that follow from Theorems 3.1, 3.2 and
standard contiguity-type arguments are presented in Section 8. Finally,
our assumptions appear in Section 2. These assumptions are of non-
standard (non-Cramér) type and involve the differentiability in quadratic
mean of certain random functions. The underlying basic idea throughout
is that of contiguity which was introduced and developed by LeCam [5].

In the sequel, all limits will be taken as n— oo unless otherwise
explicitly stated.

2. Assumptions and some comments

In this section, the assumptions under which the results in this
paper are obtained are gathered together. Although the first four as-
sumptions are the same as those utilized in Roussas [7], for the sake
of completeness they are herein restated. Due to the existence of a
random number of r.v.’s in forming the log-likelihood function in (1.7),
there is a need for an additional assumption. This is formulated as
Assumption (A5) below. Some illustrative comments follow its formu-
lation.

ASSUMPTIONS

(A1) For each 6 €6, the Markov process {Y,}, n=0, is (strictly)
stationary and metrically transitive (ergodic). (See Doob [4], p. 191
and p. 460.)

(A2) For each n=0, the probability measures {P,,; 6 € 6} are mu-
tually absolutely continuous.

(A3) (i) For each #¢€6, the random function ¢,(@, 6*), defined by
(1.3), is differentiable in quadratic mean (q.m.) [P,] with respect to #*
at § with q.m. derivative ¢,(#). (See, for example, Roussas [7], p. 43.)

Let the covariance function I'(§) be defined by

2.1) L(0)=4E[p(0)¢1(0)] -

Then
(ii) I'(#) is positive definite for every 6 € 6.

(A4) (i) For each 8¢€®8, ¢(Y,; 0, 6%¥)—1 in P, ,-probability as 6*—4.
(ii) For each fixed 6 €6, ¢(Y,; 8, 6*%) is A, X C-measurable and ¢(Y;, Y;;
8, 6%) is J; X C-measurable, where C is the ¢-field of Borel sub-sets of 6.
(ili) @(0) is A x C-measurable.

Now, let {z,}, n=1, be a sequence of positive real numbers tend-
ing increasingly to c. The z,’s may depend on the parameter 4. If
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we set then
(2.2) a,=][r,] (the greatest integer number in 7,),

it will clearly hold that

(2.3) 0=<a,T oo

and

(2.4) LN
Ta

Next, for an arbitrary but fixed 6 €O, set

(2.5) 6. =0+ B oheR*,

i’
so that 6. € 6 for all sufficiently large n. Also, set

(2'6) SDr,.i(ﬁ) =§Dj(0’ ofn) ’

where ¢,(6, 6*) is defined by (1.3). Then the last assumption to be made
is the following.

(A5) For each 0¢€6, a,[&¢!,(0)—11=0(1), where a, and ¢, ,(f) are
defined by (2.2) and (2.6), respectively.

Comments on Assumption (A5)

Assumption (A5) is used only in proving Lemma 5.4 below. It is
felt that it may be replaced by a weaker assumption or dispensed with
it altogether. We have, however, not yet been successful in doing
this. At any rate, this assumption has been checked and found to be
satisfied in the following two examples.

Example 2.1. The independent r.v.’s X,, n=1, have the double
exponential density

Pl 0) =1 exp (—|z—0) .
Then, for h=0, it is seen that

€t (0)~1]== 2 [exp (k) +2 exp (1]

where hf, and ¢!, lie between 0 and hk,/z;*. Thus,
a,[Espr ((0)—1]—h* .

The same convergence is established for A<0, and therefore Assump-
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tion (Ab) is satisfied. (See also Example 3.3, p. 49, in Roussas [7].)

Example 2.2. Here the r.v.’s X,, n=0, are centered at their ex-
pectations and constitute a Gaussian process with covariance given by

El(XnX,)=exp (—0|m—n|), 0>0.

