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1. Summary

A recursive procedure for the computation of one-step ahead pre-
dictions for a finite span of time series data by a Gaussian autoregres-
sive moving average model can be realized by using the Markovian
representation of the model. The covariance matrix of the stationary
state variable of the Markovian representation is required to implement
a computational procedure of the predictions. A simple computational
procedure of the covariance matrix which does not need an iterative
method is obtained by using a canonical representation of the autore-
gressive moving average process. The recursive computation of the
predictions realized by using this procedure provides a computationary
efficient method of exact likelihood evaluation of a Gaussian autoregres-
sive moving average model.

2. Recursive computation of one-step ahead predictions

Assume that a stationary scalar zero-mean Gaussian process y(n)
is defined by the relation

2.1) 2(n+1)=Fz(n)+Gx(n+1) , y(n)= Hz(n)

where z(n) is a scalar white noise independent of z(n—1), 2(n—2),---,
and z(n) is the state variable which is a stationary p-vector process
and the matrices F, G, H are pXp, pX1l and 1xp, respectively.
When (0), y(1), -, y(n—1) are given, the one-step ahead prediction of
2(n) is defined by

2(n]0, n—1)=projection of z(n) onto the linear space spanned
by the components of %(0), y(1),:--, y(n—1),

and the one-step ahead prediction of y(n) is given by y(n]|0,n—1)=
Hz(n|0, n—1).
The computation of 2(n]0, n—1) can be done recursively by using
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the relations
e(n)=y(n)—Hz(n|0, n—1),

(2.2) 2(n+1|0, n)=F2(n|0, n—1)+ K,r;'e(n) ,
2(0]0, —1)=0,

where r,=Ee(n)* and K,=E z(n+1)e(n), the Kalman gain vector. By
the Kalman filtering procedure, which is a standard procedure of re-
cursive computation of the predictions, K, and R, are computed by the
relations

(2.3) K,=FP(n|n—1)H', r,=HP(n|n—1)H',

where ’ denotes transpose and P(n|n—1)=E (2(n)—2z(n|0, n—1))(z(n)—
2(n|0,n—1)) and is obtained by the relations

P(n+1|n)=FP(n|n—1)F'+G¢G'—K,r;'K,! ,
PO|-1)=F,

(2.4)

where ¢=E z(n)* and P,=E 2(0)2(0), the covariance matrix of the sta-
tionary state vector. Thus the numerical evaluation of P, forms the
starting point of the Kalman filtering procedure.

3. Prediction of ARMA process

When y(n) is a stationary Gaussian autoregressive moving average
(ARMA) process defined by

(3.1) y(n)+by(n—1)+- - - +byy(n—M)
=x(n)+ax(n—1)+ - - +az(n—L)

there is a Markovian representation (2.1) defined by

0 1 o --- 0 Wy
0 0 1 0 w,
F=| : R N e I
3.2) 0 0 o ... 1 Wx_g
—bx —bgy —bgy: - -—b Wg -1

H=[1 0 0-.-.0],

where a;+#0, by#0 and K=max (M, L+1) and the w,’s are the impulse
responses of the system (3.1), i.e., (w,, w,- -, wx_)=(¥(0), ¥(1),-- -,
y(K—1)) under the assumption that y(—1)=y(—2)=---=y(—M)=0 and
x2(n)=1, for n=0, 0, otherwise. The corresponding state variable z(n)
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is defined by
(3.3) z(n)=y(n+1i|n) t=0,1,.--, K—1,

where z(n) denotes the 7+1st component of 2z(n) and y(n+7|n) the
projection of y(n+1) onto the space spanned by the components of y(n),
y(n—1),---; see, for example, Akaike ([1], [2]).

Thus the recursive procedure for the computation of one-step ahead
predictions for a finite span of data can be applied to the autoregres-
sive moving average process (3.1) via the representation (2.1) with the
matrices defined by (3.2), if only the covariance matrix P, of the state
variable z(n) is obtained.

4, Covariance matrix of the state variable
Under the assumption that the characteristic polynomial
(4.1) B(z)=1+bz+ - - - +byr™

has the zero’s outside the unit circle y(n) can be represented in the
form

(4.2) Ym)= 3 waz(n—m) ,
where the summation denotes the limit in the mean square and w,’s

are the impulse responses of the system defined by (3.1). By using
(4.2) we get for 1=0 the representation

Y(nti|n) =3 W, nx(n—m)
- or the relation |
Ynti)= 3 winz(n—m)+y(ntiln) .
From this last relation we get for 7=+7 the relation
(43)  Eyn+dyn+)=c' 5 watbn,,-+ Ey(ntilnpyin+ln)

where ¢* is the variance of xz(n). When the ARMA model (3.1) is given
the computation of w,’s is straightforward. Thus it is only the com-
putational procedure of Ey(n-+1i)y(n+j7) that is required for the evalu-
ation of the covariance matrix of the state variable defined by (3.3).

