ON THE EMPIRICAL BAYES APPROACH TO CLASSIFICATION IN THE CASE OF DISCRETE MULTIVARIATE DISTRIBUTION HAVING ONLY FINITE MASS POINTS

HIROSI HUDIMOTO

(Received Feb. 21, 1978; revised Oct. 24, 1978)

1. Introduction

In [2], the empirical Bayes approach to classification problems has been considered for the case that a population π is divided into r mutually exclusive sub-groups π_1, \dots, π_r and that proportions w_i 's of individuals of π belonging to π_i 's are unknown. The similar approach is dealt with in a special setting of classification for the case of r=2.

Suppose to be known that each individual in the given population π belongs to one of two mutually exclusive groups π_1 and π_2 . Our purpose is to classify each of n individuals randomly drawn from π to either π_1 or π_2 as correctly as possible. An application for the case of classification based on individuals responses to a battery of m dichotomous items is given in the last section. Assume that observations are obtained from any m-variate distribution that a random vector can take only a finite number of distinct points.

Let w_1 and w_2 be unknown proportions of individuals of π belonging to π_1 and π_2 , respectively. We shall regard $w=(w_1, w_2)$ as an unknown prior distribution which represents the chance that an individual randomly drawn from π belongs to π_1 or π_2 .

2. Preliminary consideration

Let $f_i(x)$ be the joint probability function of the m-variate x which can take only s distinct points x_1, \dots, x_s , in π_i , i=1, 2. For the preliminary consideration to show the basic idea of our procedure, we assume that $f_i(x)$ and $f_i(x)$ are known. Consider the likelihood ratio $L(x) = f_i(x)/f_i(x)$, and denote the ξ th of L(x) arranged in ascending order by $L_{(\xi)}$, that is,

$$(2.1) 0 \leq L_{(i)} \leq \cdots \leq L_{(i)} \leq \cdots \leq L_{(i)} \leq \infty.$$

Let $g_i(\xi)$ be $f_i(x)$ arranged in the rank order of $L_{(\xi)}$, and let $G_i(y)$ be

defined by $G_i(y) = \sum_{\xi \leq y} g_i(\xi)$.

Suppose now that a random sample of the size n is obtained from π . Observed vectors included in the sample from π are transformed into the rank order based on $L_{(\varepsilon)}$. Let (y_1, \dots, y_n) be the sample from π transformed into the rank order defined above.

Our purpose is to classify each of individuals contained in the sample to either π_1 or π_2 as correctly as possible. Firstly, the unknown prior distribution $w=(w_1,w_2)$ is estimated from the sample. Secondly, the empirical Bayes decision rule is made for our classification problem. Take the statistic

(2.2)
$$\hat{p}_{i} = \frac{1}{n} \sum_{\nu=1}^{n} \left\{ G_{i}(y_{\nu}) - \frac{1}{2} g_{i}(y_{\nu}) \right\}, \quad i = 1, 2.$$

Then, for unbiased and consistent estimates of w_1 and w_2 , we have

(2.3)
$$\hat{w}_1 = \frac{1}{\Delta_{12}} \left\{ \frac{1}{2} - \hat{p}_2 \right\}$$
 and $\hat{w}_2 = \frac{1}{\Delta_{12}} \left\{ \hat{p}_1 - \frac{1}{2} \right\}$,

where Δ_{12} is

(2.4)
$$\Delta_{12} = \frac{1}{2} \sum_{\xi=1}^{s} \left\{ G_1(\xi) g_2(\xi) - G_2(\xi) g_1(\xi) \right\} .$$

It is obvious that $\Delta_{ij} = -\Delta_{ji}$ and $\Delta_{ii} = 0$, i, j = 1, 2. The expectation of $G_i(y) - (1/2)g_i(y)$ with respect to $g_j(\xi)$ is