This process is a stationary and metrically transitive Markov process.
(See also Example 3.4, p. 50, in Roussas [7].) After rather long cal-
culations, it is seen that the expression

Eilei(@, 0+h)—1]
is equal to

1—exp (—260)— {1—exp [-2(0+M)]}"*
. {1—exp [—2(6+h)]+4[exp (—260—h)—exp (—26)]} 2

divided by

{1—exp [—2(0+h)]} {1 —exp [—2(0+h)]
+4[exp (—20—h)—exp (—26)]}2 .

Replacing in these expressions h by h,[/z)/?, it may be shown that
a,[Es0% 1(0)—1]— W[l —exp (—26)] "' —2h" exp (—46)[1—exp (—26)]" .
Thus, Assumption (Ab) is fulfilled also in this example.

Remark 2.1. It is noted in passing that Assumptions (A1)-(A4) are
known to be satisfied for the examples discussed above. (See Examples
3.1-3.4, pp. 47-52, in Roussas [7]. Incidentally, Assumption (A5) is also
satisfied for Examples 3.1, 8.2 in the reference just cited.)

3. Main results and their implications

Let {v,}, n=1, be a sequence of stopping times on the sequence
{Y,}, =0 (so that, for each =, (v,=m)¢€ A,, m=0) and, by employ-
ing the notation introduced in (2.6), define 4, (6) by

3.1) 4,(0)=4,(6, 6, )=log q(Y;; 0, 6. )+ jz: log ¢ ,(9) .

The fact that 4, (9) is the log-likelihood function corresponding to the
rv.’s Y, Y;,--+, Y, is shown formally in the following

ProOPOSITION 3.1. For a stopping time v, on {Y,}, =0, define
(3.2) gﬂ,:a(lroy Yly"'! Kn)
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and let
(3.3) P,,=P,|F,

denote the restriction of P, on &,. Then, under Assumptions (Al)-(A2),

the probability measures {13,,,0; 6 € ©} are mutually absolutely continu-
ous and furthermore

_db,.

n,8

(3.4)

‘n

=q(Yy; 0, 0*)jf[Q(IGI19_1;0. 6*) .
ProoF. The r.v. L, is &,-measurable. In fact, for z ¢ R,
(L., 52)= 33 (L, <2)N Ga=m)

-2 La=2)N(v,=m)

m=0

=0 Anm ‘Bﬂ ’

where A,,=(L,=2)N(,=m)¢€ A, since (v,=m)e A,, by assumption,
and also (L,<z)¢€ A,. Thus, B,e . Next, for every m=0, B,N(v,
=m)=A,n € A, and this shows that B,e S,. Next, for AeZ,, we
clearly have the following series of equalities, namely,

L, dP,,
[AN(va=1)]

x
B

=y
1S
I~
IS
S
|
LS )
Cs

o

L. dP,,
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.
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>

1l

il

||M8 TMS

Pl AN (0=9)]=Po(4)= P, .(4).

This completes the proof of the proposition.
Next, define 4, () by

3.5) 4, (0)=20;"" jz o,(0) .
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Remark 3.1. It is worth noting that the r.v.’s 4, and RW'4, are
“.-measurable. This measurability may be established in the same way
as that of the r.v. L, in the previous proposition, and is implicitly
utilized in Theorems 3.1-3.4 below.

The basic results of this paper are the following two theorems.

THEOREM 3.1. Let h,, h € R* be such that h,—h, let {z,}, n=1, be
a sequence of positive real mumbers (possibly depending on 6) tending in-
creasingly to oo, and let 0. be defined by (2.5). For each 6 €06, let {v,},
n=1, be a sequence of mon-negative integer-valued 7r.v.’s increasingly
tending to o a.s. [P,], v,/r,—1 in P,-probability and (v,=m) € A,, m=
0, for each n. Finally, let A,(6), 4,(0), and I'(6) be defined by (3.1),
(3.5) and (2.1), respectively. Then, under Assumptions (Al)-(A5) and
for each 6 €06,

(3.6) 4,(0)—W4, (0)— —(2WT(O)h  in Prprobability .

