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Abstract

This article discusses the extension to general compact Abelian
groups of some results previously established by R. Roy for the case
of the circle and the sphere. Estimators of the covariance function
and spectral parameters for a homogeneous stochastic process defined
on a compact Abelian group are considered and their properties are
derived.

1. Introduction

In this paper we extend to general compact Abelian groups some
results of Roy (see [7], [8], [9] and [10]) given for the case of the circle
and the sphere. Let G be a compact Abelian group (CAG) with multi-
plication as operation and let (2, .4, P) be a probability space. Consider
a stochastic process {X(g, w): g€ G, w€ 2}, that is, for each g¢ G, X(g,
), is an Jf-measurable complex-valued function over £. Denote by
E [X(g, w)] the mean function of the process and by R(g,, g.)=Cov {X(g,,
o), X(g:, ®)} the autocovariance function of X(g, w). From now on we
omit the dependence on @ and write simply {X(g), g€ G}.

We say that X(g) is weakly homogeneous if
(i) E[X(g9)]=c.=constant, for each g G;

(ii) X(g) € Ly(2, A, P), for each geG;
(iii) Cov {X(gy), X(g,)} is a function only of g,9;*.

Here, L2, J, P) is the Hilbert space of all square integrable ran-
dom variables on (2, 4, P), with inner product given by (U, V)=E(UV).
Without loss of generality we assume thet ¢,=0, hence we can write

(1.1) R(h)=E [X(gh)X(9)] ,
g9, heQG.
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In Section 2 we discuss homogeneous stochastic processes {X(g),
g€G} on a CAG G which are time-independent and derive properties
for the estimates of R(h) and for the spectral parameters to be defined.
In Section 3 we consider the case of homogeneous processes which are
time-dependent.

Homogeneous stochastic processes defined on locally compact Abelian
groups are discussed by Morettin [5]. A basic reference on the subject
is Yaglom [11].

2. Time-independent processes

Let {X(g), g€ G} be a homogeneous, real-valued stochastic process
on a CAG G, with finite second-order moments and continuous in quad-
ratic mean (q.m.).

According with the representation theory for compact groups (see
Pontryagin [6]) there exists at most a denumerable number of homo-
morphisms from G on the group of matrices with finite orders,

g€ G- A™(9)=[A7(9)],
1<, j=d, <o, n=1,2,8,---, such that
(2.1) A™(9:9:)=A(g)A™(gv)
(2.2) A™(g™)=[A™(9)]'=A™(g) .

The elements A{P satisfy
(2.3 |, AP@AP@g=umdud,ds’

where §;; is the Kronecker delta and dg is the Haar measure on G.
The set of all the elements A{? forms a complete orthogonal system in
Ly(G). It follows that X(g) can be written

oo dn
(2.4) Xo)=3 3 ZPA50) .
where
(2.5) zZp=d. | X@ AP

Both equations (2.4) and (2.5) should be understood is the q.m.
sense. Since E[X(g)]=0 it follows that E[Z{]=0. The following the-
orem is known (Yaglom [11]).

THEOREM 2.1. The stochastic process (2.4) is weakly homogeneous
if and only if
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(2~6) . E [ZJ(? )Zz(km )]=5nm5ﬂ5ikf ny

where f,=20 and 3 nf,<oo. Moreover, the covariance function of X(g)
18 given by

(2.7) Rg)=%1r"(g)fn

where y™(g)=tr [A™(g)] are the characters of G. The f,’s are the spec-
tral parameters. We note that

(2.8) E{|Z;f}=Var{Z;?}=/. .

We suppose now that X(g) is Gaussian. Then the coefficients Z{P
will have a complex normal joint distribution. We denote by N;(g, X)
a multivariate complex normal distribution with mean pg(px1) and co-
variance matrix X(pXp), Hermitian and non-negative definite. In the
case p=1, if the random variable (r.v.) Y is Ny(g, ¢*), then ReY and
Im Y are independent r.v.’s Nj(Re g, ¢%/2) and N,(Im g, ¢*/2), respectively.
For further details on the complex normal distribution, see Brillinger
[1] and Goodman [2].

The following theorem is immediate.

THEOREM 2.2. If X(g) is weakly homogemeous, real and Gaussian,
with mean zero, them the r.v.’s Z{P are mutually independent, with a
complex mormal distribution Nf(0, f.), +f f.,>0 and degemerate at the
origin, 1f f,=0.

If we have a realization of the process {X(g), g € G} we obtain Z{
from (2.5) and using (2.8) we may estimate f, through

dn
L S zee.