By multiplying the both sides of (3.1) by y(n—k) and taking the
expectations we get the relations (k=0, 1,---, K)
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R(—k)+bR(—k+1)+---+bgR(—k+K)
=Wyt Qe W+ * + - A Wg_1- »

where b,=0 for m>M, a,=1 and a,=0 for I>L, and R(k)=Ey(n+k)-
y(n). In the matrix form these relations are given by

1 b1 bz .. 'bK—l bK S(l) C(l)
by 1+b, by ---bx 0 || S(2) C(2)

@4 | : : S =| : ,
bx-1 bK—2+bK bK—a' -1 0 S(K) C(K)

bK bK_.1 bx_z‘ . 'bl 1 S(K+1) C(K+1)

where C(m)=0,,_\Wy+a, W+ -+« +agx_Wx_n and S(m)=R(m—1).

To solve the equation (4.4) for S(m)’s we want to transform the
matrix on the left-hand side into lower triangular form with 1’s on
the diagonal. For notational convenience we put d¥=b, (1=1, 2,---, K).
We subtract from the ith row b% times the (K+2—1%)th row and divide
the resulting ith row by 1—(b%)* for =1, 2,---, [(K+2)/2], where [x]
denotes the integer part of x. Hereafter the same operation as that
applied to the elements of the matrix on the left-hand side is applied
to the elements of the vector [C(1), C(2),---, C(K+1)]'. By the present
operation the bX’s in the first [(K+2)/2] rows of the matrix are trans-
formed into b¥~'s which are defined by

K _pKpK .
(4.5) bf-lz_.___btl_’gg;f ., i=1,2,-.,K-1,

and
b '=0.
From (4.5) we get the relation
bE-'=bf—bEbE:, 1=1,2,---, K-1.

Thus by subtracting b% times the (K+2—1)th row from the ith row
for i=[(K+2)/2]+1, [(K+2)/2]+2,- -, K+1, the b{’s within the matrix
are all replaced by b¥"s. When b¥=0 the above operation is non-
effective and can be skipped. At the next stage, since we have b%™!
=0, we can restrict our attention to the first K rows and apply the
same type of operation to transform bX~'s into b¥¥s with b%-}=0.
The operation can also be skipped when b%5-}=0. By repeating the same
type of operations K times we get
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(10 0 ---0 03¢S1) 7 (D) 7
1 0 -0 0] S©@ D(2)
(4.6) o 10 0 SE | DB)
gL bETL bEL---1 0 || S(K) D(K)
Lox  bx, bE,...0r 1JlSx+1)) D&+1))

The desired solution is then obtained by the recursive relations

S(m)=D(m)— 3} br-'S(m—1i) ,  m=2,3,+-+, K+1,

4.7
S(1)=D(1) .

The description of the above procedure shows that the equation (4.4)
has a unique solution if only |b¥|=1 does not hold for M=1,2,.--, K.
It is already well known that |[b%|<1 (M=1,2,..-, K) is necessary and
sufficient for the characteristic equation (4.1) to have zero’s outside the
unit circle; see, for example, Szaraniec [6]. The non-singularity of the
matrix of (4.4) has been used by Kitagawa [4]. Thus under the pre-
sent assumption of stationarity the equation (4.4) uniquely determines
R(m) (m=0,1,.--, K). From these R(m)’s we can get, via (4.3),

i-1
Po(i’ j)=R(j—i)—'02 7n2=0 W Wy 51 1 jg’i,
where P,(i, j) denotes the (4, j)-element of the covariance matrix P,

of the state variable and Py(7, )= P,(%, 7).

5. Application to exact likelihood computation

For a set of data (y(1), ¥(2),-- -, ¥(N)) the exact likelihood of a zero-
mean stationary Gaussian ARMA model (3.1) is given by

1) o [ -]

2ra’r, 2d%r,

where e(n) and r, are obtained by (3.2), (2.2), (2.3) and (2.4) under the
assumption that ¢=1 and ¢* denotes the assumed value of the variance
of z(n).

Once P, is given a computational procedure of e(n) and r, given by
Morf, Sidhu and Kailath [5], which is more efficient than that by (2.4),
can be used for the computation of the exact likelihood. A computer
program for the maximum likelihood computation of a Gaussian ARMA
model by this procedure is already developed by Akaike et al. [3]. The
computational efficiency of the likelihood computation procedure is con-
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firmed through the comparison with other procedures.
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