(2.5)
$$\mathcal{C}_{g_j}\left\{G_i(y) - \frac{1}{2}g_i(y)\right\} = \frac{1}{2} + \Delta_{ij}, \quad i, j = 1, 2.$$

Thus, we have

$$\mathcal{E}_{\sigma^n}\{\hat{p}_1-\hat{p}_2\}=\mathcal{A}_{12},$$

where \mathcal{E}_{g^n} denotes the expectation with respect to the joint distribution of y_1, \dots, y_n which have the common probability function given by

$$(2.7) g(\xi) = w_1 g_1(\xi) + w_2 g_2(\xi) .$$

Possibly it may be that either of \hat{w}_i 's (i=1,2) comes to a negative value, because \hat{w}_i 's are unbiased estimates of w_i 's. Such a happening will be more probable in the case that either one of w_i 's is fairly small. Then, we have defined the ordering based on $L_{(\epsilon)}$ in order to get a greater Δ_{12} . The formula (2.6) intuitively shows our aim for the above described situation.

Let L(j|i) be the loss incurred if a decision is made to classify him as coming from π_j when the individual is actually from π_i . It is assumed that $0 < L(j|i) < \infty$ if $i \neq j$ and L(i|i) = 0, i, j = 1, 2.

Consider

(2.8)
$$D_{\hat{w}}(x) = L(1|2)f_2(x)\left(\hat{p}_1 - \frac{1}{2}\right) - L(2|1)f_1(x)\left(\frac{1}{2} - \hat{p}_2\right).$$

Then, if $\Delta_{12} > 0$, we make a decision rule

(2.9)
$$\delta_{\hat{w}}(x) = \begin{cases} a_1 & \text{if } D_{\hat{w}}(x) \leq 0, \\ a_2 & \text{if } D_{\hat{w}}(x) > 0, \end{cases}$$

where a_i indicates to classify the individual with x to π_i , i=1, 2, and \hat{w} means $\hat{w}=(\hat{w}_1, \hat{w}_2)$.

Denote by $B(w, \delta_{\hat{w}})$ the expected risk of $\delta_{\hat{w}}(x)$ with respect to $w = (w_1, w_2)$. The rule of the form (2.9) with $(1/2 - \hat{p}_2)$ and $(\hat{p}_1 - 1/2)$ in (2.8) replaced by w_1 and w_2 is a Bayes decision rule with respect to w, and $B(w) = B(w, \delta_w)$ is the corresponding Bayes risk. Then, it can be shown that

$$(2.10) \mathcal{E}_{q^n}B(w,\,\delta_{\hat{w}}) \to B(w) \text{as } n \to \infty.$$

Robbins, [3], has defined by (2.10) "asymptotic optimality" of an estimated Bayes decision rule. Thus, we have the following: If $\Delta_{12} > 0$, the decision rule given by (2.9) is asymptotically optimal relative to $w = (w_1, w_2)$.

About each of n individuals contained in the sample, the same rule as (2.9) can be written as follows:

(*) Classify an individual with x having the rank (ξ) to π_1 if $(\xi) \leq (\xi_0)$ or to π_2 if otherwise, where (ξ_0) is determined by

$$L_{\scriptscriptstyle (\xi_0)} \! \le \! L(2\!\mid\! 1) \! \left(rac{1}{2} \! - \! \hat{p}_{\scriptscriptstyle 2}
ight) \! \left/ L(1\!\mid\! 2) \! \left(\hat{p}_{\scriptscriptstyle 1} \! - \! rac{1}{2}
ight) \! < \! L_{\scriptscriptstyle (\xi_0+1)} \; .$$

3. A procedure for the case that $f_1(x)$ and $f_2(x)$ are unknown

In the case that $f_1(x)$ and $f_2(x)$ are not completely known, we shall assume that past observations randomly obtained from π_1 and π_2 are available, respectively.