Ry =

(2.9) fa

Then we have the result below.

THEOREM 2.3. The r.v. 2d: f',,/f,, 18 distributed as a chi-square r.v.
with 2d; degrees of freedom, ¥(2d:), if f.>0 and it is degenerate at the

origin if f,=0. Moreover, the f,,’s are mutually independent.

Proor. Since Z{P is a NY(0, f,) r.v. then Re Z{®» and Im Z{P are
independent r.v.’s, each one with distribution N,(0, f,/2). Since 2[Re
ZPVf, and 2[Im Z{P)/f, are independent X*(1) it follows that 2{[Re Z{]*
+[Im ZP1PY f,=2|ZPPf, is a 2((2), and by the independence of the
Z{P’s, the theorem follows.

Replacing Z{P given by (2.5) in (2.9) we obtain
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(2.10) f= |, X0xw 3 Apendgdn

If we have T independent realizations of X(g), consider the esti-
mator

2.11) fO=T" §J Futs

where f,,,, is the estimator (2.9) corresponding to the tth realization.
It follows that f{™ is unbiased for f, and the theorem that follows is
immediate.

THEOREM 2.4. If X(9) is Gaussian, mean zero and f<T s given
by (2.11), then the r.v. 2Td:fP|f, is a ¥Y(2Td}), if f,>0 and degenerate
at the origin if f,=0. Moreover, the f™, n=1, are mutually inde-
pendent.

Based on (2.7) we estimate R(g) by
(2.12) R‘T’(g)=§ e () Ak

where N, is a positive integer, with N,—oo as T—oo. If B(g) de-
notes the bias of R‘"’(g), we have the next theorem.

THEOREM 2.5.
(2.13) (a) E[RT(9)]=O0(N7');
Nt
(2.14) (b) lim T Cov {E(g:), B™(g2)} =d.* 7™ (@)
(2.15) (¢) B(g)=O(N7") .
Proor. (2.13) follows immediately and
Nt Nt
Cov (B™(g.), B™(g)} = Cov | 3177(@) £i™, 3 1@ 57
Nt
=T7'd:" 379 )r™ (9

using the fact that the f{™’s are mutually independent and that
Var [ f{"]=f2/Td:. The bias of R7(g) is given by

p— (n) _,n'__ L
Bo=3 r"@f, ad |BOIS S {-ASEf

and since > nf,<oo, the theorem is proved.

As an example, take the case of a stochastic process {X(P), Pe S,}
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on the unit sphere S,CR. The expressions (2.4) and (2.5) become

(2.16) X(P=3 3 ZuYu(P), PeS,
(2.17) Z"'FSS X(P)Y.u(P)P,

respectively, where {Y,(P), —n<k=mn} are the real spherical harmonics
of order n and dP is the measure over S,. In this case, the covariance
function R(P, Q) depends only on the angular distance # between the
points P and @ and (2.7) becomes

(2.18) R(0)=(4n)"! % (2n+1)P.(cos 6)f, ,

where P,(-) are the Legendre polynomials of degree n. The estimator
f. given by (2.9) and (2.10) reduces to

(2.19) £ =(4n)! S . Ss, X(P)X(Q)P,(cos 6)dPdQ .

For further details on stochastic processes on the sphere see Jones [4]
and Roy [8], [9].

3. Time-dependent processes

We consider now a process {X(g,t): g€ @G, t€ Z}, where G is a
CAG and Z={0, £1, £2,---}. We assume that the process is real and
for each te Z, {X(g,t), g € G} is continuous in q.m. Hence, for each
t ¢ Z we have (using the notation of last section)

] dn
(3.1) X =3 3 ZPOAPE) ,  0¢G,
where
(3.2) Zipt)=d, | | X(g, HAD(gMyg .

both equations understood in the q.m. sense.

We say that X(g,t) is weakly homogeneous with respect to g and
weakly stationary with respect to t if for all g, g, of G and ¢,z of Z
we have

(a) E[X(g,,t)]=constant=p, and we assume p=0,
(b) E[X(g:, t+7)X(g:, 1)]=R(g,7) ,  with g=gig;".

The analogue of Theorem 2.1 is the following (see Hannan [3]).
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THEOREM 3.1. If Xlg, t) is weakly homogeneous and stationary, then
(3.4) B (ZP( 4+ OZ0) =iyt | e“dF )

where F,(3) is a sequence of real, non-decreasing functions, such that

(3.5) Sin S_ dF () <o .
Moreover,
(3.6) R(g,)=57"(9) | edF.1).