THEOREM 3.2. In the notation of Theorem 3.1, under Assumptions
(A1)~(A5) and for each 6¢€6,

(3.7 L4, 0)| P.)= N(9, I'(9)) .
A direct implication of Theorems 3.1 and 3.2 is

THEOREM 3.3. In the notation of Theorem 3.1, under the same As-
sumptions employed there, and for each 6 ¢ 6,

(3.8) L4, (0)| P)J= N(—1/2)W'T(0)h, W' (O)R) .
Theorem 3.3 has the following

COROLLARY 3.1. In the notation of Theorem 8.1, and wunder the

same assumptions employed there, the sequences {13,.,0} and {P,,,o,n} are
contiguous.

Proor. It is immediate by Theorem 6.1 (iv), p. 33, in Roussas [7].

Finally, on the basis of Corollary 3.1, it may be shown that there
exist versions of the above three theorems when ¢ is replaced by 4. .
(See Theorems 4.4, 4.5, and 4.6, pages 54, 66 in Roussas [7].)

The remaining of the paper is concerned with the proof of Theo-
rems 3.1 and 3.2. This will be done after several auxiliary results have
been stated and proved.

4. Some auxiliary results

In this section, some auxiliary results are established which will
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allow us to obtain the proof of Theorem 3.1. Some of these results
are of considerable interest on their own right.

We first consider a slightly modified version of Theorem 1 of Ans-
combe [2]. For its formulation, two conditions to be stated below are
required. To this end, let W,, n=1,2,---, be real-valued r.v.’s de-
fined on the probability space (2, &, P), and let {8,}, »=1, be a non-
decreasing sequence of positive integers tending to co. Then suppose
that the following conditions are satisfied, namely,

(C1) L(W, |P)=Q a probability measure in R.

(C2) For every ¢>0 and some >0,

P(W.—W, |<e; for all n’ such that |n'—pB,[<88,)—1;
equivalently,
P[max (W, —W, |; »' such that |n'—g,|<dB,)=c]—0 .
We may now formulate the result referred to above.

THEOREM 4.1. Consider the sequence of r.v.’s {W,}, n=1, defined
on the probability space (2, &F, P) and satisfying conditions (Cl) and (C2)
above. Let also {r,}, n=1, be a sequence of positive integer-valued r.v.’s
such that (r,/B.)—1 in probability. Then

(4.1) L(W, |P)=Q.

PrOOF. For reasons of completeness the proof of the result (4.1)
is included here. For an arbitrary ¢>0 and some d>0 (see condition
(C2)), define the events A, and B, by

A, =(7r.—Bal<0B,) »

B,=(W,—W,; |<e for all »’ such that |n'—p,|<dp,)
and set

C.=AN(W,,—W, [<e)=(r.— B <8 N (W, — W} |<e) .

Then, by condition (C2) and the assumption that (r,/8,)—1 in probabil-
ity, we have that there exists a positive integer N=N(e, 6) such that

4.2) P(4,)>1—¢ and P(B,)>1—¢ for n=N.
Furthermore,
(4.3) A.NB,cC,

because, for we (4,NB,), w€ A, and hence |7, (w)—8,/<68,; also, we€ B,
which implies that |W,(w)—W, (v)|<e for all n’ such that |n'—p,[<d8,,



ASYMPTOTIC EXPANSION OF THE LOG-LIKELIHOOD FUNCTION 29

and therefore 7,(w) is such an n’. From (4.2) and (4.3), we have then
that

(4.4) P(C,)>1—2¢ or, equivalently, P(C)=2¢, n=N.
Next,
(W, =x)c(W, =x)NC,JUC;
and on C,, W, —e<W, , so that
(W, <2)S(W, <z+e)UC:
and hence
(4.5) P(W, <2)<P(W, Sc+e+2, a=N.
Also,
(W, >2)S[(W, >2)NC]UC;
and on C,, W, <W, +¢, so that
(W, >x)S(W, >2—e)UCS
and hence
P(W, >5)<P(W,>z—o)+2, nzN.
Equivalently,
P(W, sz—e)—2=P(W, =), n=N,
so that, by means of this inequality and relation (4.5),
(4.6) P(W, <a2—e)—2:<P (W, <2)<P (W, <+e)+2¢, n=zN.