Let $(x_1^{(1)}, \dots, x_{n_1}^{(1)})$ and $(x_1^{(2)}, \dots, x_{n_2}^{(2)})$ be those samples obtained from π_1 and π_2 , respectively. Define the relative frequencies $\hat{f}_{n_1}(x)$ and $\hat{f}_{n_2}(x)$ by

(3.1)
$$\hat{f}_{n_i}(x) = \frac{1}{n_i} \sum_{\mu=1}^{n_i} n(x, x_{\mu}^{(i)}), \quad i=1, 2,$$

and

$$n(x, x_{\mu}^{(i)}) = \left\{egin{array}{ll} 1 & ext{if } x = x_{\mu}^{(i)} \ 0 & ext{if } x
eq x_{\mu}^{(i)} \ . \end{array}
ight.$$

Consider $\hat{L}_{n_1,n_2}(x) = \hat{f}_{n_2}(x)/\hat{f}_{n_1}(x)$ instead of the likelihood ratio L(x) in the Section 2 and denote the ξ th of $\hat{L}_{n_1,n_2}(x)$ arranged in ascending order by $\hat{L}_{(\xi)}(n_1, n_2)$.

For logical convenience, assume to be

$$(3.2) 0 < L_{(1)} < \cdots < L_{(s)} < \cdots < L_{(s)} < \infty$$

for the ordered relation given in (2.1). It can be shown that $\hat{L}_{n_1,n_2}(x)$ converges to L(x) in probability for any fixed x which can take the points x_1, \dots, x_s , for $\hat{f}_{n_i}(x)$ converges to $f_i(x)$ with probability one and $f_i(x) > 0$ by (3.2), i=1, 2. Thus, we can find out a number $n_0 = n_0(\varepsilon)$ such that

$$(3.3) \quad |\hat{L}_{(y_n)}(n_1, n_2) - L_{(y_n)}| \leq \varepsilon \quad \text{for } n_i \geq n_0, \ i = 1, 2; \ y_{\mu} = 1, \dots, s,$$

in the above-mentioned sense, when we take $\varepsilon > 0$ as

(3.4)
$$\varepsilon = \frac{1}{3} \min_{\xi=2,\dots,s} \left(L_{(\xi)} - L_{(\xi-1)} \right).$$

From (3.3), we have

$$(3.5) L_{(y_{\mu})} - L_{(y_{\nu})} - 2\varepsilon \leq \hat{L}_{(y_{\mu})}(n_1, n_2) - \hat{L}_{(y_{\nu})}(n_1, n_2) \leq L_{(y_{\mu})} - L_{(y_{\nu})} + 2\varepsilon.$$

Then, (3.5) means that if $L_{(y_{\mu})} > L_{(y_{\nu})}$, $\hat{L}_{(y_{\mu})}(n_1, n_2) > \hat{L}_{(y_{\nu})}(n_1, n_2)$ and if $\hat{L}_{(y_{\mu})}(n_1, n_2) > \hat{L}_{(y_{\nu})}(n_1, n_2)$, $L_{(y_{\mu})} > L_{(y_{\nu})}$. Thus, we can obtain the following:

For sufficiently large n_1 and n_2 , the rank order obtained from $\hat{L}_{(\xi)}(n_1, n_2)$ based on $\hat{L}_{n_1,n_2}(x)$ tends to coincide with the rank order obtained from (3.2) based on $\hat{L}(x)$.

Now, let $(y_1^{(1)}, \dots, y_{n_1}^{(1)})$ and $(y_1^{(2)}, \dots, y_{n_2}^{(2)})$ be $(x_1^{(1)}, \dots, x_{n_1}^{(1)})$ and $(x_1^{(2)}, \dots, x_{n_2}^{(2)})$ transformed into the rank order based on $\hat{L}_{(\varepsilon)}(n_1, n_2)$. Suppose that a new random sample of the size n is obtained from π . Every observation from π is transformed into a rank as mentioned above from a vector. Let (y_1, \dots, y_n) be the new sample transformed into the rank order.