We say that X is strictly homogeneous with respect to g and strictly
stationary with respect to t if the distribution of X(g,+g, t;+1%),- -+, X(g:
+g, t.+t) is independent of g € G and of t € Z, for every finite collection

(915 £+ 5 (g te)-
We suppose that the process X{(g, t) satisfies the

AssuMPTION 3.1. For each t € Z, X(g, t) is continuous in q.m., strict-
ly homogeneous and stationary and having bounded moments with re-
spect to g, that is

(3-7) IE {X(gu tl)' * 'X(gk, tk)}'éMk(tlx tt tk) ’
uniformly in g,,---, gz, for all ¢,---, %, k=1,2,3,---.

The following theorems are proved along the same lines as in Roy
[7], [8] and hence we omit the proofs. We denote by Cum {Y3,---, Y}
the kth order cumulant of the r.v.’s Y;,---, Y,.

THEOREM 3.2. The cumulant

Cum (Z;72(wi+t), - -+, Zipkily_ (1), Zi7E(0)}

1 Iklk
18 independent of t and it will be denoted by

(ryyeeesmg)
Cidi B (U v ey Uny)

This result is necessary to prove the central limit theorem below,
since eventhough X(g,t) is homogeneous and stationary, the process
{ZP(t), te Z} given by (3.2) need not to be stationary.

To prove Theorem 8.2 the following lemmas are necessary.

LEMMA 3.1.

E{Z[3t) - Z; ()

k'

k YR k
=az | {1140 E (] X, t)}dg.---dg. ,
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for all ¢, g,, 3., 4, 1=1,2,---,k, k=1,2,..-

LEMMA 3.2.

Cum {Z;2(t), - - - ZiiE(8)

Tk
=ds| - 1147060 Cum (Xgi, 8.+, X(awr t}dgy---dgi ,

fO’r all t, 9 jlv il: l—_-l)' ) k; k=1v 2,
We further assume that the following supposition is valid.

ASSUMPTION 3.2(l). For given [=0

ST {L+|u,l)|Cum (X(g, wi+1),-
Upren g ==
X(gk—lv uk-l+t)1 X(gkv t)}‘§Ck<°° ’
uniformly in g,, -+, g¢, 5=1,---,k—1, k=2,8,---

It is easy to see using Lemma 3.2 and the Monotone Convergence
Theorem, that this assumption implies that

(3.8) ST L e (e Uer)|[ < oo

Tt
SUp—1=
For 1=0, we can then define the spectral cumulant of order k as
(.9  FiEl ey Aen)
k-1
=@r)* S G (e, Uesy) exp(—i = u,2,>,

Up -

for —c0<2;< 4+, j=1,---,k—1, £k=2,3,---
In particular, for the second-order spectrum, we have from Theo-
rem 3.1

(3.10) IS0 (2)=011010um J(2)

and the Assumption 3.2(0) tells us that f,(2)=F)/(2). In order to esti-
mate f,(1) we consider the finite Fourier transform of the coefficients
Z{P(2), defined by

(3.11) EmW=@aT) ™ S ZP (e,

—co<LAL + o0, t,5=1,---,d,, given the values X(g,t), g€ G and t=0,
1,.---,T—1 of the process.

From Theorem 3.2 and Theorem 4.4.1 of Brillinger [1], we have
the following result.
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THEOREM 3.3. Let X(g, t) satisfying Assumption 3.1 and Assump-
tion 3.2(1). Let s(T) be an integer with A(T)=2zs(T)/T— ., as T—
oo, k=1,---, K. Assume 24(T), 2(T)+2(T)%0 (mod 2r), for 1=k<l
<K and let d5y™(2) be defined by (8.11). Then d5»7(2(T)), k=1,---, K
are asymptotically independent Nf(0, f,.(2)) random variables. If A2=0

[ . . .
(mod ) then d§y™(2)— Ny(0, f.(2)) independently of the previous variates.
The theorem suggests that as an estimate of f,(1) we may take

(3.12) EP@=4- 53 gD, 20

which is called the periodogram of order n.

COROLLARY. Under the conditions of the Theorem 3.3, for m=0,
I$™(2), k=1,---, K, are asymptotically independent f,(1,)x*(2d2)/2d: ran-
dom wvariables. For A=0 (mod=z), I{(2) 1s f,(A)yX(d2)/d: independently
of the previous variates and for m#m, I[{(2) and IST(3) are asymptoti-
cally independent.

Consistent spectral estimates for the case of the sphere are con-
sidered by Roy [9]. A class of estimates for the case of the circle are
considered by Roy [7] and Roy and Dufour [10].
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