Consider now x € C(F'), where F' is the d.f. corresponding to the prob-
ability measure @ and let ¢ | 0 in (4.6). Then the desired result follows.

The result presented below will, in some instances, help check the
validity of condition (C2) of Theorem 4.1. More specifically, the r.v.’s
W, , n=1, in the applications of Theorem 4.1 will often be of the form

An
[; pnzz an With anzo 9 j_2_1 .
j=1

Then condition (C2) takes on a specific form given below. More pre-
cisely, we have the following result.

ProposITION 4.1. For each n=1,2,---, let X, =1, be r.v.’s de-
fined on the probability space (2, <, P) and such that X,,;=0, j=1,
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and, for each n, X,,, 7=1, are stationary. Let {8,}, n=1, be a non-
decreasing sequence of positive integers tending to co and define W, by

Wﬂ=é an .
j=1

Then, for every ¢>0 and some 6>0,
(4.7  P(W,—W, |>¢ for all n' such that |n'—p,|<38,)

[26,)
21-P( 3 Xz,
j=1

where, we recall that, for >0, [x] denotes the largest integer =z.
(Thus, condition (C2) will be satisfied, if

[98,]
P< X,,,ge>—»o )

i=1
PROOF. The inequality |n'—8,|<dg, implies the inequality

(4.8) [(A—0)B.]<n =[(1+0)B.] -
Then

(4.9) P(W,—W, |<e for all n’' such that |n'—p,[<dB,)
=1—P(W,—W, |=¢ for at least one n'
such that |n'—g,|<d8,)
=1—P[max (W,—W, |=e; n' such that [n'—8,|<dB,)] .

But, by (4.8),

P [max (W, —W, |=¢; n’ such that |n'—p8,[<d8,)]
<P (max {|W,.—W, |2¢; [(1-0)8,]=n'<[(1+0)8.]})
<P (max {|W,—W, |z¢; [(1—-0)g.1<n'<B.})
+P (max {|W,—W, |2¢; g.=n'<[(140)8.]})
[N [A+8)8,]
=P{

anZ-E}—l—Pi > Xn,ze}.

J=[=0)p,1+2 J=hat1

Each one of these last terms involves a number of successive X,,’s
which is =[d8,]. Then, by stationarity, the sum of these last two
terms is bounded by

(6]
2 P < Z X,u%E) .
j=1
Thus, (4.9) becomes
P(W,—W, |<e for all #’ such that |n'—8,[<38,)
(36,
;1—2P< 3 X,,,ge)

i=1
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as asserted in (4.7).

The following two properties will prove useful in establishing cer-
tain result in the next section. In addition, they are of some inde-
pendent interest.

PrOPOSITION 4.2. For each n=1,2,---, let X,,, j=1, be r.v.’s de-
fined on the probability space (2, <, P) and let r,, n=1, be positive
integer-valued r.v.’s such that (r,/8,)—1 in probability, where {8,},
n=1, in a nondecreasing sequence of positive integers tending to oo.
Then, for every ¢>0, there exists a positive integer N=N(¢) such that
n>N implies that
[+eHp,]

ge>=P(A,,)<e+e" S 81X,

J=[a-eHB,1+2

By Tn
(4.10) P (lg X, —3 X,

In particular, if, for each n, the £|X,,|, /=1, are all equal, then the
above inequality becomes

Bn n
(4.11) P < > X, -3 X,y
i=1 =1

> e) —P(A,)<e(1+28:L] Xol) -
Proor. In the first place,

(4.12) P (

%‘r——l| > 52>=P(l1‘n—ﬁnlzszﬁn)<e . n>N=NG).