Define $Z(y_{\mu}^{(i)}, y_{\nu})$, $z(y_{\mu}^{(i)}, y_{\nu})$ and \hat{p}_i by

$$Z(y_{\mu}^{(i)}, y_{\nu}) = \begin{cases} 1 & \text{if } y_{\mu}^{(i)} \leq y_{\nu}, \\ 0 & \text{if } y_{\mu}^{(i)} > y_{\nu}, \end{cases}$$

$$z(y_{\mu}^{(i)}, y_{\nu}) = \begin{cases} 1 & \text{if } y_{\mu}^{(i)} = y_{\nu}, \\ 0 & \text{if } y_{\mu}^{(i)} \neq y_{\nu}, \ \mu = 1, \dots, n_{i}; \ \nu = 1, \dots, n_{i}, \end{cases}$$

and

(3.7)
$$\hat{p}_{i} = \frac{1}{nn_{i}} \sum_{\nu=1}^{n} \sum_{\mu=1}^{n_{i}} \left\{ Z(y_{\mu}^{(i)}, y_{\nu}) - \frac{1}{2} z(y_{\mu}^{(i)}, y_{\nu}) \right\}, \quad i=1, 2.$$

Let $\hat{g}_{n_i}(y)$ and $\tilde{g}_i(y)$ be $\hat{f}_{n_i}(x)$ and $f_i(x)$ arranged in the rank order based on $\hat{L}_{(\xi)}(n_1, n_2)$, and let $\hat{G}_{n_i}(y)$ and $\tilde{G}_i(y)$ be defined by $\hat{G}_{n_i}(y) = \sum_{i=1}^n \hat{g}_{n_i}(\xi)$ and $ilde{G}_i(y) = \sum_{\epsilon \in \mathcal{I}} ilde{g}_i(\epsilon), \ i = 1, 2, \ ext{respectively}. \ \ ext{Define } ilde{\mathcal{A}}_{ij} \ ext{by}$

(3.8)
$$\tilde{\Delta}_{ij} = \frac{1}{2} \sum_{\xi=1}^{s} \{ \hat{G}_{n_i}(\xi) \tilde{g}_j(\xi) - \tilde{G}_j(\xi) \hat{g}_{n_i}(\xi) \} , \quad i, j = 1, 2.$$

Then, the conditional expectations of \hat{p}_i 's, i=1,2, with respect to the joint distribution of y_1, \dots, y_n which have the common probability function $\tilde{g}(\xi) = w_1 \tilde{g}_1(\xi) + w_2 \tilde{g}_2(\xi)$ are

$$\mathcal{E}_{ ilde{ extstyle g}^n} \hat{ ilde{p}}_{ extstyle 1} \! = \! rac{1}{2} \! + \! ilde{ extstyle J}_{ extstyle 11} \! + \! w_2 \! (ilde{ extstyle J}_{ extstyle 12} \! - \! ilde{ extstyle J}_{ extstyle 11})$$
 ,

and

$${\cal E}_{ ilde{g}^n}\hat{m{p}}_2\!=\!rac{1}{2}\!+\! ilde{\it eta}_{\scriptscriptstyle 22}\!+\!w_{\scriptscriptstyle 1}\!(ilde{\it eta}_{\scriptscriptstyle 21}\!-\! ilde{\it \Delta}_{\scriptscriptstyle 22})$$
 ,

under the condition that observed values of $(y_1^{(1)}, \dots, y_{n_1}^{(1)})$ and $(y_1^{(2)}, \dots, y_{n_1}^{(n)})$ $y_{n_0}^{(2)}$) have been obtained. Thus, we have

$$p\lim_{n_1 o\inftytop n_2 o\infty}{\cal E}_{ar y^n}\!\!\left(\hat {\hat p}_1\!-\!rac{1}{2}
ight)\!=\!w_2\!arDelta_{12}$$
 ,