Next,

(

Therefore, for n> N,

(4.13)  P(A,)=PlA.N(7.—B.|ZB)]+P[A.N (7. —B.|<B)]
<P (7r.—B.lzeB.)+P (4. N {[(1—)B]<7a<B,})
+P (AN {B=7=S[(A+e)BN) <e+Dut P

%—1| <) =(ra—Bal<BIS (L —)B] < SLL+eI.])
C (LB << B} U (BaSruS[(L+eDB.1) -

where the last inequality holds true because of (4.12) and where p,
and p,, denote the last two terms on the right-hand side of the in-
equality before relation (4.13). But

Bp-1
pnl: P {Ann U (T,,=7/)}
i=[(1-e$)B,1+1
Bp-1
—P { U A,,n(r,,=i)}

i=[(1-eHB,T+1
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x 2]

> [(1—sz)ﬁn1+23msm})

En
2

Jj=m

=[a- :Z)@ 1+2 (

=P
P (max {z‘.X,.,

Bn
|X,.,lzs}se-l S eXl;

{j =[(1—-eD)p,1+2 I=[-eDp,1+2

that is,
By
(4.14) pu=et > E|X,l.
F=[U=eHp,1+2
Next,
[(1+-2)1?n .
pn2: P { :’L)}
i= pn
[(1+e2 )ﬁ"]
”ﬂn
_p {[(l+‘2)ﬁn ( XM = E>}
m=pp1 \|7=p+1
=P (max {| 33 X,|ze pet1smsia+s})
J=gp+1
P<max{ f‘_. | X,i1=e; ﬁn+13m5[(1+52).3n]}>
=fptl
[(1+.2)ﬁ ] [+
=P { 371X, Iz <o S e1X,);
I=bp+1 j=bpt1
that is,
[(14¢ )ﬁn]
(4.15) Puse! &1 X, -
/—ﬁn+

Then, by means of (4.14)-(4.15), relation (4.13) becomes
[1+e28,]
P(A)<e+e™? 2] E1 Xl n>N,

F=la—e®p,1+2

which is what relation (4.10) asserts. Relation (4.11) follows from re-
lation (4.10) because

(14981 = (A1 —e)Ba]+2) +1=26%8,

ProposITION 4.3. For each n=1,2,---, let X,;, 7=1, be r.v.’s de-
fined on the probability space (2, &, P) and such that

C(Xn,j+1|an9' * an)':O ’ a.s. [P]v j;]-’ 8Xn1=
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Also, let {8,}, »=1, be a nondecreasing sequence of positive integers
tending to co. Furthermore, let (r,/8,)—1 in probability, where r,,
n=1, are positive integer-valued r.v.’s. Then, for every ¢>0, there
exists a positive integer N=N(e) such that n>N implies

[(1+e3)8,,1
= €> =PA)<e+e? 3 X,y .

J=[a-e®p,1+2

Bn Tn
(4.16) P <[ ¥ X,-3 X,

In particular, if the r.v.’s X,;, =1, have the same variance, then the
above inequality becomes

bn Tn
(4.17) P( 5 X,—3 X,
i=1 i=1

> e> =P (A,)<e[1+28,04(X)] -

Proor. Working as in Proposition 4.2, we obtain, for n>N,
(4.18) P(A)<e+pu+pe, n>N,

where p,, and p,, are the same quantities as those in the above cited
proposition. Next, again as in Proposition 4.2, with ¢’ replaced by &,

(419)  pu=P(max| ﬁzm X,|ze [A-)pl+2sm=s )
4.20) = B AX),

i=[a-ep,1+2

where the inequality follows from the extended Kolmogorov inequality
(see, for example, Loéve [6], p. 386). Also, by the same proposition
and the inequality mentioned above,

@2)  pe=P(max{| B X,|z¢ pt1=msia+asl)
I=bp+1
< S x,)
J=Bp+1

Then, by means of (4.19)-(4.21), relation (4.18) becomes

s [+e3)8,1 <
P(An)<€+8 Z G'Z(an) y 711=N1

i=la-3p,1+2

as asserted in (4.16). Relation (4.17) follows from (4.16) and the fact
that

[A+e)8]— {[(1—€)Ba]+2} +1=26%8, .

5. Proof of main results

In our understanding there is no direct way of establishing Theo-
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rem 3.1. What can be done instead is to prove a version of this the-

orem when v, is replaced by a, (see Proposition 5.1 below). Then, on

the basis of this and relation (5.4), one may arrive at the desired resuit.
To start with, let a, be defined by (2.2) and let

(5.1) 4, (0)=4,(0,0.)=log a(¥;; 0,0, )+ jz log ¢ ,(6)
and
5.2) 4, (6)=2a5"" jz o,(6) .

Then one has

PROPOSITION 5.1. Let h,, h € R* be such that h,—h, let {z,}, n=1,
be a sequence of positive real numbers (possibly depending on §) tend-
ing increasingly to oo, and let 4, be defined by (2.5). Let a,, 4. (6),
4,(0) and I'(f) be defined by (2.2), (5.1), (5.2) and (2.1), respectively.
Then, under Assumptions (Al)-(A4) and for each 6 €6,

(5.3) A, (0)—h'4, (6)— —(1/2)k'['(6)h  in P,-probability .
ProOF. Set
0,=0+hn""?, h.—h, he R*.

Then it is well known that

4.8, 6,)—h'4.(6)— —(1/2)R'T(6)r  in P,-probability .
Furthermore, since {a,} < {n}, |

4.(0,6.)—h'd, (0)——Q1[2)W'T(6)h  in P,-probability .
Next,
0. =0+ h, ;" P=0+(hol’c; )y P=0+h¥e ', h¥—h, he R

so that A, (6)—h'4, (6)— —(1/2)h'T(O)h.
On the basis of Proposition 5.1, Theorem 3.1 will follow provided
the following result is established, namely,

(5.4) (4, —W4,)—(4, —I'4,)—0  in P,-probability

where the parameter ¢ has been omitted from 4, (6), 4, (6), 4. (6) and
4,(6). In order to show relation (5.4), it suffices to show

(5.5) ( jz log (p,’;j——h'A,,”> - < ,21 log gp,’;,—h'd,,”>—>0
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in P,probability, where again the parameter § has been omitted from
¢n;(0). From a purely mathematical point of view, the log ¢2; in (5.5)
must be replaced by expressions not involving log’s. This can be done
provided log ¢:,=2log ¢,;=2log [1+(¢,;,—1)] may be expanded. This
can be done provided that |p,;—1| is bounded away from 1. Thus we
are led to the following lemma.

LEMMA 5.1. Consider the sequence {a,}, n=1, defined by (2.2), and
Sfor each 6 €6, let {v,}, n=1, be as in Theorem 3.1 (so that (v,/a,)—1 in
Pj-probability). For n=1, let 1, stand for either a, or v, and define W,
=max (¢,;—1|; 1=<5<l). Then, under Assumptions (Al)-(A4),

(i) W. —0 in P,probability,

(i) W, —0 in P,-probability.

ProoF. (i) It follows from Lemma 5.2, p. 56 in Roussas [7] and
an argument similar to that employed in proving Proposition 5.1.

(i) The r.v.’s W, satisfy condition (C1) of Theorem 4.1 by means
of part (i); they are also seem to satisfy condition (C2) after some
algebra. Hence the result follows.

Lemma 5.1 implies that for any ¢>0 and for all suﬁiciently large
n the set A,=(W, >¢)U (W, >e¢) satisfies the inequality P,(4,)<e. Thus,
on the set A: (of P(A5)>1—¢) and for all sufficiently large =,

; log ¢7;,=2 ; (‘Pnj_l)"‘%} (pn;—1)+2 ? Cos(n;—1)° leas1=8,
(5.6)
? log ¢7,=2 2 (SDnj—l)—}; (pny—1)*+2 5}: Cas(¢n;—1) [C.;1=3,

where 3, 3 denote summations for 1<j<a, and 1<j<y,, respectively.
7 7

From (5.6), it follows that the relevant algebra would be easier, if the
last term could be disregarded. This is possible by the following lemma.