$$p\lim_{\substack{n_1 o\infty n_2 o\infty n_2 o\infty}}\mathcal{E}_{ar{g}^n}\!\!\left(\!rac{1}{2}\!-\!\hat{p}_{\!\scriptscriptstyle 2}\!
ight)\!=\!w_{\!\scriptscriptstyle 1}\!\mathit{\Delta}_{\!\scriptscriptstyle 12}$$
 ,

and

$$p\lim_{n_1 o\inftytop n_2 o\infty}\mathcal{E}_{ar{g}^n}\!(\hat{m{p}}_1\!-\!\hat{m{p}}_2)\!=\!m{J}_{12}$$
 ,

since $p \lim_{\substack{n_1 \to \infty \\ n_2 \to \infty}} \tilde{\Delta}_{ii} = 0$, i = 1, 2, $p \lim_{\substack{n_1 \to \infty \\ n_2 \to \infty}} \tilde{\Delta}_{12} = \Delta_{12}$ and $p \lim_{\substack{n_1 \to \infty \\ n_2 \to \infty}} \tilde{\Delta}_{21} = -\Delta_{12}$.

Therefore, a decision rule as given in (*) with \hat{p}_1 and \hat{p}_2 replaced by

 \hat{p}_1 and \hat{p}_2 is adequate for our purpose.

An approximation in the case of dichotomous response patterns

The classification procedure based on response patterns of individuals to m dichotomous items is considered for the case that a population π is composed of two mutually exclusive sub-groups π_1 and π_2 , from the viewpoint of empirical Bayes approach.

Let $x = (e_1, \dots, e_m)$ denote the total response to the given battery of items, where $e_k = 1$ if the response on the kth item is "positive" and $e_k = 0$ if otherwise, $k = 1, \dots, m$. Then, s in the preceding sections is $s = 2^m$ in this case. Let $f_1(x)$ and $f_2(x)$ be also the probability functions of x in π_1 and π_2 , respectively. In this case, the representation of $f_i(x)$ given by Bahadur [1], is as follows:

(4.1)
$$f_i(x) = \left(\prod_{k=1}^m \alpha_k^{(i)^{e_k}} (1 - \alpha_k^{(i)})^{1-e_k} \right) \cdot \varphi_i(x) , \qquad i = 1, 2 ,$$

and

$$arphi_i(x)\!=\!1\!+\!\sum\limits_{k_1< k_2} r_{k_1k_2}^{(i)} z_{k_1}^{(i)} z_{k_2}^{(i)} \!+\!\cdots\!+\!r_{12\cdots m}^{(i)} z_1^{(i)} z_2^{(i)} \cdots z_m^{(i)}$$
 ,

where $\alpha_k^{(i)} = P(e_k = 1 \mid \pi_i)$, $z_k^{(i)} = (e_k - \alpha_k^{(i)}) / \sqrt{\alpha_k^{(i)}(1 - \alpha_k^{(i)})}$ and $\mathcal{E}_{f_i} z_{k_1}^{(i)} \cdots z_{k_l}^{(i)} = r_{k_1, \dots, k_l}^{(i)}$.

Bahadur [1], pointed out that the optimum solution based on L(x) requires knowledge of the probability distribution of response patterns in each group, but this is a strong requirement if m is large, since both $f_1(x)$ and $f_2(x)$ are distributions with 2^m-1 parameters. Then, he has given certain approximations to $l(x) = \log L(x)$ and to error curve attainable with l(x).

But, in actual applications of classification problems, it may be rather unusual that $f_1(x)$ and $f_2(x)$ are completely known. In such cases, if respective past observations from π_1 and π_2 are available, the procedure as discussed in Section 3 may be applicable. However, the procedure based on $\hat{L}_{n_1,n_2}(x)$ may need fairly large sample sizes n_1 and n_2 for obtaining a stable result if m is large. Then, we shall also use the approximation for l(x) proposed by Bahadur to transform x into a rank order.