LEMMA 5.2. Let {a,} and {v,}, n=1, be as tn Lemma 5.1, let I,
stand for either a, or v, and define

Iy
Vlnzzlsonj_llai ngl.
j=1

Then, under Assumptions (Al)-(A4),
(i) V. —0 in Pr-probability,
(i) V, —0 in P,-probability.

ProOOF. (i) It follows from the proof of Lemma 5.3, p. 57, in
Roussas [7] and an argument similar to the one employed in the proof
of Proposition 5.1.
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(ii) The r.v.’s V, satisfy condition (C1) of Theorem 4.1 by means
of part (i). To show that they also satisfy condition (C2), consider
Proposition 4.1 with X,;=|¢,;—1[.

Next, by means of relationship (5.6) and Lemma 5.2, relation (5.5)
reduces to

6D 25 eu—D-Seu—1y-N4,]

— [2 RS IESS (gp,,j—l)?'—h’d,,n] -0
in P,-probability .

This, however, is clearly a consequence of Lemmas 5.3-5.5 below. De-
tailed proof is given only for Lemma 5.5. Details on all other proofs
may be found in Akritas and Roussas [1].

LEMMA 5.3. Let {a,}, n=1, and {v,}, n=1, be as in Lemma 5.1.
Then, under Assumptions (Al)-(A4),

G.8) 23 (py—1)—23 (pn—1—0  in P,probability .
j=1 =1

Proor. It follows by considering Proposition 4.2 with X,,;=(¢,,—1)%

LEMMA 5.4. Let {a,} and {v,}, n=1, be as in Lemma 5.1. Then,
under Assumptions (Al)-(A5),

(6.9) 3 [2ew—DHlon—1'—2e )]

= 2 2w~ 1)+ (n —1)— 205,10
in Prprobability .

Proor. It follows by considering Proposition 4.3 with X,;=2(¢,,
—1)+(pn;—1)*—2a;"°h'p,, and making use of Assumption (A5).
(It should be remarked in passing that this is the only instance where
Assumption (A5) is used.)

LEMMA 5.5. Let {a,} and {v,}, n=1, be as in Lemma 5.1. Then,
under Assumptions (Al)-(A4),

(5.10)  Za7in z W, — 27" jz Wo,—0  in Pr-probability .
i= =1

PROOF. Retaining the notation 31 and > for summation over j
J J

from 1 to «, and from 1 to v,, respectively, and setting
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an=2a; l/2h'¢j ’ j 2_1 ’
we have
6)fi(-Xn,j+l‘anr' ) an)=0 a.s. [PG]’ ngy 80Xn1=0 .

Furthermore, for each n, the r.v.’s X,;, j=1, have the same variance.
Then relation (4.17) in Proposition 4.3, with 8, and 7, replaced by «,
and v,, respectively, becomes

(5.11) P(| 3 X3 X,y

Z ¢ Sell+ 20,820 W]
But

20" "W o) =4C(W'p)! (< o0)
and therefore the right-hand side of (5.11) implies that ‘

20, ' ; b ¢;—20;"? ? he;—0 in P,-probability .

By Theorem 3.2, with 8, replaced by a,,

.E(za;w ST | P,) = N(O, T (O)h) .
Thus,
(5.12) 1(2a;1/2 S| P,) = N(O, KT (B)h) -
Furthermore,
(5.13)  2a;'? ? R ¢, — 20712 ; W oy =[1—(an/vn)"] (2a;"2 ? h’sbj) .

By assumption, the first term on the right-hand side of (5.13) tends
to 0 in P,probability, and the second term by, (5.12), is bounded in
P,-probability. The desired result follows.

We may now proceed with the proof of Theorems 3.1, 3.2.

ProOOF OF THEOREM 3.1. As it was shown above, the proof of
Theorem 3.1 reduces to showing that relation (5.7) holds true. This,
however, is obtained by adding up the expressions (5.8)-(5.10).

PrOOF OF THEOREM 3.2. It follows from relations (5.12), (5.13).
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