For $f_i(x)$'s in (4.1), l(x) is

(4.2)
$$l(x) = \log L(x) = \log f_2(x) - \log f_1(x)$$

$$= \sum_{k=1}^{m} (A_k + B_k e_k) + (\log \varphi_2(x) - \log \varphi_1(x)) ,$$

where A_k and B_k are $A_k = \log((1-\alpha_k^{(2)})/(1-\alpha_k^{(1)}))$ and $B_k = [(\alpha_k^{(2)}/(1-\alpha_k^{(2)})) \cdot ((1-\alpha_k^{(1)})/\alpha_k^{(1)})]$. In this case, the simplest approximation for l(x) is to replace $\log \varphi_i$ by $\varphi_i - 1$, i = 1, 2, giving

$$(4.3) \tilde{l}(x) = \sum_{k=1}^{m} (A_k + B_k e_k) + \sum_{k_1 < k_2} (r_{k_1 k_2}^{(2)} z_{k_1}^{(2)} z_{k_2}^{(2)} - r_{k_1 k_2}^{(1)} z_{k_2}^{(1)} z_{k_2}^{(1)}) + \cdots + (r_{1 \cdots m}^{(2)} z_{1}^{(2)} \cdots z_{m}^{(2)} - r_{1 \cdots m}^{(1)} z_{1}^{(1)} \cdots z_{m}^{(1)}).$$

Consider the case that observed response vectors $x_1^{(i)}, \cdots, x_{n_i}^{(i)}$ re-

garded as surely coming from π_i , i=1,2, are available, as $f_i(x)$ is unknown. The parameters $\alpha_k^{(i)}, r_{k_1 k_2}^{(i)}, \cdots$, and $r_{12...m}^{(i)}$ included in $\tilde{l}(x)$ can be estimated from $(x_1^{(i)}, \cdots, x_{n_i}^{(i)})$. An estimate $\hat{l}_{n_1, n_2}(x)$ of $\tilde{l}(x)$ is obtained by means of replacing the parameters included in $\tilde{l}(x)$ by their estimates. Consider the rank order based on $\hat{l}_{n_1, n_2}(x)$, and denote the ξ th of $\hat{l}_{n_1, n_2}(x)$ arranged in ascending order by $\hat{l}_{(\xi)}(n_1, n_2)$. Putting to use the same notations as in the Section 3, $(x_1^{(i)}, \cdots, x_{n_i}^{(i)})$ is transformed to the rank order $(y_1^{(i)}, \cdots, y_{n_i}^{(i)})$ based on $\hat{l}_{(\xi)}(n_1, n_2)$.

Suppose that a new random sample (x_1, \dots, x_n) is obtained from π in order to classify each of individuals included in this sample based on their response patterns. Let (y_1, \dots, y_n) be also the transformed sample to above-mentioned rank order from (x_1, \dots, x_n) .

Then, the statistics of the form given by (3.7) can be obtained from $(y_1^{(1)}, \dots, y_{n_1}^{(1)})$, $(y_1^{(2)}, \dots, y_{n_2}^{(2)})$ and (y_1, \dots, y_n) , and the procedure in order to make the decision rule can be carried out in the same fashion as in the Section 3.

THE INSTITUTE OF STATISTICAL MATHEMATICS

REFERENCES

- [1] Bahadur, R. R. (1961). On classification based on responses to n dichotomous items, Studies in Item Analysis and Prediction, Stanford University Press, 169-176.
- [2] Hudimoto, H. (1976). On the empirical Bayes approach to classification problems, Essays in Probability and Statistics, 697-707.
- [3] Robbins, H. (1964). The empirical Bayes approach to statistical decision problems, Ann. Math. Statist., 35, 1-20.
- [4] Van Ryzin, J. and Susarla, V. (1977). On the empirical Bayes approach to multiple decision problems, *Ann. Statist.*, 5, 172-181.